指数与对数函数复习课件
人教A版高中数学必修一 《指数》指数函数与对数函数PPT课件

考点
学习目标
利用指数幂的性质化 理解指数幂的含义及其
简求值
运算性质
会根据已知条件,利用
条件求值问题
指数幂的运算性质、 根式的性质进行相关求
值运算
核心素养 数学运算
数学运算
问题导学 预习教材 P104-P109,并思考以下问题: 1.n 次方根是怎样定义的? 2.根式的定义是什么?它有哪些性质? 3.有理数指数幂的含义是什么?怎样理解分数指数幂? 4.有理指数幂有哪些运算性质?
A. (-5)2=-5
4 B.
a4=a
C. 72=7
3 D.
(-π)3=π
解析:选 C.由于 (-5)2=5,4 a4=|a|,3 (-π)3=-π, 故 A,B,D 项错误,故选 C.
2.化简( a-1)2+ (1-a)2+3 (1-a)3=________.
解析:由( a-1)2 知 a-1≥0,a≥1. 故原式=a-1+|1-a|+1-a=a-1. 答案:a-1
1
4 =
4 x3
1x3(x>0),
故③正确;对于④,x-13= 1 ,故④错误.综上,故填③. 3 x
答案:③
2.用分数指数幂的形式表示下列各式(a>0,b>0): (1)a2 a;(2)3 a2· a3;(3)(3 a)2· ab3;(4) a2 .
6 a5 解:(1)原式=a2a12=a2+12=a52. (2)原式=a23·a32=a23+32=a163. (3)原式=(a13)2·(ab3)12=a32a12b32=a32+12b23=a67b32. (4)原式=a2·a-56=a2-56=a76.
4.1 指 数
第四章 指数函数与对数函数
指数函数与对数函数(讲义)

(一)基础知识回顾:1.二次函数:当¹a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-a b 2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。
,下同。
2.二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)∞)上随自变量增大函数值增大(简称递增)。
当a <0时,情况相反。
情况相反。
3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。
1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2). 2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=ab2-,不等式②和不等式③的解集分别是{x |x ab2-¹}和空集Æ,f (x )的图象与x 轴有唯一公共点。
轴有唯一公共点。
3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和Æ.f (x )图象与x 轴无公共点。
共点。
当a <0时,请读者自己分析。
时,请读者自己分析。
4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=ab ac 442-,若a <0,则当x =x 0=a b 2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。
《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象
性
质
定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习
一
二
三
3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-
《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)

第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2
《指数》指数函数与对数函数PPT

提示:①am·an=am+n;②(am)n=am·n;
m-n
③ =a (m>n,a≠0);(4)(a·b)m=am·bm.
(2)零指数幂和负整数指数幂是如何规定的?
1
提示:规定:a0=1(a≠0);00 无意义,a-n=(a≠0).
课前篇
自主预习
在幂的运算中,对于形如 m0 的式子,要注意对底数 m 是否为零进
行讨论,因为只有在 m≠0 时,m 才有意义;而对于形如
0
们一般是先变形为
,再进行运算.
-
的式子,我
课堂篇
探究学习
探究一
解:(1)
探究二
2
3
125
27
探究三
探究四
2
3 -3
5
=
33
5-2
=
=
32
思想方法
随堂演练
9
= 25.
(1)a+a-1; (2)a2+a-2; (3)a2-a-2.
1
1
分析:解答本题可从整体上寻求各式与条件 2 + 2 = 5 的联
系,进而整体代入求值.
1
解:(1)将2
1
2
-
+ = 5的两边平方,
得a+a-1+2=5,即a+a-1=3.
(2)由a+a-1=3,两边平方,得a2+a-2+2=9,
数, =|a|=
-, < 0.
课前篇
自主预习
一
二
2.填空
三
四
指数与对数函数复习ppt课件

小结:
• 1、了解对数及对数函数的定义。
• 2、掌握对数恒等式和运算法则,并能够灵 活用于计算。
• 3、掌握对数函数的图象和性质,能够熟练 应用图象和性质解题,注意和其它章节知 识的综合。
高考链接
3(2006)、log3 (log2 x ) 0,则x=__2__
4(2008)、设a=20.3,b log0.3 2,c 0.32则a,b,c 从大到小的顺序是 _a>_c>b
②
loga
M N
loga M
loga N
③ loga M P P loga M
(4)两个特殊的对数
常用对数:以10为底的对数叫做常用对数
a的常用对数记作____l_g_a__.
自然对数:以无理数e=2.718 28…为底的对数 叫做自然对数,N的自然对数记作 _____ln_N__
2. 对数函数的图象和性质
loga a 1
b aloga b
logam
bn
n
m
loga b
loga ab b
log c b
loga b logc a
1 loga b logb c logc a
(换底公式)
(3)积、商、幂、方根的的对数运算法则
(M>0,N>0,p∈R,a>0且a ≠ 1,)
① loga MN loga M loga N
5(2012)、若0<a<1,则y=ax与y loga x 在同 一个坐标系中的图像大致是(C )
A
B
C
D
y=ax
y
(0<a<1)
(0,1)
y=1
0
y=1 x
《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.
高中数学课件《指数与指数函数-对数与对数函数》中职总复习

