10kV发电机组中性点经电阻接地方式

合集下载

10kV发电机组中性点经电阻接地方式

10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与之间电气连接的方式,称为电网中性点接地方式。

中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

在选择电网中性点接地方式时必须进行具体分析、全面考虑。

我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。

配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。

近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。

在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在、试用、推广,并很快推广到其他城市(如、、、、、天津、、、工业园区、、讪头、、、等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。

发电机中性点接地方式及作用

发电机中性点接地方式及作用

发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。

发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。

本文将介绍几种常见的发电机中性点接地方式及其作用。

1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。

这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。

该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。

2.直接接地方式直接接地方式是指发电机中性点直接接地。

这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。

直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。

3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。

这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。

高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。

4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。

这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。

低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。

除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。

每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。

发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。

总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。

各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。

10kV混合线路中性点接地电阻的选择

10kV混合线路中性点接地电阻的选择

10kV混合线路中性点接地电阻的选择摘要:由于电缆的电容较大,使得系统的电容越来越大,当系统发生弧光接地时,将会产生很大的过电压和故障电流。

为了减小此类事故对配电网的危害,实际使用接地电阻和消弧线圈来降低过电压危害,因经消弧线圈经济性不合适,经电阻接地系统有较为广泛的使用。

很多地方虽然采用了电阻接地系统,但发生电弧时,抑制过电压的效果不明显。

造成这种情况的原因是由于不同的地方线路的结构不同,没有做到具体的线路具体分析。

关键词:10kV线路;混合线路;中性点;接地电阻1中性点不同接地方式的特点配电网中性点接地法是指配电网中性点接地的方法。

根据具体方法,有有效接地法和无效接地法两种,有效接地法又可分为中性点小电阻接地和直接接地。

电流比较大,俗称大电流接地法。

在特定配电网方面,需要从技术、安全以及经济等诸多方面着手研究,以便确定接地方式的最好方案。

1.1中性点直接接地方式如果配电网中存在单相接地故障,接地方式为中性点接地,如果存在中性点以外的接地点,则形成短路,产生较大的接地相故障电流。

这种方法供电可靠性低,停电频繁,在实际配电网故障的情况下,故障多为单相接地,多为暂时性故障,最终降低供电可靠性,造成供电异常[1]。

但是,在这种接地方案中,当发生单相接地故障时,系统中性点的钳位效应不会显着增加无故障相的对地电压,有利于绝缘。

系统。

1.2 电阻接地方式根据接地故障电流的大小,可分为低阻接地和高阻接地。

低阻接地是指接地电流大于等于100A且小于1000A的情况,高阻接地是指接地电流小于10A的情况。

在配电系统低阻接地的情况下,发生单相接地时,由于高、中压配电的绝缘水平不同,无故障相电压可达到正常值的3倍。

系统采用较高的雷击过电压设计,对配电系统设备基本无危害。

当系统发生单相接地故障时,无论是永久性的还是非永久性的,都会作用于设备引起跳闸,使线路跳闸非常频繁,对正常供电产生显着的负面影响,大大降低了配电系统的整体可靠性。

