极大值与极小值(3.3.2) (2)

合集下载

极大值与极小值

极大值与极小值

4.(2006年北京卷)已知函数 f ( x) ax bx cx 在点 x0 处取得极大值5,其导函数 y f '( x) 的图像 (如图)过点(1,0),(2,0), 求: (1) x0 的值;(2)a,b,c的值; 略解: (1)由图像可知:x0 1
3 2
(2)
f / ( x)=3ax 2 2bx c (a 0) f (1) a b c 5
0

1 1 9 因此,当x 时, f(x)有极小值f( ) . 2 2 4
1 3 1 例2 求函数 y x 4x 的极值。 3 3 解:定义域为R,y′=x2-4 由y′=0可得x=-2或 x=2
当x变化时,y′, y的变化情况如下表:
x y′ y
(-∞,-2)
-2
0 极大值 17/3
练习:
1、函数y=f(x)的导数y/与函数值和极值之间的关系为 ( D)
A、导数y/由负变正,则函数y由减变为增,且有极大值 B、导数y/由负变正,则函数y由增变为减,且有极大值 C、导数y/由正变负,则函数y由增变为减,且有极小值
D、导数y/由正变负,则函数y由增变为减,且有极大值
2( 、2006年天津卷)函数 f ( x) 的定义域为开区间( a, b) 导函数 f ( x)在 ( a, b) 内的图像如图所示,则函数f ( x) 在开区间 ( a, b) 内有( A )个极小值点。
再根据解集写出单调递增区间
(4)求解不等式f ′(x)<0,求得其解集,
再根据解集写出单调递减区间
(5)确定f(x)的单调区间
观察图像:函数 y=f (x)在点x1 、x2 、x3 、x4处的
函数值f (x1)、 f (x2)、 f (x3)、 f (x4),与它们左右 近旁各点处的函数值,相比有什么特点?

函数的极值与导数经典教案

函数的极值与导数经典教案

3.3.2函数的极值与导数[教材分析]:《函数的极值与导数》是在学生学习了《函数的单调性与导数》,初步具备了运用导数研究函数的能力后学习的,并为《函数的最大(小)值与导数》奠定了知识与方法的基础,起着承上启下的作用。

本节课在本单元乃至整个数学学习中都具有十分重要的地位。

[学情分析]:学生已经初步学习了运用导数研究函数,但还不够深入,因此在学习上还有一定困难。

本节课能够进一步提高学生运用导数研究函数的能力,体会导数的工具作用。

[教学目标]:知识与技能:•了解函数极值的定义,会从几何图形直观理解函数的极值与其导数的关系,增强学生的数形结合意识,提升思维水平;•掌握利用导数求不超过三次的多项式函数极值的一般方法;•了解函数在某点取得极值的必要条件和充分条件。

过程与方法:•培养学生观察、分析、探究、归纳得出数学概念和规律的学习能力。

情感态度与价值观:•体会导数方法在研究函数性质中的一般性和有效性;•培养学生大胆创新、勇于探索、互相合作的精神;•激发学生的民族自豪感,培养学生的爱国主义精神。

[教学重点和教学难点]:教学重点:掌握利用导数求不超过三次的多项式函数极值的一般方法。

教学难点:函数在某点取得极值的必要条件和充分条件。

[教法学法分析]:教法分析和教学用具:本节课我将采用自主学习—成果展示—合作探究—教师点拨—巩固提高的教学环节。

并利用信息技术创设实际问题的情境。

发挥学生学习的主动性,使学生的学习过程成为在我引导下的“再创造”过程。

学法分析通过用导数研究函数的极值,提高了学生的导数应用能力。

通过用导数求不超过三次的多项式函数的极大值和极小值,得到求极值的一般方法。

教学过程教学内容设计意图一、自主学习:课前将学案发给学生,让学生明确学习目标,带着问题对课本进行预习,并解答这些问题,落实基础知识。

通过检查学案,了解学生自主学习的情况,设计导学思路与措施。

培养学生的自主学习能力,为学生的终身学习奠定基础。

二、成果展示:对自主学习的情况先在组内进行交流,对自主学习的问题组内达成共识。

《光学教程》姚启钧课后习题解答

《光学教程》姚启钧课后习题解答

《光学教程》(姚启钧)习题解答第一章光的干涉1、波长为500/nn的绿光投射在间距d为0.022cm的双缝上,在距离180cm处的光屏上形成干涉条纹,求两个亮条纹之间的距离。

