六年级数学上册总复习1分数应用题的六种类型
六年级数学上册典型例题系列之第一单元分数乘法应用题(解析版)

答:略。
3. 厦华希望小学四年级有25名学生,五年级有学生35人,五年级人数比四年级少几分之几?
解析:(35-25)÷25=
答:略。
4. 信誉楼七月份卖出120台冰箱,八月份卖出100台冰箱,八月份比七月份少卖几分之几?
解析:(120-100)÷120=
答:略。
【典型例题3】如果甲数是乙数的 ,那么甲数比乙数少几分之几?乙数比甲数多几分之几?
答:200× =12(万元)
答:略。
2.一套西服原价250元,现价比原价多 。现价比原价多多少元?
答:250× =50(元)
答:略。
3.六年级音乐小组有30人。舞蹈小组的人数比音乐小组多 ,舞蹈小组比音乐小组多多少人?
解析:30× =10(人)
答:略。
【考点四】已知单位“1”,求比一个数多几分之几,是多少?
【对应练习】
1.小华看一本132页的书,第一天看了全书的 ,第二天看了第一天的 ,小华第二天看了多少页?
解析:132× × =11(页)
答:略。
2.学校四月份用电1600千瓦时,五月份用电量是四月份的 ,六月份用电量是五月份的 ,六月份用电多少千瓦时?
解析:1600× × =1120(千瓦时)
答:略。
六年级数学上册典型例题系列之
第一单元分数乘法应用题(解析版)
【考点一】寻找单位“1”和写数量关系式。
【方法点拨】
1.在分率句中分率的前面或“占”、“是”、“比”的后面
2.写数量关系式:
(1)“的” 相当于 “×” ;“占”、“是”、“比”相当于“ ÷ ”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
解析:(1600-1200)÷1200=
南京某校苏教版六年级数学上册应用总复习及答案

六年级(上)应用总复习一、分数应用题知识点一:求分率找单位“1”常见的几个字:“是”“占”“比”“相当于”“等于”……“的”1、A是B的几分之几?A除以B2、A比B多(少)几分之几?(大-小)除以B知识点二:求数量1、找单位“1”2、标出所有量的分率3、看单位“1”是否已知4、(1)已知:单位“1”的量×要求的分率=要求的数量(2)未知:已知数量除以对应分率=单位“1”的量5、注:如题中出现“多、上涨、增产”等词时,先考虑用“1+分率”,反之出现“少、降低、亏损”等词时,考虑用“1-分率”后,再根据第三、四步做题。
1、圣诞节,泡泡拿到了60颗糖果,宝宝拿到了80颗糖果。
泡泡的糖果是宝宝的几分之几?宝宝的糖果比泡泡多几分之几?2、某学校给山区孩子捐书,六年级捐了720本。
六年级捐的本数是五年级的 ,四年级捐书的本数比五年级少 。
请问五年级和四年级各捐了几本?3、一条公路长30千米,第一天修了这条公路的 ,第二天修了剩下的 ,还剩多少米没修?4、泡泡家爷爷年龄最大,是75岁,爸爸的年龄是爷爷的 ,是泡泡的 。
泡泡的年龄是奶奶的 ,是妈妈的 .他们的年龄各是几岁?5、泡泡和宝宝都是集邮爱好者,泡泡比宝宝多12枚邮票。
泡泡就把自己邮票数的 给了宝宝后,两人的邮票数就一样多了。
两人原来各有多少枚邮票?6、泡泡看一本书,已经看的页数的 等于没有看的页数的 ,。
小红看了210页,还有多少页没有看?7、红红用三天时间看完一本故事书,第一天看了全书的13,第二天看了余下的25,已知第二天比第三天少看24页,这本故事书一共有多少页?8、甲、乙、丙三人去买股票,甲用的钱是乙、丙两人所用总钱数的12,乙买股票用的钱是甲、丙两人所用钱数的13。
已知丙用了3000元,求甲、乙各用了多少钱?9、有一个盒子里黑白棋子一共有54颗,其中白棋子占总数的49,放入一些白棋子后,白棋子占总数的710,请问又放入了多少白棋子?知识点三:工程问题工程问题是指研究工作总量、工作时间和工作效率三者之间关系的一类应用题,比如:完成某项工程、为水池注水、完成某事、制造某种产品等等。