10kV系统中性点接地方式

10kV系统中性点接地方式
10kV系统的接地方式
10kV系统中性点接地可分为:
中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);
中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统)。
1.10kV系统中性点不接地系统
(பைடு நூலகம்)接地故障特点
配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流ICL1、ICL2、ICL3相等,分别超前相电压90°,ICL1=ICL2=ICL3=UΦωC,其ICL1+ICL2+ICL3=0,系统中性点与地有相同电位。
过补偿方式,接地故障残余电流Id较大,不利于接地故障点电弧自熄,但它不易产生串联谐振过电压。实际运行中,过补偿方式常被采用。
系统在运行中,经常接通或切除部分回路,系统中分布电容电流有较大的变化,满足脱谐度的要求,消弧线圈的电感也相应改变,需人工改变消弧线圈的抽头位置,接地故障残余电流Id小于5A~10A以下,系统出现谐振过电压可能性降低。发生接地故障时,非故障相对地电压升高 倍。
IC——接地电容电流(单位:A)。
上述电容电流的计算值只能用于某些对准确度要求不很高的场合.
通过上述估算,可知道系统的总的零序电流,然后进行电流互感器的选择,电流互感器选择的基本原则是:线路发生单相故障时,安装在该线路的零序电流电流互感器二次侧能提供大于10mA ,且小于800mA的零序电流。
零序电流的检测,架空出线是采用三相电流组成滤过器来检测零序电流,接线如图14.2-5所示;电缆出线是采用零序电流互感器,电缆穿过零序电流互感器内孔,电缆头的接地线务必穿过零序电流互感器后再接地,接线如图14.2-6所示。
10kV经低电阻接地系统中,发生接地故障时的故障电压虽时间不长,但幅值很高。低压采用TN系统供电时,应采取以下措施:变电所内设置两组接地极;采用主等电位联结措施;在主等电位联结范围外供电时,采用局部TT系统供电。低压采用TT系统供电时,变电所的外露可导电部分的接地电阻不超过1Ω或带有已接地的合适的有金属护层的高压电缆和低压电缆总长度超过1km。

10kv 配电系统中性点经小电阻接地方式

10kv 配电系统中性点经小电阻接地方式

10kv 配电系统中性点经小电阻接地方式初探摘要: 10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。

本文主要介绍10kv 配电系统中性点经小电阻接地方式的构成、保护方式和计量方式。

关键词: 10kv 配电网中性点接地方式小电阻接地1引言10kv 配电网中性点通常可分为不接地系统、经电阻接地系统和经消弧线圈接地系统。

由于选择接地方式是一个涉及线路和设备的绝缘水平、通讯干扰、继电保护和供电网络安全可靠等因素的综合性问题, 所以我国配电网和大型工矿企业的供电系统做法各异。

以前, 10kv 架空电力线路大都采用中性点不接地和经消弧线圈接地的运行方式。

近年来随着10kv 系统规模的扩大和电缆应用的普及, 一些城市电网大力推广电阻接地的运行方式, 使得10kv 系统的中性点接地方式、中性点选择、计量方式、继电保护配置与10kv绝缘系统有了很大区别。

2配电网中性点接地方式运用现状一般架空线路的小电网, 网络电容电流小, 可选用中性点不接地系统。

架空线路的大电网, 网络电容电流较大, 可选用中性点经消弧线圈接地系统。

城市电缆配电网, 网络结构较好, 可选用中性点经中值或低值电阻器接地系统。

若要求补偿网络电容电流限制接地故障入地电流, 还可选用中性点经中值电阻器与消弧线圈并联的接地方式。

3中性点经电阻接地方式定义及阻值选择( 1) 定义: 电力系统中性点通过一电阻接地, 其单相接地时的电阻电流被限制到等于或略大于系统总电容充电电流值。

此种接线方式属于中性点有效接地系统,即大电流接地系统。

和消弧线圈接地方式相比, 改变了接地电流相位, 加速泄放回路中的残余负荷, 促使接地电弧自熄, 降低弧光过电压, 同时提供足够的零序电流和零序电压, 加速切除故障线路。

( 2) 中性点电阻值的选择根据有关文献资料, 从降低内部过电压考虑, 根据计算机模拟计算, 选择原则为rn ≦1/ ( 3c) 。

10kV电网中性点接地方式分析与探讨

10kV电网中性点接地方式分析与探讨

10kV电网中性点接地方式分析与探讨摘要:在电力系统中中性点的接地方式综合性与技术性比较强,其是避免系统发生事故的关键技术,和系统接地装置、供电的可靠性与设备安全息息相关。

