函数极小值

合集下载

高等数学《函数的极值与最大、最小值》课件

高等数学《函数的极值与最大、最小值》课件

3) 若 f ( x)在开区间内定义,这时最值不一定存 在 ,有些实际应用问题根据实际可确定问题一 定有解 .
设 f ( x)在开区间内定义且可导, f ( x)在开区间内 有唯一驻点 x0 ,若 f ( x0 )是 f ( x)的极小值(极大值) , 则 f ( x0 )是 f ( x)的最小值 (最大值) .
f (0) 1为极大值 , 即为最大值 .
x 1时, f ( x) f (0) 1 , 即当 x 1时, 有 e x 1 . 1 x
小结
注意最值与极值的区别. 最值是整体概念而极值是局部概念. 实际问题求最值的步骤. 利用最大、小值证明不等式
思考题
若 f (a) 是 f ( x) 在[a, b] 上的最大值或最 小值,且 f (a)存在,是否一定有 f (a) 0 ?
当x 2时,f ( x) 0;
M
当x 2时,f ( x) 0.
f (2) 1为f ( x)的极大值.
定理2(第二充分条件)
设 f ( x) 在 x0处具有二阶导数,且 f ( x0 ) 0 , f ( x0 ) 0 ,则 (1) 若 f ( x0 ) 0 ,则 f ( x0 )为 f ( x)的极大值 .
f
( xk ),
f
(a),
f
(b)
}.
min
x[ a ,b ]
f (x)
min{
f ( x1) ,,
f ( xk ),
f (a),
f (b) }.
例1 求函数 y 2x3 3x2 12x 14 的在[3,4] 上的最大值与最小值.
解 f ( x) 6( x 2)(x 1)
解方程 f ( x) 0,得 x1 2, x2 1.

极小值原理(一)

极小值原理(一)

极小值原理(一)极小值什么是极小值?•极小值是数学中的一个概念,用于描述函数的最小值或局部最小值。

•在函数的定义域中,如果一个点的函数值比其周围任意点的函数值都要小或相等,那么这个点就被称为极小值点。

•极小值点是函数图像中的一个相对低谷。

极小值定理•极小值定理是研究函数极值的一个重要定理,可以帮助我们判断函数的极值点。

•极小值定理可以分为费马定理和魏尔斯特拉斯定理两种。

–费马定理:如果函数在某一点处有极值,且该点处可导,则导数值为0。

–魏尔斯特拉斯定理:如果函数在某一闭区间内连续,那么一定会在该区间内取到最大值和最小值。

寻找极小值的方法1.导数法–对于可导函数,可以通过判断导数的零点来确定极值点。

–导数为0的点可能是函数的极小值点,但不一定。

–还需要通过二阶导数或其他方法来进行进一步的判断。

2.区间法–如果函数在某一闭区间内连续,那么一定会在该区间内取到最大值和最小值。

–可以通过将区间等分,逐个求函数值,找到最小值所在的区间。

3.迭代法–通过迭代计算,逐步接近极小值点。

–可以使用梯度下降等优化算法进行迭代计算。

4.其他方法–如果函数具有特殊的性质或特定的定义域,可以运用专门的方法来求解极小值。

极小值的应用•在数学领域中,极小值的研究是重要的。

–极小值可以帮助我们了解函数的性质和行为。

–极小值的存在性和唯一性问题是函数论和变分法中的关键问题。

•在其他领域中,极小值也具有广泛的应用。

–在优化问题中,求解极小值可以帮助我们寻找最优解。

–在经济学和管理学中,极小值可以帮助我们进行决策和优化资源分配。

–在机器学习和深度学习中,极小值是优化模型参数的目标。

总结•极小值是数学中的一个重要概念,用于描述函数的最小值或局部最小值。

•极小值定理可以帮助我们判断函数的极值点。

•寻找极小值的方法包括导数法、区间法、迭代法和其他方法。

•极小值具有广泛的应用,不仅在数学领域,还在其他领域中发挥着重要作用。

当我们研究函数的极值时,常常关注的是极小值。

函数的极大值、极小值

函数的极大值、极小值

【学习目标】1.理解极大值、极小值的概念.2.能够运用判别极大值、极小值的方法来求函数的极值.3.掌握求可导函数的极值的步骤【重点与难点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤【学法提示】讲练结合【课前预习】用导数法求下列函数的单调区间.(1) 2()2f x x x =-- (2)311433y x x =-+1.极大值:2.极小值:3.极大值与极小值统称为极值取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。

