高中数学新湘教版选修2-2函数的极大值和极小值

合集下载

高二-数学-选修2-2函数的导数与单调性、极值

高二-数学-选修2-2函数的导数与单调性、极值

导数与单调区间、极值重点:会利用导数解决函数的单调性,利用导数求函数的极值,以及已知单调性、极值求参数难点:导函数与原函数性质的区分、恒成立问题。

一、f’(x)>0(<0)与f(x) 单调性的关系判断判断函数f(x)=sinx-x的单调区间,如何进行?用图像法,定义法去试试思考函数的单调性与变化率有何关系?变化率又与导数有什么关系?①一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内如果f’(x)>0,那么函数y=f(x)在(a,b)上单调递增;如果f’(x)<0,那么函数y=f(x)在(a,b)上单调递减;:(1(2(3(4典型题一、 f’(x)的图像与f(x) 图像例1.:A变式1已知函数y=f(x)的图象如图l所示,则其导函数y=f'(x)的图象可能是()A.B.C.D.考点:函数的单调性与导数的关系.专题:导数的概念及应用.分析:根据原函数图象的单调性及极值点的情况,得到导函数的零点个数及导函数的正负取值,由此即可得到导函数的图象的大致形状.解答:解:由函数f(x)的图象看出,在y轴左侧,函数有两个极值点,且先增后减再增,在y轴右侧函数无极值点,且是减函数,根据函数的导函数的符号和原函数单调性间的关系可知,导函数在y轴右侧应有两个零点,且导函数值是先正后负再正,在y轴右侧无零点,且导函数值恒负,由此可以断定导函数的图象是A的形状.故选A.A变式2.函数y=f(x)的图象如图所示,则y=f(x)的导函数y=f′(x)的图象可以是()A.B.C.D.分析:排除法,由图象知x<0时,图象从左向右降低,是减函数,得y的导函数y,<0,排除A、B、C,即得.解答:解:由图象知,当x<0时,y随x的增大而减小,是减函数,y=f(x)的导函数y,=f,(x)<0;当x>0时,y也随x的增大而减小,是减函数,y=f(x)的导函数y,=f,(x)<0;所以,y=f(x)的导函数y,=f,(x)的图象可以是满足条件的D答案.故选:D.A 变式3设f′(x )是函数f (x )的导函数,y=f′(x )的图象如图所示,则y=f (x )的图象最有可能的是( )A .B .C .D .分析: 先根据导函数的图象确定导函数大于0 的范围和小于0的x 的范围,进而根据当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减确定原函数的单调增减区间. 解答:解:由y=f'(x )的图象易得当x <0或x >2时,f'(x )>0, 故函数y=f (x )在区间(﹣∞,0)和(2,+∞)上单调递增;当0<x <2时,f'(x )<0,故函数y=f (x )在区间(0,2)上单调递减; 故选C .A 变式4已知函数f (x )的导函数f′(x )=a (x+b )2+c 的图象如图所示,则函数f (x )的图象可能是( )A .B .C .D .分析:本题利用排除法,由导函数的图象可以看出f (x )的单调区间,然后爱观察所给的选项,判断正误,问题得以解决. 解答:解:由导函数的图象可知,当时x <0时,函数f (x )单调递减,排除A ,B ; 由f (x )在(﹣∞,0)上单调递减,在(0,x 1)单调递增,因此当x=0时,f (x )有极小值,所以D 正确. 故选:D .B 变式1下列各坐标系中是一个函数与其导函数的图象,其中一定错误的是()A.B.C.D.分析:直接对四个选项利用原函数递增导函数值为正以及原函数递减导函数值为负,一一进行验证即可求出答案.解答:解;对于A,由图得,开口向下,且对称轴大于0,故对应的一次函数为减函数,且与轴的交点在轴的上方,即A符合;对于B,原函数的图象是先增,后减再增,对应的导函数的函数值应先正后负再正,故B符合.对于C,不论把哪条曲线对应的函数当成是原函数,均于函数的单调性与其导函数的正负之间的关系相矛盾,故C不符合;对于D,因为原函数的图象是先减后增,故其导函数的图象是先负后正,即D符合要求.故选 C.B变式2已知f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()A.B.C.D.考点:函数的单调性与导数的关系.专题:导数的概念及应用.分析:本题可以考虑排除法,容易看出选项D不正确,因为D的图象,在整个定义域内,不具有单调性,但y=f(x)和y=f′(x)在整个定义域内具有完全相同的走势,不具有这样的函数.解答:解:不可能正确的是D.因为把上面的作为函数:在最左边单调递增,其导数应为大于0,但是其导函数的值小于0,故不正确;同样把下面的作为函数,中间一段是减函数,导函数应该小于0,也不正确.因此D 不正确.故选:D.注意 f’(x)>0 y=f(x) 单调递增f’(x)<0 y=f(x) 单调递减f’(x)增减性与 y=f(x)增减性无关。