本文就中性点的接地方式分类进行分析,探讨10kV电网中性点的接地方式,以期提高电网运行经济性和可靠性。

关键词:10kV电网;中性点;接地方式1.前言在选择中性点的接地方式时,需要充分考虑到电网异常与正常运行的两种情况,保障供电的可靠性。

此外,还要重视故障发生时对供电设备的影响,不断加强继电保护的技术与设计技术,确保10kV电网供电的安全性与及时性。

2.中性点的接地方式分类2.1中性点的不接地方式中性点的不接地电网主要指中性点和大地间没有设置任何连接,但实际的系统中三相电和大地间存在着电容的分布。

通常在电网正常运行的过程中,中性点不会对大地产生电压,一旦产生单相接地的故障,电流与电容就会经过故障点,保证掉闸现象不会发生,还可以保证系统带故障运行两个小时。

中性点不接地方式主要优势就是能够连续供电,存在较低跨步电压与接触电压,在某种程度能减小弱电设备损坏率,可保证设备安全性与可靠性。

2.2中性点通过电阻接地电网中性点通过电阻来接地的方式,主要指中性点与大地间接入值,与标准阻值相符合的电阻。

和中性点通过消弧线圈来接地方式相比,中性点通过电阻进行接地的方式能够成功避开因间歇弧光接地或者是谐振的过电压,而且一旦系统产生单相的接地故障时,相关接地电阻能够产生感应的电流,从而启动零序的电压对系统进行保护,同时将故障线路切断,也就不会产生故障相电压大幅度上升的现象。

如果出现单相接地的故障,不管这种故障是不是永久性的故障,该段线路都会出现跳闸,使系统供电可靠性降低[1]。

2.3中性点通过消弧线圈进行接地电网中性点通过消弧线圈进行接地,一般指在中性点与大地间设置了电感的线圈,以此来保护电网。

一旦出现单相接地的故障,电网中就会出现零序电压,而电感线圈会提供感应电流来补偿电容电流,减小故障点的残余电流值,进而达到灭弧效果,彻底消除故障。

发电机中性点接地方式及作用综合

发电机中性点接地方式及作用发电机中性点接地一般有以下几类:1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险。

发电机中性点不接地方式,一般适用于小容量的发电机。

(中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压。

这种接地方式能实现无死区的定子接地保护)2.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器(或发变组出口断路器)。

3.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用(采用过补偿方式,以避免串联谐振过电压)。

这种方式也可以实现高灵敏度既无死区的定子接地保护。

4.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价。

大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用。

注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好。

发电机中性点经单相变压器高阻接地接地装置设计及选型1.发电机中性点接地电阻的计算原则1)接地点阻性电流>(1.0~1.5)容性电流(以保证过电压不超过2.6倍相电压即1.5倍的线电压1.5U N=2.6U X)2)3A<接地点总电流<(10~15A),以满足保护灵敏度和不烧坏铁芯的要求;3)10kv 10MW发电机最大容性电流<4A C<2.1 uF2.电容及电容电流计算:1)发电机定子绕组三相对地电容C of=0.7242uF(发电机厂家提供);2)10kV母线每100m三相母线电容电流约为0.05A(假设为260米高压连接母排)0.05×2.6=0.13A即三相对地电容C ol=0.06829uF3)发电机出口至升压主变低压绕组间单相对地等值电容为C02=0.2uF(经验值);4)主变低压侧三相对地电容20470PF即0.02047 uF5)阻容参数:单相电容0.1 uF,三相为0.3 uF发电机的三相对地总电容:C =0.7242+0.06829+0.6+0.02047+0.3=1.71296uF发电机系统电容电流为:I C =ω CU X ×103=2πf CU X ×103=314×1.71296×106-×10.5/3×103=3.26A2. 接地电阻值的选择:接入发电机中性点高电阻的大小,将影响发电机单相接地时健全相暂时过电压值。

10kV配电网中性点接地方式相关分析

10kV配电网中性点接地方式相关分析发表时间:2017-11-13T10:20:30.047Z 来源:《基层建设》2017年第23期作者:周静[导读] 摘要:随着我国经济快速发展,人们生活水平有了不断提高,社会生产和日常生活的用电需求不断扩大广东电网有限责任公司梅州大埔供电局广东省梅州市 514200 摘要:随着我国经济快速发展,人们生活水平有了不断提高,社会生产和日常生活的用电需求不断扩大,需要完善接地系统以确保配电网稳定运行,满足供电可靠性的需要。