请注意以下几点: (ⅰ)极值是一个局部概念由定义,并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即函数在某区间上或定义域内极大值或极小值可以不止一个 (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f(ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4. 判别f (x 0)是极大、极小值的方法:若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值5. 求可导函数f (x )的极值的步骤:(1)确定函数的定义区间,求导数/()f x(2)求方程/()f x =0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列表.检查/()f x 在方程根左右的值的符号,若左正右负,那么f (x )在这个根处取得极大值;若左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值【能力交流】例1求y =31x 3-4x +31的极值【课堂小结】【课堂巩固】1.求下列函数的极值.(1)y =x 2-7x +6(2)y =x 3-27x2.求ln ,(0,2)y x x x =-∈的极值【学后反思】。

函数的极值与最大值最小值

函数的极值与最大值最小值
第五节 函数的极值与最大值最小值
一、函数的极值及其求法 二、最大值与最小值问题
一、函数的极值及其求法
极值定义 设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
如果对 x U ( x0 ) ,有 f ( x ) f ( x0 ) ( 或 f ( x ) f ( x0 ) ),
求函数 f ( x ) x 2 3 x 2 在 [3,4] 上的 例3 最大值与最小值 .
解: 显然
一定取得最大值与最小值.
f ( x) ( x 2)( x 1)

x 1, x 2为不可导点
x [3,1] [2,4] x (1,2).
x 2 3 x 2, f ( x) 2 x 3 x 2,

2 5
0 0.33
2 ( 5 , )
其极大值为 是极大点,
是极小点, 其极小值为
确定函数极值点和极值的步骤
(1) 确定函数定义域 , 并求导数 f ( x );
(2) 求出 f ( x ) 的全部驻点与不可导点;
(3)驻点和不可导点将定义域区间分成若干个区间, 列表考察导函数在各个区间内的符号,以便确定该点
x 最大(小)值若在区间内部取得,则它一定是极大(小)值. o a x1 x2 x3x4 b x 2 , x4 为极小值点
费马( Fermat )引理
设函数 f ( x)在 x0 的某邻域U ( x0 )内有定义,
若 (1) f ( x)在 x0 点可导
则 f ( x0 ) 0.
(2) f ( x)在 x0 点取得极大值或极小值
点处的切线与直线 y 0 及 x 8 所围成的三角形

函数的极值,最大值与最小值

函数的极值,最大值与最小值
M
m
x1
x2
x3
x4
x5
例4. 求 y 2 x 3x 12 x 14 在 [3,4] 上的最大值与最小值. 2 解: y 6 x 6 x 12 6( x 2)( x 1), 令 y 0, 得驻点 x1 2, x2 1. 因为
3 2
f (3) 23, f (2) 34, f (1) 7, f (4) 142,
(1) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极大值点.
(2) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极小值点.
如果f(x)在x0的两侧保持相同符号, 则x0 不是f(x)的极值点.
x x0 f ( x) f ( x0 ) f ( x0 ) lim 0, 当 x x0 时, x x x x0 f ( x) f ( x0 ) f ( x) f ( x0 ) 0, 0, 所以 f ( x0 ) lim x x x x0 x x0
(1) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极大值点.
(2) 当x x0时, f ( x) 0,当x x0时, f ( x) 0,
则x0为f ( x)的极小值点.
说明: 对于情形(1),由判别定理可知, 当 x x0 时, f(x)单调增加, 当 x x0 时, f(x)单调减少, 因此可知x0为f(x)的极大值点. 同理可说明情形(2).
特殊情况下的最大值与最小值: 若 f(x)在一区间(有限或无限 开或闭)内可导且 有且只有一个驻点x0 则: 当f(x0)是极大值时 f(x0)就是f(x)在该区间上的 最大值 当f(x0)是极小值时 f(x0)就是f(x)在该区 区间上的最小值

函数最大值和最小值的求法

函数最大值和最小值的求法

函数最大值和最小值的求法
函数最大值和最小值的求法是数学中一个重要的概念,它可以帮助我们更好地理解函数的特性。

函数最大值和最小值是指函数在某一区间内的最大值或最小值。

一般来说,要求函数的最大值和最小值,可以通过求解函数的极值来实现。

极值是指函数在某一区间上取得极大值或极小值的点,这些点称为极值点。

求解函数的极值需要使用微积分的方法,具体的求解步骤是:
1. 对函数求导,并求出导函数的值;
2. 将导函数的值等于零,求出极值点;
3. 将极值点代入原函数,求出最大值和最小值。