湘教版高中数学选修2-2同步精练:4.3.2 函数的极大值和极小值 含解析

湘教版高中数学选修2-2同步精练:4.3.2 函数的极大值和极小值 含解析

1.有下列四个函数:①y=x3;②y=x2+1;③y=|x|;④y=2x。

其中在x=0处取得极小值的函数是( ).A.①②B.②③C.③④D.①③2.函数y=x-sin x在错误!上的最大值为( ).A.错误!B.错误!-1 C.πD.π-13.关于函数的极值,下列说法正确的是( ).A.导数为零的点一定是函数的极值点B.函数的极小值一定小于它的极大值C.f(x)在定义域内最多只能有一个极大值和一个极小值D.若f(x)在(a,b)内有极值,那么f(x)在(a,b)内不是单调函数4.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的().A.极大值为0,极小值为-错误!B.极大值为错误!,极小值为0C.极小值为-错误!,极大值为0 D.极小值为0,极大值为错误!5.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则a的范围是().A.(-1,+∞)B.(1,+∞)C.(-∞,-1) D.(-∞,1)6.若函数f(x)=x3-6bx+3b在(0,1)上有极小值,则实数b 的取值范围为__________.7.若f(x)=x3+3ax2+3(a+2)x+1有极大值和极小值,则a 的取值范围是________.8.将边长为1的正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记S=错误!,则S的最小值是__________.9.已知函数f(x)=x-2x+a(2-ln x),a>0。

讨论f(x)的单调性.10.设函数f(x)=x3-6x+5,x∈R.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)=a有三个不同实根,求实数a的取值范围;(3)已知当x∈(1,+∞)时,f(x)≥k(x-1)恒成立,求实数k 的取值范围.参考答案1.B ①与④在R上是增函数,取不到极值,由极值定义,结合图象知②③在x=0处取得极小值.2.C ∵y′=1-cos x≥0,∴y=x-sin x在错误!上是增函数.∴当x=π时,y max=π.3.D4.B ∵f(x)与x轴切于点(1,0),f′(x)=3x2-2px-q,∴f′(1)=3-2p-q=0.又f(1)=1-p-q=0,∴p=2,q=-1.∴f(x)=x3-2x2+x.∴f′(x)=3x2-4x+1。

数学选修2-2配套课件:4-3-2函数的极大值和极小值

数学选修2-2配套课件:4-3-2函数的极大值和极小值

要使函数f(x)只有一个零点, 只需4+k<0或-4+k>0(如图所示)

即k<-4或k>4. ∴k的取值范围是(-∞,-4)∪(4,+∞).
遇到”仁”的 事情的时候,对老 师也不必谦让。
选文1
叔孙武叔毁仲尼,子贡曰:“无以为也。仲 尼不可毁也,他人之贤者,丘陵也,犹可逾也; 仲尼,日月也,无得而逾焉。人虽欲自绝,其何 伤于日月乎?多见其不知量也。”
“无类”指什么?
一、不分身份、地位均要 教育。
二、不管品行、习性,对 所有的人都平等地加以教 育。
选文1
子曰:“有教无类。”
【译文】孔子说:“人人我都教育,没有区别!
选文2
子曰:“中人以上,可以 语上也;中人以下,不可以语 上也。”
•【译文】 孔子说:“中上 等天赋的人,可以同他研究 高深的学问;中下等天赋的 人,不可以同他讨论高深的 学问。”
况,运用数形结合思想来确定函数图象与x轴
的交点个数,从而判断方程根的个数.
跟踪演练3 若函数f(x)=2x3-6x+k在R上 只有一个零点,求常数k的取值范围. 解 f(x)=2x3-6x+k,则f′(x)=6x2-6, 令f′(x)=0,得x=-1或x=1, 可知f(x)在(-1,1)上是减函数, f(x)在(-∞,-1)和(1,+∞)上是增函数. f(x)的极大值为f(-1)=4+k, f(x)的极小值为f(1)=-4+k.
【译文】
叔孙武叔诽谤孔子。子贡说:“不要这样吧, 孔子是诽谤不了的,其他人的贤良,象丘陵一样, 还可以超越;孔子却象日月,别人没法超过。虽然 有人要自绝于日月,但对日月又有什么损伤?只能 表明他不自量而已。”
【评析】
写子贡面对叔孙武叔的诋毁,运用 比喻、对比的手法,理直气壮地表达 了自己的观点,表现孔子的出类拔萃