选用恰当的中性点接地方式非常重要,不但对电力系统的电流起到一定的抑制作用,还可以对过电压的水平进行有效的控制。

文章针对10kV配电系统小电流接地方式进行分析,对国内中性点接地方式及应用情况进行了梳理总结,以供参考。

关键词:中压配网;中性点;接地引言中性点接地方式影响企业供电系统的运行、发展,是涉及安全、技术、经济的综合性问题。

电力系统中性点接地是指电力系统中各设备的中性点接地方式,一般,因为电力系统中变压器的接地方式决定了系统的接地方式,所以一般也将电力系统中变压器中性点的接地方式理解为对应的电力系统的中性点接地。

电力系统中变压器中性点接地方式的选择的合适不合适,关系着电网能否安全运行。

我国中压配电网中性点接地方式主要有:大电流接地方式和小电流接地方式。

其中以小电流接地方式应用最为广泛。

随着配电网尤其是城市配电网的发展,配电网开始采用中性点经小电阻接地的运行方式,此外,也有一些配电网中性点经高电阻接地、经消弧线圈并联小电阻接地的运行方式。

1、10kV配电网中性点接地方式类型电力系统按照中性点接地方式的不同可划分为两大类:大电流接地方式和小电流接地方式。

简单的说大电流接地方式就是指中性点有效接地方式,包括中性点直接接地和中性点经低阻接地等。

小电流接地方式就是指中性点非有效接地方式,包括中性点不接地、中性点经高阻接地和中性点经消弧线圈接地等。

在大电流接地系统中发生单相接地故障时,由于存在短路回路,所以接地相电流很大,会启动保护装置动作跳闸。

浅谈10kV配网中性点小电阻接地技术与应用

浅谈10kV配网中性点小电阻接地技术与应用摘要:基于城区10kV配网中电缆线路的增加,导致电容电流增大,补偿困难,尤其是接地电流的有功分量扩大,导致消弧线圈难以使接地点电流小到可以自动熄弧,此时,相比中性点不接地或经消弧线圈接地方式,中性点经小电阻接地方式有更大的优越性。

本文主要对10kv配电网中性点经小电阻接地原理进行了分析,对它的优点和存在的不足进行探讨,以便更好地推广10KV配网中性点小电阻接地技术应用。

关键词:配网;小电阻;技术;应用一、10KV中性点小电阻的优势配电网中性点小电阻接地方式由接地变、小电阻构成。

因主变10kV 侧为三角接线,需通过接地变提供系统中性点。

接地变压器容量的选择应与中性点电阻的选择相配套,中性点接地电阻接入接地变压器中性点。

接地变一般采用Z 型接地变,即将三相铁心每个芯柱上的绕组平均分为两段,两段绕组极性相反,三相绕组按Z形连接法接成星型接线。

其最大的特点在于,变电站中性点接地电阻系统由接地变、接地电阻、零序互感器(有的配有中性点接地电阻器监测装置)等组成。

1、10KV中性点小电阻系统可及时调节电压。

在配电网的整个接地电容电流中,含有5次谐波电流,所占比例高达5%~15%,消弧线圈在电网50Hz的工作环境下,对于5%~15%的接地点的谐波电流值受到影响,低于这个数值,不能正常运行。

而通过小电阻的接地方式却能保持谐波电流值数值不变,保障电力系统输出的设备有效运转。

2、及时消除安全隐患。

在配电网中,当接地电流量增加的时候电压不稳,或者发生短路等线路故障以后,小电阻系统会自动启动保护程序,立即切断故障线路,消除由于单相接地可能造成的人身安全隐患,同时也能够让电力工作人员快速排查线路故障问题,及时恢复供电。

3、增加供电的可靠性。

目前,我们国家的电缆材质主要由铜芯,铝芯,当电缆线路接地时,接地残流大,电弧不容易自行熄灭,所以电缆配电网的单相接受地故障难以消除的。

中性点经消弧线圈接地的系统为小电流接地系统,当发生单相接地永久性故障后,接地故障点的查找困难,单相接地故障点所在线路的检出,一般采用试拉接地手段。

10kV系统中性点接地方式

10kV系统的接地方式10kV系统中性点接地可分为:中性点不接地系统(中性点非有效接地系统)(包括中性点不接地系统、经消弧线圈接地系统、高电阻接地系统);中性点接地系统(中性点有效接地系统)(中性点直接接地系统或经低电阻接地系统)。