六年级数学上册总复习分数应用题六种类型

六年级数学上册总复习分数应用题六种类型一、分数的相等与同分母计算分数的相等可以通过化简分数进行判断,而同分母计算则需要统一分母后进行加减运算。
下面是一些应用题的例子:例题1:小明有5/6的水果,他分给小红1/4,小明自己剩下多少水果?解析:小明分给小红的水果是5/6 * 1/4 = 5/24,小明自己剩下的水果是5/6 - 5/24 = 15/24 = 5/8。
例题2:小华有7/8的糖果,他分给小李3/4,小华自己剩下多少糖果?解析:小华分给小李的糖果是7/8 * 3/4 = 21/32,小华自己剩下的糖果是7/8 - 21/32 = 11/32。
二、分数的大小比较分数的大小比较可以通过将分数转化为相同分母后,比较分子的大小进行判断。
下面是一些应用题的例子:例题1:比较3/4和2/3的大小。
解析:将分数转化为相同分母,得到3/4和2/3,分母相同,比较分子大小,3>2,因此3/4>2/3。
例题2:比较5/6和7/8的大小。
解析:将分数转化为相同分母,得到10/12和7/8,分母相同,比较分子大小,10>7,因此5/6>7/8。
三、分数的加减运算分数的加减运算需要先统一分母,然后按照分子之和(或差)除以相同分母的规则进行计算。
下面是一些应用题的例子:例题1:计算3/4 + 5/6。
解析:将两个分数的分母统一为12,得到9/12和10/12,然后相加得到19/12。
例题2:计算2/3 - 1/4。
解析:将两个分数的分母统一为12,得到8/12和3/12,然后相减得到5/12。
四、分数的乘除运算分数的乘除运算通过分子相乘或相除,以及分母相乘或相除来进行。
下面是一些应用题的例子:例题1:计算2/3 × 3/4。
解析:分子相乘得到6,分母相乘得到12,因此2/3 * 3/4 = 6/12 =1/2。
例题2:计算5/6 ÷ 2/5。
解析:分子相除得到25,分母相除得到12,因此5/6 ÷2/5 = 25/12。
六年级数学上册分数除法应用题归纳方法

六年级数学上册分数除法应用题归纳方法全文共四篇示例,供读者参考第一篇示例:在六年级数学上册中,分数除法是一个重要的知识点,对学生来说可能会有一定的难度。
为了帮助学生更好地掌握分数除法的应用,下面将介绍一种归纳方法,帮助学生理解和掌握分数除法的应用题。
一、初步理解分数除法在学习分数除法之前,学生首先要理解分数是什么,分数的基本概念和运算规律。
分数是一个整体被等分为若干份的表示方法,分子代表等分中的份数,分母代表总份数。
分数的除法可以理解为“一部分被分成几份”的运算,就像我们将一个整数分成若干份一样。
二、常见的分数除法应用题1. 分数除以整数求分数5/6 ÷ 2的结果。
这道题目可以通过将分数5/6看作一个整体,分成6份,然后再将这6份平均分给2个人,每人分到的为5/6 ÷ 2 = 5/12。
3. 分数除法与整数乘法的关系有时候,分数的除法可以通过整数的乘法来解决。
求分数4/5 ÷ 3的结果,可以转化为4/5 × 1/3,最终得到4/15。
三、归纳方法1. 熟练掌握分数的基本运算规律,包括分数的加减乘除。
2. 将分数的除法问题转化为分数的乘法问题,帮助理解和解决问题。
3. 多做练习,尝试不同类型的分数除法应用题,提高解决问题的能力。
4. 总结归纳,将解题方法进行归类整理,形成思维导图或表格,帮助记忆和复习。
通过以上方法,学生可以更好地理解和掌握分数除法的应用题,提高解题的效率和准确性。
希望同学们在学习数学的过程中能够充分利用这些方法,提升自己的数学能力,取得更好的成绩。