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2-2(全册)同步练习汇总

(湘教版)高中数学选修2 -2 (全册)同步练习汇总第4章导数及其应用4.1导数概念4.1.1问题探索- -求自由落体的瞬时速度一、根底达标1.设物体的运动方程s=f(t) ,在计算从t到t+d这段时间内的平均速度时,其中时间的增量d() A.d>0 B.d<0C.d=0 D.d≠0答案 D2.一物体运动的方程是s=2t2 ,那么从2 s到(2+d) s这段时间内位移的增量为() A.8 B.8+2dC.8d+2d2D.4d+2d2答案 C解析Δs=2(2+d)2-2×22=8d+2d2.3.一物体的运动方程为s=3+t2 ,那么在时间段[2,2.1]内相应的平均速度为() A.4.11 B.4.01 C.4.0答案 D解析v=错误!=4.1.4.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t之间的方程为s=18t2 ,那么t=2时,此木块水平方向的瞬时速度为()A.2 B.1 C.12 D.14答案 C解析ΔsΔt=18(2+Δt)2-18×22Δt=12+18Δt→12(Δt→0).5.质点运动规律s=2t2+1 ,那么从t=1到t=1+d时间段内运动距离对时间的变化率为________.答案4+2d解析v=2(1+d)2+1-2×12-11+d-1=4+2d.6.某个物体走过的路程s(单位:m)是时间t(单位:s)的函数:s=-t2+1.(1)t=2到t=2.1;(2)t =2到t =2.01; (3)t =2到t =2.001.那么三个时间段内的平均速度分别为________ ,________ ,________ ,估计该物体在t =2时的瞬时速度为________. 答案 -4.1 m/s -4.01 m/s -4.001 m/s -4 m/s7.某汽车的紧急刹车装置在遇到特别情况时 ,需在2 s 内完成刹车 ,其位移 (单位:m)关于时间(单位:s)的函数为: s (t )=-3t 3+t 2+20 ,求:(1)开始刹车后1 s 内的平均速度; (2)刹车1 s 到2 s 之间的平均速度; (3)刹车1 s 时的瞬时速度. 解 (1)刹车后1 s 内平均速度v 1=s (1)-s (0)1-0=(-3×13+12+20)-201=-2(m/s).(2)刹车后1 s 到2 s 内的平均速度为: v 2=s (2)-s (1)2-1=(-3×23+22+20)-(-3×13+12+20)1=-18(m/s).(3)从t =1 s 到t =(1+d )s 内平均速度为: v 3=s (1+d )-s (1)d=-3(1+d )3+(1+d )2+20-(-3×13+12+20)d=-7d -8d 2-3d 3d =-7-8d -3d 2→-7(m/s)(d →0)即t =1 s 时的瞬时速度为-7 m/s. 二、能力提升8.质点M 的运动方程为s =2t 2-2 ,那么在时间段[2,2+Δt ]内的平均速度为( )A .8+2ΔtB .4+2ΔtC .7+2ΔtD .-8+2Δt答案 A解析 Δs Δt =2(2+Δt )2-2-(2×22-2)Δt=8+2Δt .9.自由落体运动的物体下降的距离h 和时间t 的关系式为h =12gt 2 ,那么从t =0到t =1时间段内的平均速度为________ ,在t =1到t =1+Δt 时间段内的平均速度为________ ,在t =1时刻的瞬时速度为________. 答案 12g g +12g Δt g 解析 12g ×12-12g ×021-0=12g .12g (1+Δt )2-12g ×12Δt =g +12g Δt . 当Δt →0时 ,g +12g Δt →g .10.自由落体运动的物体下降距离h 和时间t 的关系式为h =12gt 2,t =2时的瞬时速度为19.6 ,那么g =________. 答案解析 12g (2+Δt )2-12g ×22Δt =2g +12g Δt . 当Δt →0时 ,2g +12g Δt →2g . ∴2g =19.6 ,g =9.8.11.求函数s =2t 2+t 在区间[2,2+d ]内的平均速度. 解 ∵Δs =2(2+d )2+(2+d )-(2×22+2)=9d +2d 2 , ∴平均速度为Δsd =9+2d .12.甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关系分别如图①、②所示.问:(1)甲、乙二人平时跑步哪一个跑得快?(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs为s的增量)?