若改用波长为700M?的红光投射到此双缝上,两个亮纹之间的距离为多少?算出这两种光第2级亮纹位置的距离。

解:人=5 00mn改用人=7Q0nm两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640〃加,两狭缝间距为0.4mm ,光屏离狭缝的距离为50⑷,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P点离中央亮纹为0.1〃曲问两束光在P点的相位差是多少?(3)求P点的光强度和中央点的强度之比。

»•50解:⑴ Ay = -2-/1 = .^x 640x 10-7 = 0.08™d0.04⑵由光程差公式⑶中央点强度:I o = 4A2P点光强为:/ = 2力彳1 +心兰、I4丿3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度。

已知光波长为6X10-7/H解:” = 1.5,设玻璃片的厚度为d由玻璃片引起的附加光程差为:F = l)d4、波长为500/nn的单邑平行光射在间距为0.2加加的双缝上。

通过其中一个缝的能量为另一个的2倍,在离狭缝50。

加的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度。

r 50解:Av = 4^ = — x500xl0'7 = 0.125C/H’ d 0.02由干涉条纹可见度定义:由题意,设A;=2A;,即% = ©代入上式得5、 波长为700/?/n 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离厶为 180c/n ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角0。

解:2 = 700伽,r = 20C /77, L = \ SOcm, Ay = 1mm由菲涅耳双镜干涉条纹间距公式6、 在题1.6图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5叫 到劳埃德镜面 的垂直距离为2〃"。

函数的极值与最值

函数的极值与最值
y


x0

xห้องสมุดไป่ตู้
y

O
O
x0
x
6
y

O


y
不是极值点
x0
x
x0
x
O
一般求极值的步骤 (1)求导数; (2)求驻点与不可导点; (3)求相应区间的导数符号,判别增减性; (4) 求极值.
7
例求 f(x ) (x 1 ) (x 1 ) 的极值及单调 .
3
2 3 2 1 ) (x 1 )3 解 (1) f ( x ) 3 ( x 1 )( x 1 ) (x 3 ( x 1)2 (11x 7) 1
2
唯一驻点
16 16 2 因这样的面积有最大值, 点P , 3 3 为所求. 16 4096 故S( ) 为所有三角形中面积的最大值. 3 27
27
三、小结
极值:局部性概念; 极值与最值的区别 最值: 整体性概念.
极大值可能小于极小值, 极小值可能大于极大值.
2 3
2 3
1
3( x 1)3
7 . 导数不存在的点: x1 ,x . (2) 驻点: x 1 11
8
(3) 列表.求相应区间的导数符号,判别增减性,
确定极值点和极值.
, 1 ) 1 x (
( 1, 7 ) 11
7 11
( 7 ,1 ) 11
1
(1, )
f (x)
x 处可导 , 则必有 f ( x ) 0 . 极值, 且在 0 0
注 (1)可导函数的极值点 必是驻点, 但函数的 驻点却不一定是极值点.

3.3.2 极大值与极小值

3.3.2 极大值与极小值
3
y
f x 1 3 x
3
4x 4
o
2
2
x
图 1 . 3 12
函数 f x
1 3
x
3
4 x 4 的图象如图
1 . 3 12 所示 .
极大值一定大于极小极 ? 吗
如果不用导数的方法你能求出上述函数的极 , 值吗? 试一试比较一下 你有什么体会? ! ,
自学检测:P31、1
h
h a 0
'
单调递增 h t 0
'
单调递减 h t 0
'
O
a
图 1 .3 8
t
图 1 .3 9
通过动画实验形象解释利用导数找极 , 值的过程 .
观察图 .3.8, 我们发现 t a时,高台跳水运动员 1 , 距水面的高度最大那么 函数ht 在此点的导数 . , 是多少呢? 此点附近的图象有什么 特点? 相应 地, 导数的符号有什么变化 规律 ?
'
f b 比它
'
值 都 大 , f b 0 ;
'
f x 0 , 右侧 f x 0 .
我们把点
a 叫做函数 ,
a a 叫做函数 的 极小值;
y f x
y f x
o b
x
点 b 叫做函数 的极大值点
y f x , f b 叫做
'
, 且 h t 连续变化
'
, 于是有 h a 0 .
'
对于一般的函数 f x , 是否也有同样的性质呢 y ?
探究
如图1.3 10 和图1.3 11 函数 y f x 在 ,