最后,要注意的是,有时候函数可能不存在最大值和最小值,这时候就需要使用其他的方法来求解。

函数最大值和最小值的求法是一个重要的数学概念,可以帮助我们更好地理解函数的特性。

通过求解函数的极值,我们可以找到函数的最大值和最小值,但也要注意函数可能不存在最大值和最小值的情况。

导数与函数的极值和最值考点及题型

导数与函数的极值和最值考点及题型

第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。

怎么用函数求出最大值最小值

怎么用函数求出最大值最小值

怎么用函数求出最大值最小值在数学中,寻找函数的最大值和最小值是一个常见的问题。

通过计算函数的导数可以找到函数的极值点,进而确定最大值和最小值。

以下是一些常见的方法和步骤来解决这个问题。

寻找最大值和最小值的一般步骤1.求导数:首先,对给定的函数进行求导。

导数表示了函数在不同点的变化率,极值点一般对应导数为0的点。

2.解导数为0的方程:找到导数等于0的方程,并解出其根,这些根就是函数可能的极值点。

3.排除无关点:对于导数等于0的点,需要验证其是否确实是极值点。

排除掉在潜在的极值点处二阶导数不等于0的点。

4.确定最大值和最小值:对剩余的点,通过比较函数在这些点上的取值,确定最大值和最小值。

通常,最大值对应极大值点,最小值对应极小值点。

示例:使用函数求出最大值和最小值假设有一个函数f(x)=x2+3x+2,我们来求解其最大值和最小值。

1.求导数:计算f′(x)=2x+3。

2.解导数为0的方程:解方程2x+3=0,得到 $x = -\\frac{3}{2}$,这是一个极值点。

3.排除无关点:计算二阶导数f″(x)=2,在 $x = -\\frac{3}{2}$ 处二阶导数不等于0,说明这是一个极值点。

4.确定最大值和最小值:分别计算 $f(-\\frac{3}{2})$ 和 $f(-\\infty),f(\\infty)$ 的取值,比较得到最小值和最大值。

因此,函数f(x)=x2+3x+2在 $x = -\\frac{3}{2}$ 处取得最小值为$\\frac{1}{4}$,无最大值。

总结通过对函数进行求导,找到导数为0的点,再通过二阶导数的符号来排除无关点,最终确定函数的最大值和最小值。

这一过程是数学分析中常见的一种方法,可以帮助我们在解决实际问题时准确找到函数的极值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本概念
遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。

它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。

遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。

它是现代有关智能计算中的关键技术之一。

遗传算法的基本运算过程如下:
1)初始化:设置进化代数计数器t=0,设置最大进化代数T,随机生成M个个体作为初始群体P(0)。

2)个体评价:计算群体P(t)中各个个体的适应度。

3)选择运算:将选择算子作用于群体。

选择的目的是把优化的个体直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。

选择操作是建立在群体中个体的适应度评估基础上的。

4)交叉运算:将交叉算子作用于群体。

所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。

遗传算法中起核心作用的就是交叉算子。

5)变异运算:将变异算子作用于群体。

即是对群体中的个体串的某些基因座上的基因值作变动。

群体P(t)经过选择、交叉、变异运算之后得到下一代群体P(t 1)。

6)终止条件判断:若t=T,则以进化过程中所得到的具有最大适应度个体作为最优解输出,终止计算。

以上操作过程可以用图1来表示。

图1 遗传算法流程图
利用遗传算法求Rosenbrock 函数的极小值
求解该问题遗传算法的构造过程:
(1)确定决策变量和约束条件;
(2)建立优化模型;
(3)确定编码方法
用长度为15位的二进制编码串来分别表示两个决策变量x1,x2。

10位二进制编码串可以表示从0到2^15-1之间的个2^15不同的数,故将x1,x2的定义域离散化为1023个均等的区域,包括两个端点在内共有1024个不同的离散点。

从离散点-100到离散点100 ,分别对应于从000000000000000(0)到111111*********(1023)之间的二进制编码。

将x1,x2分别表示的两个15位长的二进制编码串连接在一起,组成一个30位长的二进制编码串,它就构成了这个函数优化问题的染色体编码方法。

使用这种编码方法,解空间和遗传算法的搜索空间就具有一一对应的关系。

例如 x :000000000110111 000001101110001 表示一个个体的基因型,其中前10位表示x1,后10位表示x2
4)确定解码方法:解码时需要将30位长的二进制编码串切断为两个15位长的二进制编码串,然后分别将它们转换为对应的十进制整数代码,分别记为y1和y2。