解(1)由题图①在(0 ,t]时间段内,甲、乙跑过的路程s甲<s乙,故有s甲t<s乙t即在任一时间段(0 ,t]内,甲的平均速度小于乙的平均速度,所以乙比甲跑得快.(2)由题图②知,在终点附近[t-d,t)时间段内,路程增量Δs乙>Δs甲,所以Δs乙d>Δs甲d即快到终点时,乙的平均速度大于甲的平均速度,所以乙比甲跑得快.三、探究与创新13.质量为10 kg的物体按照s(t)=3t2+t+4的规律做直线运动,求运动开始后4秒时物体的动能.解s(Δt+4)-s(4)Δt=3(Δt+4)2+(Δt+4)+4-(3×42+4+4)Δt=3Δt+25 , 当Δt→0时,3Δt+25→25.即4秒时刻的瞬时速度为25.∴物质的动能为12m v2=12×10×252=3 125(J)4.问题探索- -求作抛物线的切线一、根底达标1.曲线y=2x2上一点A(1,2) ,那么A处的切线斜率等于() A.2 B.4C.6+6d+2d2D.6答案 B2.曲线y=12x2-2上的一点P(1 ,-32) ,那么过点P的切线的倾斜角为()A.30°B.45°C.135°D.165°答案 B3.如果曲线y=2x2+x+10的一条切线与直线y=5x+3平行,那么切点坐标为() A.(-1 ,-8) B.(1,13)C.(1,12)或(-1,8) D.(1,7)或(-1 ,-1)答案 B4.曲线y=x-2在点P(3,1)处的切线斜率为()A.-12B.0 C.12D.1答案 C解析(3+Δx)-2-3-2Δx=Δx+1-1Δx=1Δx+1+1.当Δx→0时,1Δx+1+1→12.5.假设曲线y=x2+1在曲线上某点处的斜率为2 ,那么曲线上该切点的坐标为________.答案(1,2)6.曲线y=x2+2在点P(1,3)处的切线方程为________.答案2x-y+1=0解析(1+Δx)2+2-(12+2)Δx=Δx+2 ,当Δx→0时,Δx+2→2.所以曲线y=x2+2在点P(1,3)处的切线斜率为2 ,其方程为y-3=2(x-1).即为2x-y+1=0.7.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.解设点P(x0 ,y0) ,f(x0+d)-f(x0)d=(x0+d)2-x20d=d+2x0 ,d→0时,d+2x0→2x0.抛物线在点P处的切线的斜率为2x0 ,由于切线平行于2x-y+4=0 ,∴2x0=2 ,x0=1 , 即P点坐标为(1,1) ,切线方程为y-1=2(x-1) ,即为2x-y-1=0.二、能力提升8.曲线y=-1x在点(1 ,-1)处的切线方程为()A.y=x-2 B.y=xC.y=x+2 D.y=-x-2 答案 A解析-1Δx+1-(-11)Δx=1-1Δx+1Δx=1Δx+1,当Δx→0时,1Δx+1→1.曲线y=-1x在点(1 ,-1)处的切线的斜率为1 ,切线方程为y+1=1×(x-1) ,即y=x-2.9.曲线f(x)=x2+3x在点A(2,10)处的切线的斜率为________.答案7解析f(2+Δx)-f(2)Δx=(2+Δx)2+3(2+Δx)-(22+3×2)Δx=Δx+7 ,当Δx→0时,Δx+7→7 ,所以,f(x)在A处的切线的斜率为7.10.曲线f(x)=x2+3x在点A处的切线的斜率为7 ,那么A点坐标为________.答案(2,10)解析设A点坐标为(x0 ,x20+3x0) ,那么f(x0+Δx)-f(x0)Δx=(x0+Δx)2+3(x0+Δx)-(x20+3x0)Δx=Δx+(2x0+3) ,当Δx→0时,Δx+(2x0+3)→2x0+3 ,∴2x0+3=7 ,∴x0=2.x20+3x0=10.A点坐标为(2,10).11.抛物线y=x2+1 ,求过点P(0,0)的曲线的切线方程.解设抛物线过点P的切线的切点为Q(x0 ,x20+1).那么(x0+Δx)2+1-(x20+1)Δx=Δx+2x0.Δx→0时,Δx+2x0→2x0.∴x20+1-0x0-0=2x0 ,∴x0=1或x0=-1.即切点为(1,2)或(-1,2).所以,过P(0,0)的切线方程为y=2x或y=-2x.即2x-y=0或2x+y=0.三、探究与创新12.直线l:y=x+a(a≠0)和曲线C:y=x3-x2+1相切,求切点的坐标及a的值.解设切点A(x0 ,y0) ,(x0+d)3-(x0+d)2+1-(x30-x20+1)d=3x20d+3x0d2+d3-2x0d-d2d=3x 20-2x 0+(3x 0-1)d +d 2→3x 20-2x 0(d →0). 