【2000字以上】第二篇示例:六年级数学上册的学习内容中,分数除法是一个相对复杂的概念,需要通过多种方法和步骤来掌握。
在解决分数除法应用题时,同学们往往会感到困惑和难以理解。
为了帮助同学们更好地掌握分数除法应用题的解题方法,我将在下面归纳出一些常见的解题步骤和技巧。
对于分数除法应用题,同学们需要先将题目中的分数转化为最简形式。
北师大版 六年级上册数学讲义-《分数(百分数)应用题》

成都市六年级上期《分数(百分数)应用题》-复习课一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)三种数量有如下关系:标准量×分率=比较量,比较量÷标准量=分率,比较量÷分率=标准量。
二、找单位1:(1)当两种数量比较时,抓关键词找准单位“1”分数应用题,题目中经常出现“是”、“占”、“比”、“等于”、“相当于”这些词,一般来说,单位“1”的量就隐藏在这些关键字的后面的量就是单位“1”。
一般“的”前面是单位“1”(2)部分数和总数有些分数应用题,存在着整体和部分两个数量,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:食堂买来100千克白菜,吃了2/5,吃了多少千克?在这里,食堂一共买来的白菜是总数,吃掉的是部分数,所以100千克白菜就是单位“1” 。
(3)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
例如:水结成冰后体积增加了1/10,冰融化成水后,体积减少了1/12。
象这样的水和冰两种数量到底谁作为单位“1”?两句关键句的单位“1”是不是相同?用上面讲过的两种方法不容易找出单位“1”。
其实我们只要看,原来的数量是谁?这个原来的数量就是单位“1”!三、分数应用题的分类。
(三类)1.1 直接求一个数是另一个数的百分之几一个数÷另一个数1.2 求一个数比另一个数多百分之几差量(多的部分)÷单位11.3 求一个数比另一个数少百分之几差量(少的部分)÷单位12.1直接求一个数的百分之几是多少单位1×分率2.2求比一个数多百分之几的数是多少单位1×(1+分率)2.3 求比一个数少百分之几的数是多少单位1×(1-分率)3.1已知一个数的百分之几是多少,求这个数。
六年级数学上册分数应用题总复习

例三
600千瓦时 上个月 用电 ?千瓦时 这个月 用电 1/12
你学会前面的三道例题了吗? 如果“yes”,那么恭喜你已经 过了乘法的一关!
前路仍然艰险,好戏还在后面 继续前行吧!
加油
例 一
我国幅员辽阔,东西相距5200km, 东西相距是南北的52/55。南北相距多 少千米?
要求单位“1“,应该怎么办?
1.学校买来354本新书,其中学科辅导书占 1/3,文艺书占25 ,文艺书比学科辅导书 少了多少本 2.甲乙两个书架上的书的本数比是2:5,甲 书架上的书增加360本后,甲乙两个书架上 书的本数的比是5:8,两个书架现在共有 多少本书?
• (l)某村去年植树
800棵,比前年多 1/4。前年比去年少 百分之几?
• (7)甲、乙两个车间 共同加工一批零件。已 知甲车间生产零件数的 1/ 3 与乙 车间生产零件 数的2 /5 相等。完成任 务 时,乙车间共生产 零件900个,甲车间共 生产零件多少个?
•
(8)某车间有工人52 人,其中男工人数的 1/4 比女工人数1 /3 少l 人。这个 车间有男女 工各多少人?
例二
?周 小齿轮 周数 80周 大齿轮 周数
例三: 光明村今年毎百户拥有电脑121台,比 去年增加66台,去年毎百户拥有彩电多少台?今 年比去年增长百分之几?
(1) 121-66=55(台) (2) 能用两种方法解答吗?