1.10kV系统中性点不接地系统(1) 接地故障特点配电系统在正常运行时,三相基本平衡电压作用下,各相对地电容电流I CL1、I CL2、I CL3相等,分别超前相电压90°,I CL1=I CL2=I CL3=UΦωC,其I CL1+I CL2+I CL3=0,系统中性点与地有相同电位。

如L1相发生接地故障,忽略接地过渡电阻,视为金属性接地,10kV系统各支路的电容电流的流向如下图所示:图14.2-1 10kV系统接地故障示意从10kV系统接地故障示意图可以得出结论:a)全系统所有非故障的各支路,故障相的电容电流均为零,非故障相均有电容电流;b)在故障支路,故障相流过所有各支路的电容电流的总和;c)故障支路的电容电流其方向由负载流向电源,非故障各支路的电容电流其方向由电源流向负载;d)故障支路检测的零序电流为各非故障支路电容电流总和;e)接地故障电流大小与接地故障点的位置无关,只与接地故障点的过渡电阻有关。

10kV系统接地故障,电压与电流矢量关系如下图所示:图14.2-210kV系统接地故障矢量图L1相发生接地故障,相当于在L1相上加上U0=-U L1,L2相L3相也加上U0=-U L1,非故障相对地电压升高3倍,其夹角由120°变成60°,合成的电容电流增大3倍,接地故障电流为单相电容电流的3倍,I d=3UΦωC。

(2) 优缺点a)接地故障引起系统内部过电压可达3.5倍相电压,易使设备和线路绝缘被击穿。

b)油浸纸绝缘电力电缆达20A,聚乙烯绝缘电力电缆达15A,交联聚乙烯绝缘电力电缆达10A,接地故障电流引燃电弧则不能自熄,引起间歇性电弧,产生过电压易产生相间短路或火灾;c)非故障相对地电压升高3倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与大地之间电气连接的方式,称为电网中性点接地方式。

中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

在选择电网中性点接地方式时必须进行具体分析、全面考虑。

我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。

配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前苏联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。

近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。

在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在广州、深圳试用、推广,并很快推广到其他城市(如广州、深圳、珠海、上海、北京、天津、厦门、南京、苏州工业园区、无锡、讪头、惠州、顺德、东莞等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。

通过多年的运行经验证明,中性点经电阻接地方式对降低系统过电压水平、抑制谐振过电压、提高系统运行可靠性具有良好的效果。

现在,中性点经电阻接地方式已被写入电力行业规程,电力行标DL/T620—1997《交流电气装置的过电压保护和绝缘配合》第3.1.4条规定:“6—35KV主要由电缆线路构成的送、配电系统,单相接地故障电容电流较大时,可采用低电阻接地方式,但应考虑供电可靠性要求、故障时瞬态电压、瞬态电流对电气设备的影响、对通信的影响和继电保护技术要求以及本地的运行经验等。

”第3.1.5条规定:“6KV和10KV配电系统以及发电厂厂用电系统,单相接地故障电容电流较小时,为防止谐振,间隙性电弧接地过电压等对设备的危害,可用高电阻接地方式。

”二、各中性点接地接地方式优、缺点比较(一)中性点不接地方式1、适用范围●适用于单相接地故障电容电流I C<10A、以架空线路为主的配电网。

此类型电网瞬时性单相接地故障占故障总数的60%~70%,希望瞬时性单相接地故障时不马上跳闸。

2、中性点不接地系统的特点:●单相接地故障电流小于10A,故障点电弧可以自熄;熄弧后故障点绝缘可以自行恢复;●单相接地时不破坏系统对称性,可以带故障运行一段时间,以便查找故障线路;●通讯干扰小:●简单、经济。