故曲线上点A 处切线斜率为3x 20-2x 0 ,∴3x 20-2x 0=1 ,∴x 0=1或x 0=-13 ,代入C的方程得 ⎩⎪⎨⎪⎧x 0=1 y 0=1或⎩⎪⎨⎪⎧x 0=-13 y 0=2327代入直线l ,当⎩⎪⎨⎪⎧x 0=1y 0=1时 ,a =0(舍去) ,当⎩⎪⎨⎪⎧x 0=-13 y 0=2327时 ,a =3227 ,即切点坐标为(-13 ,2327) ,a =3227.4. 导数的概念和几何意义一、根底达标1.设f ′(x 0)=0 ,那么曲线y =f (x )在点(x 0 ,f (x 0))处的切线( )A .不存在B .与x 轴平行或重合C .与x 轴垂直D .与x 轴斜交答案 B2.函数y =f (x )的图象如图 ,那么f ′(x A )与f ′(x B )的大小关系是( )A.f′(x A)>f′(x B) B.f′(x A)<f′(x B)C.f′(x A)=f′(x B) D.不能确定答案 B解析分别作出A、B两点的切线,由题图可知k B>k A ,即f′(x B)>f′(x A).3.曲线y=2x2上一点A(2,8) ,那么在点A处的切线斜率为() A.4 B.16 C.8 D.2解析在点A处的切线的斜率即为曲线y=2x2在x=2时的导数,由导数定义可求y′=4x ,∴f′(2)=8.答案 C4.函数f(x)在x=1处的导数为3 ,那么f(x)的解析式可能为() A.f(x)=(x-1)2+3(x-1)B.f(x)=2(x-1)C.f(x)=2(x-1)2D.f(x)=x-1答案 A解析分别求四个选项的导函数分别为f′(x)=2(x-1)+3;f′(x)=2;f′(x)=4(x-1);f′(x)=1.5.抛物线y=x2+x+2上点(1,4)处的切线的斜率是________ ,该切线方程为____________.答案33x-y+1=0解析Δy=(1+d)2+(1+d)+2-(12+1+2)=3d+d2 ,故y′|x=1=limd→0Δy d=limd→0(3+d)=3.∴切线的方程为y-4=3(x-1) ,即3x-y+1=0.6.假设曲线y=x2-1的一条切线平行于直线y=4x-3 ,那么这条切线方程为____________.答案4x-y-5=0解析∵f′(x)=f(x+d)-f(x)d=(x+d)2-1-(x2-1)d=2xd+d2d=(2x+d)=2x.设切点坐标为(x0,y0) ,那么由题意知f′(x0)=4 ,即2x0=4 ,∴x0=2 ,代入曲线方程得y0y-3=4(x-2) ,即4x-y-5=0.7.求曲线y=x3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.解∵f′(3)=f(3+d)-f(3)d=(3+d)3-33d=(d2+9d+27)=27 ,∴曲线在点(3,27)处的切线方程为y-27=27(x-3) , 即27x-y-54=0.此切线与x轴、y轴的交点分别为(2,0) ,(0 ,-54).∴切线与两坐标轴围成的三角形的面积为S=12×2×54=54.二、能力提升8.曲线y=-x3+3x2在点(1,2)处的切线方程为() A.y=3x-1 B.y=-3x+5C.y=3x+5 D.y=2x答案 A解析-(Δx+1)3+3(Δx+1)2-(-13+3×12)Δx=-Δx2+3.Δx→0时,-Δx2+3→3.∴f′(1)=3.即曲线在(1,2)处的切线斜率为3. 所以切线方程为y-2=3(x-1) ,即y=3x-1.9.函数y=f(x)图象在M(1 ,f(1))处的切线方程为y=12x+2 ,那么f(1)+f′(1)=________. 答案 3解析 由切点在切线上. ∴f (1)=12×1+2=52.切线的斜率f ′(1)=12.∴f (1)+f ′(1)=3.10.假设曲线y =x 2+ax +b 在点(0 ,b )处的切线方程为x -y +1=0 ,那么a ,b 的值分别为________ ,________. 答案 1 1解析 ∵点(0 ,b )在切线x -y +1=0上 , ∴-b +1=0 ,b =1.又f (0+Δx )-f (0)Δx =Δx 2+a Δx +b -b Δx =a +Δx ,∴f ′(0)=a =1.11.曲线y =x 3+1 ,求过点P (1,2)的曲线的切线方程. 解 设切点为A (x 0 ,y 0) ,那么y 0=x 30+1.(x 0+Δx )3+1-(x 30+1)Δx =Δx 3+3x 20Δx +3x 0Δx2Δx =Δx 2+3x 0Δx +3x 20.∴f ′(x 0)=3x 20 ,切线的斜率为k =3x 20.点(1,2)在切线上 ,∴2-(x 30+1)=3x 20(1-x 0).∴x 0=1或x 0=-12. 当x 0=1时 ,切线方程为3x -y -1=0 , 当x 0=-12时 ,切线方程为3x -4y +5=0.