依据个体编码方法和对定义域的离散化方法可知,将代码y 转换为变量x 的解码公式为 )2,1(1001
15^2200=--⨯=i yi xi 例如,对个体x :00000000110111 000001101110001 它由两个代码所组成
上述两个代码经过解码后,可得到两个实际的值239.722,247.891=-=x x
(5) 确定个体评价方法:由于Rosenbrock 函数的值域总是非负的,并且优
化目标是求函数的最小值,故可将个体的适应度直接取为对应的目标函数值,即
选个体适应度的倒数作为目标函数
(6)设计遗传算子:选择运算使用比例选择算子,交叉运算使用单点交叉算子,变异运算使用基本位变异算子。

(7)确定遗传算法的运行参数:群体大小M=40,终止进化代数G=500,交叉⎩⎨⎧=≤≤--+-=)2,1(100100)1()(100),(212221212i x x x x x x f i 881
,5521==y y )
,()(21x x f x F =)(1)(x F x J =
概率Pc=(0.7~0.1),变异概率Pm=0.5。

上述七个步骤构成了用于求函数极小值的优化计算基本遗传算法。

采用上述方法进行仿真,经过100步迭代,最佳样本
0493.12,0100.11==x x 时,Rosenbrock 函数具有极小值,极小值为0.0852。

仿真的程序为:
MAIN
%标准遗传算法
%优化函数为21222
1212)1()(100),(x x x x x f -+-=,其中,-100<=x<=100 %编码长度为15位,编码精度为0.195
%种群规模设为40,遗传算子分别为比例选择,单点交叉和单点变异。

%最大进化代数为500代,保优操作。

clear all ;
close all ;
Size=80;
G=500;
CodeL=15;
maxize=100;
minize=-100;
Qun=round(rand(Size,2*CodeL));
for k=1:1:G
time(k)=k;
for s=1:1:Size
m=Qun(s,:);
y1=0;y2=0;
m1=m(1:1:CodeL);
for i=1:1:CodeL
y1=y1+m1(i)*2^(i-1);
end
x1=(maxize-minize)*y1/2^15+minize;
m2=m(CodeL+1:1:2*CodeL);
for i=1:1:CodeL
y2=y2+m2(i)*2^(i-1);
end
x2=(maxize-minize)*y2/2^15+minize;
F(s)=100*(x1^2-x2)^2+(1-x1)^2;
end
Ji=1./F;
BestJ(k)=max(Ji);
fi=F;
[Oderfi,Indexfi]=sort(fi);
Bestfi=Oderfi(1);
BestS=Qun(Indexfi(1),:);
bfi(k)=Bestfi;
fi_sum=sum(fi);
P=fi/fi_sum;
Q(1)=P(1); %求每个染色体的累积频率
for i=2:1:Size
Q(i)=Q(i-1)+P(i);
end
kk=1;
U=rand(Size,1);
%轮盘选择开始
for i=1:1:Size
for j=1:1:Size-1
if U(i,1)>Q(j)
TempE(kk,:)=Qun(j+1,:); kk=kk+1;
break
elseif U(i,1)<=Q(1)
TempE(kk,:)=Qun(1,:);
kk=kk+1;
end
end
end%相邻两个染色体单点交叉
pc=0.60;
n=ceil(20*rand);
for i=1:2:(Size-1)
temp=rand;
if pc>temp
for j=n:1:20
TempE(i,j)=Qun(i+1,j);
TempE(i+1,j)=Qun(i,j);
end
end
end
TempE(Size,:)=BestS;
Qun=TempE;
pm=0.1;
for i=1:1:Size
for j=1:1:2*CodeL
temp=rand;
if pm>temp
if TempE(i,j)==0
TempE(i,j)=1;
else
TempE(i,j)=0;
end
end
end
end
TempE(Size,:)=BestS;
Qun=TempE;
end
Min_Value=Bestfi
BestS
x1
x2
figure(1);
plot(time,BestJ);
xlabel('Times');ylabel('BestJ');
figure(2);
plot(time,bfi);
xlabel('times');ylabel('BestF');
运算结果
Min_Value =
0.0657
BestS =
Columns 1 through 17
1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0
Columns 18 through 30
1 0 1 1 1 1 0 0 0 0 0 0 1
x1 =
1.2146
x2 =
1.4893。

相关文档
最新文档