小学数学 在线1对1
谢谢观看
典例解析
【例5】解下列方程:
(1)(217)x=91-x;
(2)3 2x+3=3 x+1+2.
【解析】
(1)原方程变形为(3-3)x=(32)1-x,即3-3x=32-2x,有-3x=2-2x,解得x=-2.
(2)原方程变形为33×(3x)2-3×3x-2=0,令3x=t(t>0),
原方程变为27t2-3t-2=0,解得t=13或t=-29 (不合题意),
第四节
对数与对数函数
知识聚焦
一、对数与对数运算
(1)对数的概念:如果ab=N(a>0,且a≠1),则b称为以a为底N的对数,记作 b=logaN(a>0,a≠1,N>0). (2)常用对数与自然对数. 常用对数:lgN,即log10N;自然对数:lnN,即logeN(其中e=2.718 28…). (3)对数的运算性质.
则3x=13,解得x=-1.
典例解析
【例6】我国某地区对3万公顷(1公顷=10 000平方米)荒漠化的草地进行治理, 从2013年起,当地政府组织牧民种草,每年将荒漠的20%重改为草地,经过3年 的治理还有多少公顷需要改造的荒漠(精确到0.001)?
【解析】以荒漠为研究对象,它以每年20%的速度减少,故符合指数衰减模型 y=c·ax,其中c=3万公顷,a=1-20%=0.8,x=3年,y就是x年后还剩的荒漠的面积, 于是得y=3×0.83≈1.536万公顷.
典例解析
【例3】用一块宽为60 cm的长方形铝板,两边折起做成一 个横截面为等腰梯形的水槽(上口敞开),已知梯形的腰与 底边的夹角为60°,求每边折起的长度为多少时,才能使水 槽的横截面面积最大,最大面积为多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
(4)两个特殊的对数
常用对数: 以10为底的对数叫做常用对数 lg a . a的常用对数记作________ 自然对数: 以无理数e=2.718 28…为底的对数 叫做自然对数,N的自然对数记作 lnN ________
3、对数及对数函数的应用
(1)对数方程
loga f ( x) 0 f ( x) 1
loga f ( x) 1 f ( x) a
loga f ( x) log a g ( x)
f ( x) 0 g ( x) 0 f ( x) g ( x)
(2)对数不等式 (a>1)
a
N>0
loga b
(2)常用对数恒等式 loga a 1 loga 1 0
log c b loga b log a c
n logam b log a b m
n
b
loga ab b
loga b logb c logc a 1
(换底公式)
(3)积、商、幂、方根的的对数运算法则 (M>0,N>0,p∈R,a>0且a ≠ 1,)
a>c>b 从大到小的顺序是 __
一个坐标系中的图像大致是(C )
5(2012)、若0<a<1,则y=a x与y loga x 在同
A
B
C
D
指数与对数复习
考纲透视
1、知道指数、对数的基本性质能简单运用, 掌握重要的恒等式,会用运算法则进行运 算及求值。 2、知道指数、对数函数的图象特点和性质, 能利用图象特点和性质求复合函数的定义 域,判断函数的奇偶性,比较对数值的大 小。 3、会利用指数、对数函数的单调性解简单的 方程与不等式。
知识回顾 1、指数函数的定义? 2、指数函数的性质?
loga f ( x) l
f ( x) a
f ( x) 0 g ( x) 0
f ( x) g ( x)
loga f ( x) 0 f ( x) 1
loga f ( x) log a g ( x)
知识点一 对数式的化简与求值 典例题剖析 例1计算下列各题.
lg 2 lg 5 lg 8 (1) lg 50 lg 40
2. 对数函数的图象和性质
a>1
图 象 性 质
y
0<a<1
y 0 (1,0) x
0
(1,0)
x
( 0,+∞) 定义域 : 值 域 : R (1 ,0), 过定点
在(0,+∞)上是 增函数 当x>1时,
y>0
在(0,+∞)上是 减函数 当x>1时,
y<0
当0<x<1时, y<0
当0<x<1时, y>0
y=ax (0<a<1) y=1 0 x y (0,1) y=1 0 y y=ax (a>1) (0,1) x
3、实数指数幂的运算法则?
a a
m n
(a )
m n
(ab )
n
基础知识梳理 1. 对数及对数的运算 b (1)定义: loga N b a N
a>0,且a≠1
b∈R
知识点三
对数函数的性质
1 x 1 x
例3 已知函数f(x)=log 2 (1)求函数f ( x )的定义域
(2)判断函数f(x)的奇偶性并证明
1 x 解:(1) 0 1 x 1 1 x 函数的定义域是(-1,1 ) 1 x 1 x 1 (2) f ( x ) log 2 log 2 ( ) 1 x 1 x 1 x log 2 f(x) 1 x 函数f ( x )为奇函数。
解析 a log 0.5 6.7 0 b log 2 1.6 1 c log 2 5.4 1
( y log 2 x 是增函数
a<b<c
log2 1.6 log 2 5.4)
方法总结: 比较同底的两个对数值的大 小,利用对数函数的单调性来完成.不同底的 要利用中间变量0和1来比较。
25 5 lg lg 8 4 1. 解:(1)原式= 50 5 lg lg 40 4
知识点二 比较大小 例 2: 设a log0.5 6.7, b log 2 1.6, c log 2 5.4,
则a, b , c的大小关系(A)
A a<b<c B a<c<b C b<c<a D c<b<a
小结:
• 1、了解对数及对数函数的定义。 • 2、掌握对数恒等式和运算法则,并能够灵 活用于计算。
• 3、掌握对数函数的图象和性质,能够熟练 应用图象和性质解题,注意和其它章节知 识的综合。
高考链接
2 3(2006)、 log3 (log2 x 0,则x=____
4(2008)、设a =20.3 , b log0.3 2, c 0.32 则a,b,c