所以 ,所求切线方程为3x -y -1=0或3x -4y +5=0. 12.求抛物线y =x 2的过点P (52 ,6)的切线方程. 解 由得 ,Δyd =2x +d , ∴当d →0时 ,2x +d →2x , 即y ′=2x ,设此切线过抛物线上的点(x 0 ,x 20) , 又因为此切线过点(52 ,6)和点(x 0 ,x 20) ,其斜率应满足x20-6x0-52=2x0 ,由此x0应满足x20-5x0+6=0.解得x0=2或3.即切线过抛物线y=x2上的点(2,4) ,(3,9).所以切线方程分别为y-4=4(x-2) ,y-9=6(x-3).化简得4x-y-4=0,6x-y-9=0 ,此即是所求的切线方程.三、探究与创新13.求垂直于直线2x-6y+1=0并且与曲线y=x3+3x2-5相切的直线方程.解设切点为P(a ,b) ,函数y=x3+3x2-5的导数为y′=3x2+6x.故切线的斜率k=y′|x=a=3a2+6a=-3 ,得a=-1 ,代入y=x3+3x2-5得,b=-3 ,即P(-1 ,-3).故所求直线方程为y+3=-3(x+1) ,即3x+y+6=0.4.导数的运算法那么一、根底达标1.设y=-2e x sin x ,那么y′等于() A.-2e x cos x B.-2e x sin xC.2e x sin x D.-2e x(sin x+cos x)答案 D解析y′=-2(e x sin x+e x cos x)=-2e x(sin x+cos x).2.当函数y=x2+a2x(a>0)在x=x0处的导数为0时,那么x0=() A.a B.±a C.-a D.a2答案 B解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2 ,由x 20-a 2=0得x 0=±a . 3.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直 ,那么a 等于( )A .2 B.12 C .-12 D .-2 答案 D 解析 ∵y =x +1x -1=1+2x -1, ∴y ′=-2(x -1)2.∴y ′|x =3=-12. ∴-a =2 ,即a =-2.4.曲线y =x 3在点P 处的切线斜率为k ,那么当k =3时的P 点坐标为( )A .(-2 ,-8)B .(-1 ,-1)或(1,1)C .(2,8)D.⎝ ⎛⎭⎪⎪⎫-12 -18 答案 B解析 y ′=3x 2 ,∵k =3 ,∴3x 2=3 ,∴x =±1 , 那么P 点坐标为(-1 ,-1)或(1,1).5.设函数f (x )=g (x )+x 2 ,曲线y =g (x )在点(1 ,g (1))处的切线方程为y =2x +1 ,那么曲线y =f (x )在点(1 ,f (1))处切线的斜率为________. 答案 4解析 依题意得f ′(x )=g ′(x )+2x , f ′(1)=g ′(1)+2=4.6.f (x )=13x 3+3xf ′(0) ,那么f ′(1)=________. 答案 1解析 由于f ′(0)是一常数 ,所以f ′(x )=x 2+3f ′(0) , 令x =0 ,那么f ′(0)=0 , ∴f ′(1)=12+3f ′(0)=1. 7.求以下函数的导数: (1)y =(2x 2+3)(3x -1); (2)y =x -sin x 2cos x2.解 (1)法一 y ′=(2x 2+3)′(3x -1)+(2x 2+3)(3x -1)′=4x (3x -1)+ 3(2x 2+3)=18x 2-4x +9.法二 ∵y =(2x 2+3)(3x -1)=6x 3-2x 2+9x -3 , ∴y ′=(6x 3-2x 2+9x -3)′=18x 2-4x +9. (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .二、能力提升8.曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为( )A .-12 B.12 C .-22 D.22 答案B 解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故y ′|x =π4=12 ,∴曲线在点M ⎝ ⎛⎭⎪⎪⎫π4 0处的切线的斜率为12. 9.点P 在曲线y =4e x +1上 ,α为曲线在点P 处的切线的倾斜角 ,那么α的取值范围是( )A .[0 ,π4) B .[π4 ,π2) C .(π2 ,3π4] D .