●单相接地故障时,非故障相对地工频电压升高 3 倍,在中性点不接地电网中,各种设备的绝缘要按线电压的要求来设计。

●当Ic>10A时,可能产生过电压倍数相当高的间歇性电弧接地过电压,这种过电压持续时间长,过电压遍及全网,对网内绝缘较差的设备、有绝缘弱点的设备、绝缘强度较低的旋转电机等都存在较大的威胁,在一定程度上影响电网的安全运行。

因间歇电弧过电压引起的不同相的两点或多点接地、烧毁主设备、造成严重停电的事故在许多电网都有多次发生。

●系统发生谐振过电压引起电压互感器容断器熔断、烧毁PT、甚至烧毁主设备的事故常有发生。

(二)中性点经消弧线圈接地方式;1、适用范围:●适用于单相接地故障电容电流I C>10A、瞬时性单相接地故障多的以架空线路为主的电网。

2、中性点经消弧线圈接地方式的特点;●利用消弧线圈的感性电流对电网的对地电容电流进行补偿,使单相接地故障电流<10A,从而使故障点电弧可以自熄;●故障点绝缘可以自行恢;●可以减少间隙性弧光接地过电压的概率;●单相接地时不破坏系统对称性,可以带故障运行一段时间,以便查找故障线路;3、对以电缆线路为主的城市配网,消弧线圈接地方式存在的一些问题:●单相接地故障时,非故障相对地电压升高到 3 相电压以上,持续时间长、波及全系统设备,可能引起第二点绝缘击穿,引起事故扩大。

●消弧线圈不能补偿谐波电流,有些城市电网谐波电流占的比例达5%-15%,仅谐波电流就可能远大于10A,此时无法避免发生弧光接地过电压。

●对于电容电流很大的配电网,如果通过补偿要使单相接地故障电流I jd <10A,就必须使系统保持较小的脱谐度,系统的脱谐度过小,对由于三相电容不对称引起的中性点位移电压会产生较强的放大作用,使中性点电压偏移超过规程允许值(<15%U n),保护将发出接地故障信号。

另外脱谐度太小,系统运行在接近谐振补偿状态,将给系统运行带来极大的潜在危险(谐振过电压);要保证中性点位移电压不超过规程允许值,就要增大脱谐度,然而,脱谐度过大,将导致残余接地电>10A),又可能引起间歇性弧光接地过电压。

很难保证既使残余接地电流太大(Ijd<10A,又保证中性点位移电压不超过规程允许值这两个相互制约的条件。

流Ijd●消弧线圈的调节范围受到调节容量限制,其调节容量与额定容量之比一般为1/2,如按终期要求选择,工程初期系统电容电流小,消弧线圈的最小补偿电流偏大,可能投不上;如按工程初期的要求选择,工程终期时系统电容电流大,消弧线圈的最大补偿电流又偏小,也不能满足合理补偿的要求。

●在运行中,消弧线圈各分接头的标称电流和实际电流会出现较大误差,运行中就发生过由于实际电流与名牌电流误差较大而导致谐振的现象。

●由于系统的运行方式及系统电压经常变化,系统的电容电流经常变化,跟踪补偿困难。

目前的自动跟踪补偿装置呈百花齐放的景象,实际运行考验时间较短,运行情况还不理想。

而且价格高、结构复杂、维护量大,不适应无人值班变电站的要求。

●由于上述原因,中性点经消弧线圈接地仅能降低弧光接地过电压的概率,不能消除弧光接地过电压,也不能降低弧光接地过电压的幅值,弧光过电压倍数也很高,对设备绝缘威胁很大。

特别是对紧凑型配电装置及电缆线路,更易造成绝缘击穿或相间短路,造成设备烧毁的大事故。

根据近年统计记录分析,随着城市电网电容电流的迅速增大,发生高倍数弧光过电压的概率增加,深圳市中性点电网在1995年前采用中性点不接地及经消弧线圈接地方式,据统计,1992—1995四年时间发生24次因过电压造成变电站出口短路,烧坏主变5台,10KV开关柜烧坏事故娄有发生。