第一种做法:
用今年比去年多的台数 除以去年的台数 66÷5×100 % =120
如:一个数的5/8是1/12,这个数是多少?
例一
•
一杯约250毫升的鲜牛奶大约含有3/10克 的钙质,占一个成年人一天所需钙质的3/8. 一个成年人一天大约需要多少钙质?
南京某校苏教版六年级数学上册应用总复习及答案

六年级(上)应用总复习一、分数应用题知识点一:求分率找单位“1”常见的几个字:“是”“占”“比”“相当于”“等于”……“的”1、A是B的几分之几?A除以B2、A比B多(少)几分之几?(大-小)除以B知识点二:求数量1、找单位“1”2、标出所有量的分率3、看单位“1”是否已知4、(1)已知:单位“1”的量×要求的分率=要求的数量(2)未知:已知数量除以对应分率=单位“1”的量5、注:如题中出现“多、上涨、增产”等词时,先考虑用“1+分率”,反之出现“少、降低、亏损”等词时,考虑用“1-分率”后,再根据第三、四步做题。
1、圣诞节,泡泡拿到了60颗糖果,宝宝拿到了80颗糖果。
泡泡的糖果是宝宝的几分之几?宝宝的糖果比泡泡多几分之几?2、某学校给山区孩子捐书,六年级捐了720本。
六年级捐的本数是五年级的 ,四年级捐书的本数比五年级少 。
请问五年级和四年级各捐了几本?3、一条公路长30千米,第一天修了这条公路的 ,第二天修了剩下的 ,还剩多少米没修?4、泡泡家爷爷年龄最大,是75岁,爸爸的年龄是爷爷的 ,是泡泡的 。
泡泡的年龄是奶奶的 ,是妈妈的 .他们的年龄各是几岁?5、泡泡和宝宝都是集邮爱好者,泡泡比宝宝多12枚邮票。
泡泡就把自己邮票数的 给了宝宝后,两人的邮票数就一样多了。
两人原来各有多少枚邮票?6、泡泡看一本书,已经看的页数的 等于没有看的页数的 ,。
小红看了210页,还有多少页没有看?7、红红用三天时间看完一本故事书,第一天看了全书的13,第二天看了余下的25,已知第二天比第三天少看24页,这本故事书一共有多少页?8、甲、乙、丙三人去买股票,甲用的钱是乙、丙两人所用总钱数的12,乙买股票用的钱是甲、丙两人所用钱数的13。
已知丙用了3000元,求甲、乙各用了多少钱?9、有一个盒子里黑白棋子一共有54颗,其中白棋子占总数的49,放入一些白棋子后,白棋子占总数的710,请问又放入了多少白棋子?知识点三:工程问题工程问题是指研究工作总量、工作时间和工作效率三者之间关系的一类应用题,比如:完成某项工程、为水池注水、完成某事、制造某种产品等等。
六年级数学上册总复习1-分数应用题的类型

1、看清分率。 2、找准单位“1”的量。 3、确定单位“1”是已知还是未知?
4、 单位“1”的量×分率=分率对应量 (分率对应量÷分率=单位“1”的量)
分数应用题的六种类型
①电视机厂今年生产电视机36000台,相当于去年产量的 1/4,去年生产多少台? ②电视机厂今年生产电视机36000台,比去年少生产1/4, 去年生产多少台? ③电视机厂今年生产电视机36000台,比去年多生产1/4, 去年生产多少台? ④电视机厂今年生产电视机36000台,去年产量是今年的 1/4,去年生产多少台? ⑤电视机厂今年生产电视机36000台,去年产量比今年少 1/4,去年生产多少台? ⑥电视机厂今年生产电视机36000台,去年产量比今年多 1/4,去年生产多少台?
4、某校新建一幢教学楼,实际投资了126万元,比计划 节约了10%,计划投资是实际投资的百分之几?(百分号 前面的数保留一位小数)
5、一批零件有120只,甲乙合做了3小时完成,已知甲每 小时加工的相当于乙的1/2,甲乙每小时各加工多少只?