[3π4 ,π)答案 D解析 y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1 ,设t =e x ∈(0 ,+∞) ,那么y ′ =-4tt 2+2t +1=-4t +1t +2,∵t +1t ≥2 ,∴y ′∈[-1,0) ,α∈[3π4 ,π). 10.(2021·江西)设函数f (x )在(0 ,+∞)内可导 ,且f (e x )=x +e x ,那么f ′(1)=________. 答案 2解析 令t =e x ,那么x =ln t ,所以函数为f (t )=ln t +t ,即f (x )=ln x +x ,所以f ′(x )=1x +1 ,即f ′(1)=11+1=2.11.求过点(2,0)且与曲线y =x 3相切的直线方程.解 点(2,0)不在曲线y =x 3上 ,可令切点坐标为(x 0 ,x 30).由题意 ,所求直线方程的斜率k =x 30-0x 0-2=y ′|x =x 0=3x 20 ,即x 30x 0-2=3x 20 ,解得x 0=0或x 0=3.当x 0=0时 ,得切点坐标是(0,0) ,斜率k =0 ,那么所求直线方程是y =0; 当x 0=3时 ,得切点坐标是(3,27) ,斜率k =27 , 那么所求直线方程是y -27=27(x -3) , 即27x -y -54=0.综上 ,所求的直线方程为y =0或27x -y -54=0.12.曲线f (x )=x 3-3x ,过点A (0,16)作曲线f (x )的切线 ,求曲线的切线方程. 解 设切点为(x 0 ,y 0) ,那么由导数定义得切线的斜率k =f ′(x 0)=3x 20-3 ,∴切线方程为y =(3x 20-3)x +16 , 又切点(x 0 ,y 0)在切线上 , ∴y 0=3(x 20-1)x 0+16 ,即x 30-3x 0=3(x 20-1)x 0+16 ,解得x 0=-2 ,∴切线方程为9x -y +16=0. 三、探究与创新13.设函数f (x )=ax -bx ,曲线y =f (x )在点(2 ,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值 ,并求此定值. (1)解 由7x -4y -12=0得y =74x -3.当x =2时 ,y =12 ,∴f (2)=12 ,①又f ′(x )=a +bx 2 , ∴f ′(2)=74 ,②由① ,②得⎩⎪⎨⎪⎧2a -b 2=12 a +b 4=74.解之得⎩⎪⎨⎪⎧a =1b =3.故f (x )=x -3x .(2)证明 设P (x 0 ,y 0)为曲线上任一点 ,由y ′=1+3x 2知 曲线在点P (x 0 ,y 0)处的切线方程为 y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0) ,即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎪⎫0 -6x 0. 令y =x 得y =x =2x 0 ,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0). 所以点P (x 0 ,y 0)处的切线与直线x =0 ,y =x 所围成的三角形面积为12⎪⎪⎪⎪⎪⎪-6x 0||2x 0=6.故曲线y =f (x )上任一点处的切线与直线x =0 ,y =x 所围成的三角形的面积为定值 ,此定值为6.4.2 导数的运算4.2.1 几个幂函数的导数 4.2.2 一些初等函数的导数表一、根底达标1.以下结论中正确的个数为( )①y =ln 2 ,那么y ′=12;②y =1x 2 ,那么y ′|x =3=-227;③y =2x ,那么y ′=2x ln 2;④y =log 2x ,那么y ′=1x ln 2. A .0 B .1 C .2 D .3 答案 D解析 ①y =ln 2为常数 ,所以y ′=0.①错.②③④正确. 2.过曲线y =1x 上一点P 的切线的斜率为-4 ,那么点P 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫12 2B.⎝ ⎛⎭⎪⎪⎫12 2或⎝ ⎛⎭⎪⎪⎫-12 -2C.⎝ ⎛⎭⎪⎪⎫-12 -2D.⎝ ⎛⎭⎪⎪⎫12 -2 答案 B解析 y ′=⎝ ⎛⎭⎪⎫1x ′=-1x 2=-4 ,x =±12 ,应选B. 3.f (x )=x a ,假设f ′(-1)=-4 ,那么a 的值等于( )A .4B .-4C .5D .-5 答案 A解析 f ′(x )=ax a -1 ,f ′(-1)=a (-1)a -1=-4 ,a =4. 4.函数f (x )=x 3的斜率等于1的切线有( )A .1条B .2条C .3条D .