●寻找单相接地故障线路困难,目前许多针对消弧线圈接地系统的小电流接地选线装置的选线正确率还不理想,往往还要采用试拉法。

●采用试拉法时,既造成非故障线路短时停电,又会引起操作过电压。

湖南省电力试验研究所试验:对35KV系统,在一相接地情况下,在非电阻接地系统中共进行了551相0—0.5—C操作循环,实测最大过电压倍数超过4.9P U。

超过4.1 P U 的概率达到16.5%,1984—1985年上海供电局和华东电力试验所在江宁变电站进行了切合35KV 空载电缆试验,也测得4.5P U 的过电压值。

●系统谐振过电压高,谐振过电压持续时间长并波及全系统设备,常造成PT烧坏、或PT熔断器熔断。

武高所和广州供电局在区庄变电站试验中测得1/2分频谐振过电压达2P U,测得由合闸操作激发的3次高频谐振过电压达4P U,测得A相导线断线并接地于负荷侧时,谐振过电压值为3.8P U。

●电缆排管或电缆隧道内的电缆发生单相接地时,不能及时断开故障线路,可能引起火灾,上海某35KV系统电缆就发生过单相接地一小时后引起火灾,烧毁电缆隧道中40多条电缆的重大事故。

●寻找故障线路时间较长,在带接地故障运行期间,容易引起人身触电事故。

●单相接地时,非故障相电压升高至线电压或更高,在不能及时检出故障点的情况下,无间隙金属氧化物(MOA)避雷器长时间在线电压下运行,容易损坏甚至爆炸。

弧光接地过电压、谐振过电压幅值高、持续时间长,MOA由于动作负载问题,一般不要求WGMOA保护系统内过电压,不能有效利用MOA的优良特性,不利于MOA在配电网的推广使用。

(三)中性点经电阻接地方式中性点经电阻接地方式可分为三种:经高阻接地、经中电阻接地和经小电阻接地。

1、中性点经高电阻接地方式中性点经高阻接地方式适用于对地电容电流Ic<10A的配电网,单相接地电流大于允许值的大型发电机,单相接地故障电流Ijd<10A,中性点接地电阻值一般为数百欧姆至上千欧姆。

中性点经高阻接地可以消除大部分谐振过电压,对单相间歇弧光接地过电压具有一定的限制作用。

2、中性点经中电阻和小电阻接地方式中电阻和小电阻之间没有统一的界限,一般认为单相接地故障时通过中性点电阻的电流10A<I R<100A时为中电阻接地方式,当I R>100A时为小电阻接地方式。

中性点经中电阻和小电阻接地方式适用于以电缆线路为主、瞬时性单相接地故障很少的、系统电容电流比较大的城市配网、发电厂厂用电系统及大型工矿企业配电系统。

3、以电缆线路为主的配电网的特点:●单位长度的电缆线路的电容电流比架空线路电容电流大10几倍,以电缆为主的配电网对地电容电流都比较大。

●电缆线路受外界环境条件(雷电、外力、树木、大风等)影响小,瞬时接地故障很少,接地故障一般都是永久性故障。

●电缆线路发生接地故障时,接地电弧为封闭性电弧,电弧不易自行熄灭,如不及时跳闸,很容易造成相间短路,扩大事故。

●电缆为弱绝缘设备。

例如,10kV交联聚乙稀电缆的一分钟工频耐压为28KV ,而一般10kV 配电设备的绝缘水平为35kV 。

在消弧线圈接地系统中,由于查找故障点时间较长,电缆长时间承受工频或暂态过电压作用,易发展成相间故障,造成一线或多线跳闸。

上海79—84的统计结果表明,有30%单相接地故障在查找故障点过程中,引起跳闸或闪络。

据湘潭钢厂同志介绍,该厂的变配电系统原采用消弧线圈接地,由于厂区基本上都是电缆线路,且使用年限较长、绝缘老化,在单相接地时,经常发生来不及找出故障线路,非故障线路就发生电缆爆炸的情况。

●接地故障时要求继电保护及时动作跳开故障线路。

相关文档
最新文档