6、一件工程甲乙两队合做6小时完成,甲乙两队的效率比 是3:2。甲乙单独做,各需要多少天?
7、修一条水渠,第一天修了150米,比第二天少修25米, 两天修的正好占这条水渠的5/6,这条水渠的全长是多少 米?
8、一本小说书,小芳已经看的与未看的页数比是2:5, 如果再看27页,正好占这本小说书的一半,这本书共有多 少页?
9、七月份用水360吨,比六月份节约40吨,比六月份节约 百分之几?
10、王师傅要加工720只零件,其中有36只不合格,求合 格率?
11、修一条公路,第一天修了全长的1/6,第二天修了全 长的1/3,还剩下360米没有修,这条路全长多少米?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 8. 甲、乙两人进行骑车比赛, 甲车骑了全程的1/2时,乙车骑 了全程的2/5,这时两人相距 140米,如果继续按原速度骑下 去,当甲到达终点时,乙距终 点还有多少米?
分数、百分数应用题练习(一)
1.小明每天看12页故事书,看了5天, 还剩下全书的4/5,这本故事书共有多少 页?
2.工人修一条公路,第一天修了全 长1/2 ,第二天修了63米,还剩下全长 的1/6,求全长?
• 9.七月份用水360吨,比六 月份节约40吨,比六月份节约 百分之几?
• • 10.王师傅要加工720只零件,
其中有36只不合格,求合格率? • • 11.修一条公路,第一天修
了全长的1/6,第二天修了全长 的1/3,还剩下360米没有修, 这条路全长多少米?
• 小结:
同学们:我们今天复习 了什么?请大家归纳总校教师:张林
1、看清分率。
2、找准单位“1”的量。
3、确定单位“1”是已知还是未知?
4、 单位“1”的量×分率=分率对应量
(分率对应量÷分率=单位“1”的量)
①电视机厂今年生产电视机36000 台,相当于去年产量的1/4,去年生产多 少台?
②电视机厂今年生产电视机36000 台,比去年少生产1/4,去年生产多少台?
3.一块铜和银的合金有290克,其 中铜的质量比银的25%少10克,这块合 金中银和铜各有多少克?
分数、百分数应用题练习(一) 4.某校新建一幢教学楼,实际投
资了126万元,比计划节约了10%, 计划投资是实际投资的百分之几? (百分号前面的数保留一位小数)
5.一批零件有120只,甲乙合做 了3小时完成,已知甲每小时加工的 相当于乙的1/2,甲乙每小时各加工 多少只?
• 5. 甲、乙、丙三个数之和为 100,已知甲数等于乙数的 1/3, 等于丙数的一半。求 甲、乙、丙三个数各是多少?
• 6. 一项工程,甲、乙,两人合 作8天完成;乙、丙 两人合作6 天完成;丙、丁两人合作12 天 完成。那么甲、丁两人合作多 少 天完成?
• 7. 一个最简分数,如果分子加上 1,可约简为 ;如果分子减去1, 可约简为 ;求这个最简分数?
• 6、一件工程甲乙两队合做6小时完 成,甲乙两队的效率比是3:2。甲 乙单独做,各需要多少天?
• • 7、修一条水渠,第一天修了150
米,比第二天少修25米,两天修的 正好占这条水渠的5/6,这条水渠 的全长是多少米?
• • 8、一本小说书,小芳已经看的与
未看的页数比是2:5,如果再看 27页,正好占这本小说书的一半, 这本书共有多少页?
③电视机厂今年生产电视机36000 台,比去年多生产1/4,去年生产多少台?
④电视机厂今年生产电视机36000 台,去年产量是今年的1/4,去年生产多 少台?
⑤电视机厂今年生产电视机36000 台,去年产量比今年少1/4,去年生产多 少台?
⑥电视机厂今年生产电视机36000 台,去年产量比今年多1/4,去年生产多 少台?