数学苏教版选修11课件:第3章3.3.2 极大值与极小值

数学苏教版选修11课件:第3章3.3.2 极大值与极小值
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/102021/9/102021/9/102021/9/109/10/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月10日星期五2021/9/102021/9/102021/9/10 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/102021/9/102021/9/109/10/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/102021/9/10September 10, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/102021/9/102021/9/102021/9/10 • You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。 •
(3)f(x)的定义域为R,f′(x)=ex(x2-7x+13)+ex(2x-7)= ex(x2-5x+6)=ex(x-2)(x-3). 令f′(x)=0解得x1=2,x2=3. 当x在定义域R内变化时,f′(x),f(x)的变化情况如下表:
x f′(x)
f(x)
(-∞,2) 2 (2,3) 3 (3,+∞)
2.函数的极值与函数的导数之间的关系 (1)极大值与导数之间的关系
x
x1左侧
x1
x1右侧
f′(x) f′(x)__>___0 f′(x)=0 f′(x)__<__0

函数的极值与最大(小)值(第一课时)(教学设计)

函数的极值与最大(小)值(第一课时)(教学设计)

§5.3.2函数的极值与最大(小)值(第一课时)一、内容和内容解析内容:极值的概念,了解函数的极值与导数的关系,运用导数方法求函数极值.内容解析:(1)极值的概念:函数的极值本质反映的是函数在某一点附近的局部性质,而不是函数在整个定义域内的性质.教学时可以用高台跳水实例引入函数极值的讨论,先让学生结合实际经验,通过观察图形直观形象的得到“局部最值"的初步想法,通过对比函数的最值,引发学生的认知冲突,使学生认识到“局部最值”不同于函数最值,是一个全新的概念,从而生成函数极值的概念.(2)函数的极值与导数的关系:学生对函数的极值有了初步的了解后,学生就会面临难题,如何利用导数求函数的极值呢?这一部分主要是探究求极值的算法,虽然没有新知识和新概念的生成,但教师在教学中依然要符合学生的认知规律,要让学生认识到利用导数来求极值是通过探究自然而然形成的.先让学生观察函数极值附近两侧的图像变化,认识到函数极值点左右两侧图像变化趋势是相反的.学生知道图象的上升与下降是用单调性来刻画的,而函数单调性又可以用导数来刻画的.从而,学生自然而然地就明白函数的极值可以借助导数来求解.二、目标和目标解析目标:结合函数图像,了解可导函数在某点取得极值的必要条件和充分条件;理解函数极值的概念,会用导数求函数的极大值与极小值.通过观察具体的函数图像,学生直观感知极值这一概念的生成过程,并积极主动地参与探索函数的极值与导数值变化之间的关系的活动,亲身经历用导数研究极值方法的过程.通过学习,学生体会导数在研究函数性质中的工具性和优越性,掌握极值是函数的局部性质,增强数形结合的意识;通过体会成功,形成学习数学知识、了解数学文化的积极态度;通过规范地表达求函数极值的过程,养成缜密的思维习惯.目标解析:达成上述目标的标志是:能够通过函数图象判断函数的极值点和极值.能够通过导函数的图象判断函数的极值点.能够利用导数研究解一元三次函数的极值.三、教学问题诊断分析1.教学问题一:为何可以利用导数直接判断极值是第一个教学问题,也是教学难点,在没有教师的引导下,导数介入函数的极值中是很难理解.因此,探究的起点应从学生熟悉的公式或概念开始.学生对函数的极值有了初步的了解后,那么困惑产生了:如何求函数的极值呢?2.教学问题二:函数在某点处的导数值为0是可导函数取得极值的必要条件,而非充分条件.这个第二个教学问题,也是教学难点.基于以上分析,确定本节课的教学重难点:函数在某点取得极值的必要条件与充分条件,求可导函数的极值的步骤.四、教学策略分析t a =时,运动员距水面的高度h t=a 附近函数导数值的正负性变化,教学时可以采用信息技术工具,放大函数在t a =t=a 的左侧某点处的切线,当切点沿函数图象从t a =的左侧移动至右侧时,切线斜率由正数变到为0,再由0变到负数. 五、教学过程与设计教学环节问题或任务师生活动设计意图情景 引入观察庐山连绵起伏的图片,思考庐山的山势有什么特点?师生活动:学生间激烈地争论着这个问题,教师再给出这节课要研究的角度,结合苏轼在《题西林壁》中的诗句“横看成岭侧成峰,远近高低各不同”,描述的是庐山的连绵起伏.由此联想庐山的连绵起伏形成好多的"峰点" 与''谷点",这就象数学上要研究的函数的极值.将学生从"要我学"被动学习情绪激发到“我要学”的积极主动的学习欲望上来,学生能够自觉地参与课堂教学的过程中来.探究新知[问题1]观察下图,图1和图2,函数在点x a =处的函数值与它附近的函数值之间有什么关系?ayxO[问题2] 观察图像,找出图中的极值点,并说明哪些为极大值点,哪些为极小值点?教师1:提出问题1. 学生1:学生观察分析后发表自己的见解.师生共同总结:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都大,它是一个局部的概念,不同于函数的最值,为了区分函数的最值,我们要加以新的定义.教师引导学生,给出极大值的概念:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都大,我们把a 叫做函数()y f x =的极大值点,()f a 叫做函数()y f x =的极大值.学生通过类比,给出极小值的概念:函数()y f x =在点x a =的函数值()f a 比它在点x a =附近其他点的函数值都小,我们把a 叫做函数()y f x =的极小值点,()f a 叫做函数()y f x =的极小值. 教师再强调:让学生将观察分析得到的结论用科学严谨的数学语言表达出来,有利于学生思维从感性层面提升到理性层面,培养归纳概括能力.fed cb O xyay=f'(x )O a b x 1x 2x 3x 4x 5x 6。

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1
第17页,共29页。
规律方法 已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时注意两点: (1)常根据极值点处导数为 0 和极值两个条件列方程组,利用待 定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用 待定系数法求解后必须验证根的合理性.
第18页,共29页。
第22页,共29页。
如图(1),此时曲线 f(x)与 x 轴恰有两个交点,即方程 f(x)=0 恰 好有两个实数根,所以 a+2=0,a=-2.(10 分) 如图(2),当极小值等于 0 时,有极大值大于 0,此时曲线 f(x) 与 x 轴恰有两个交点,即方程 f(x)=0 恰好有两个实数根,所以 a-2=0,a=2.综上,当 a=2,或 a=-2 时方程恰有两个实数 根.(12 分)
第8页,共29页。
2.极值点与导数的关系 (1)可导函数的极值点一定是导数为 0 的点,但导数为 0 的点不 一定是函数的极值点. (2)导数为 0 的点可能是函数的极值点,如 y=x2,y′(0)=0,x =0 是极小值.导数为 0 的点也可能不是函数的极值点,如 y =x3,y′(0)=0,x=0 不是极值点.
第23页,共29页。
【题后反思】 用求导的方法确定方程根的个数是一种很有效的 方法,它是通过函数的变化情况,运用数形结合的思想来确定 函数的图象与 x 轴的交点个数.
第24页,共29页。
【变式 3】 设函数 f(x)=x3-6x+5,x∈R. (1)求函数 f(x)的单调区间和极值; (2)若关于 x 的方程 f(x)=a 有三个不同的实数根,求实数 a 的取 值范围. 解 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x=- 2或 x= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0, 所以 f(x)的单调递增区间为(-∞,- 2),( 2,+∞); 单调递减区间为(- 2, 2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[能力训练]:
A.基础过关
一、选择题
1.下列结论中,正确的是……………………( )
A.导数为0的点一定是极值点
B.如果在 附近的左侧 ,右侧 ,那么 是极大值
C.如果在Байду номын сангаас附近的左侧 ,右侧 ,那么 是极小值
D.如果在 附近的左侧 ,右侧 ,那么 是极小值
2. ,当 时………………( )
A.有极大值 B.有极小值
4.对函数 ,给出命题:
(1) 的极小值只有 ,极大值为
(2) 的极小值只有 ,极大值为
(3) 的极小值只有 极小值为 ,
(4)极大值为 , ,极小值为
正确的个数是………………………………( )
A.1个 B.2个 C.3个 D.4个
5.对于函数 ,给出命题
(1) 是增函数,无极值
(2) 是减函数,无极值
12.已知函数 ,当 时取极大值7,若 时取得极小值,求极小值及这时 的值.
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第□讲
极大值与极小值
[知识要点]:
1.判断可导函数极值的基本方法
设函数 在点 及其附近可导,且
(1)如果 的符号在点 的左右,则 为函数 的极大值;
(2) 如果 的符号在点 的左右,则 为函数 的极小值;
(3) 如果 的符号在点 的左右,则 不是函数 的极值.
B.能力提升
一、选择题
1.已知函数 ,且当 存在极小值,则……………………………………( )
A.当 时, ;当 时,
B.当 时, ;当 时,
C.当 时, ;当 时,
D.当 时, ;当 时,
2.函数 在 内有极小值,则
………………………………………………( )
3.三次函数当 时有极大值4,当 时有极小值0,且函数过原点,则此函数是……………( )
C.既无极大值又无极小值 D.无法判断极值情况
3.已知函数 是定义在闭区间 上的连续函数,开区间 内可导,且 ,则在 上,下列各结论中正确的为……………( )
A. 是极小值, 是极大值
B. 是极小值, 是极大值
C. 有极值,但极值不是 与
D. 既没有极小值也没有极大值
4.下列函数中, 是极值点的函数是……( )
(3) 是增函数的区间为 ,是减函数的区间
(4) 是极大值,
其中正确命题的个数是……………………( )
A.1个 B.2个 C.3个 D.4个
6.函数 的极值情况是…( )
A.极大值为 ,极小值为
B.极大值为 ,极小值为
C.极大值为 ,极小值为
D.极大值为 ,极小值为
二、填空题
7. 在 处有极大值,则常数c=
第 页
☆ 蔡 老 师 高 考 与 中 考 数 学 研 究 中 心 (21216123)△
第 □ 讲
极大值与极小值
三、解答题
11.用导数方法证明二次函数
的极值点为 ,并讨论它的极值.
12.设函数 的图象与 轴交点为P,且曲线在P点处的切线方程为
,若函数在 处取得极值 ,试求函数解析式并确定函数的单调减区间.
2.求可导函数极值的基本步骤
(1)确定;(2)求导数;
(3)求方程的全部实根;
(4)检查 在方程 的根左、右两侧值的符号,如果(或),那么 在这个根处理取得极大值(或极小值).
[典型例题]:
例1求下列函数的极值:
(1) ; (2) .
变式引申1:设 ,求 的极值
例2求函数 的极值.
例3已知 ,在 时取得极值,且 .
(1)求 的值;
(2)判断 是函数的极大值还是极小值.
变式引申2:已知函数 ,仅当 时取得极值,且极大值比极小值大4.
(1)求 的值; (2)求 的极大值和极小值.
[合作探究]:
已知函数 在 处取得极值.
(1)讨论 和 是函数 的极大值还是极小值;
(2)过点A(0,16)作曲线 的切线,求此切线方程.
5.函数 取得极小值时, 的值是……………………………………………( )
A.–1 B.0 C.1 D.2
6.函数 取得极大值或极小值时的 值分别为0和 ,则……………………………( )
二、填空题
7.函数 的极大值为.
8.函数 的极大值是;极小值是.
9.函数 的极大值为.
10.已知 有极大值又有极小值,则 的取值范围是.
.
8.若函数 取极小值,则 .
9.函数 在 时有极值10,那么 的值为.
10.对于函数 ,给出命题:
① 是增函数,无极值;
② 是减函数,无极值;
③ 是增函数的区间为 ,是减函数的区间
④ 是极大值,
其中正确的命题是.(正确的序号全填上)
三、解答题
11.已知函数 ,当 时, 有极大值3.
(1)求 的值.(2)求函数 的极小值.
相关文档
最新文档