不确定 答案 B解析∵f ′(x )=3x 2 ,设切点为(x 0 ,y 0) ,那么3x 20=1 ,得x 0=±33 ,即在点⎝ ⎛⎭⎪⎪⎫33 39和点⎝ ⎛⎭⎪⎪⎫-33 -39处有斜率为1的切线. 5.曲线y =9x 在点M (3,3)处的切线方程是________. 答案 x +y -6=0解析 ∵y ′=-9x 2 ,∴y ′|x =3=-1 , ∴过点(3,3)的斜率为-1的切线方程为: y -3=-(x -3)即x +y -6=0. 6.假设曲线在点处的切线与两个坐标轴围成的三角形的面积为18 ,那么a =________. 答案 64 解析∴曲线在点处的切线斜率,∴切线方程为.令x =0得;令y =0得x =3a .∵该切线与两坐标轴围成的三角形的面积为 S =12·3a ·=18 ,∴a =64.7.求以下函数的导数:(1) y =7x 3;(2)y =1x 4;(3)y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =log 2x 2-log 2x . 解 (1)y ′=⎝⎛⎭⎫7x 3′==377x 4.(2)y ′=⎝ ⎛⎭⎪⎫1x 4′=(x -4)′=-4x -4-1=-4x -5=-4x 5.(3)∵y =-2sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4 =2sin x 2⎝ ⎛⎭⎪⎫2cos 2x 4-1=2sin x 2cos x 2=sin x ,∴y ′=(sin x )′=cos x . (4)∵y =log 2x 2-log 2x =log 2x , ∴y ′=(log 2x )′=1x ·ln 2. 二、能力提升8.直线y =kx 是曲线y =e x 的切线 ,那么实数k 的值为( )A.1e B .-1e C .-e D .e 答案 D解析y ′=e x,设切点为(x 0 ,y 0) ,那么⎩⎪⎨⎪⎧y 0=kx 0 y 0=e x 0k =e x 0.∴e x 0=e x 0·x 0 ,∴x 0=1 ,∴k =e.9.曲线y =ln x 在x =a 处的切线倾斜角为π4 ,那么a =______. 答案 1解析 y ′=1x ,∴y ′|x =a =1a =1 ,∴a =1.10.点P 是曲线y =e x 上任意一点 ,那么点P 到直线y =x 的最|小距离为________. 答案 22解析 根据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0 ,y 0) ,该切点即为与y =x 距离最|近的点 ,如图.那么在点(x 0 ,y 0)处的切线斜率为1 ,即y ′|x =x 0=1.∵y ′=(e x )′=e x ,∴e x 0=1 ,得x 0=0 ,代入y =e x ,得y 0=1 ,即P (0,1).利用点到直线的距离公式得距离为22.11.f (x )=cos x ,g (x )=x ,求适合f ′(x )+g ′(x )≤0的x 的值. 解 ∵f (x )=cos x ,g (x )=x ,∴f ′(x )=(cos x )′=-sin x ,g ′(x )=x ′=1 , 由f ′(x )+g ′(x )≤0 ,得-sin x +1≤0 , 即sin x ≥1 ,但sin x ∈[-1,1] , ∴sin x =1 ,∴x =2k π+π2 ,k ∈Z .12.抛物线y =x 2 ,直线x -y -2=0 ,求抛物线上的点到直线的最|短距离. 解 根据题意可知与直线x -y -2=0平行的抛物线y =x 2的切线 ,对应的切点到直线x-y-2=0的距离最|短,设切点坐标为(x0 ,x20) ,那么y′|x=x=2x0=1 ,所以x0=12,所以切点坐标为⎝⎛⎭⎪⎪⎫1214,切点到直线x-y-2=0的距离d=⎪⎪⎪⎪⎪⎪12-14-22=728,所以抛物线上的点到直线x-y-2=0的最|短距离为728.三、探究与创新13.设f0(x)=sin x ,f1(x)=f′0(x) ,f2(x)=f′1(x) ,… ,f n+1(x)=f′n(x) ,n∈N ,试求f2 014(x).解f1(x)=(sin x)′=cos x ,f2(x)=(cos x)′=-sin x ,f3(x)=(-sin x)′=-cos x ,f4(x)=(-cos x)′=sin x ,f5(x)=(sin x)′=f1(x) ,f6(x)=f2(x) ,… ,f n+4(x)=f n(x) ,可知周期为4 ,∴f2 014(x)=f2(x)=-sin x.4.3导数在研究函数中的应用4.3.1利用导数研究函数的单调性一、根底达标1.命题甲:对任意x∈(a ,b) ,有f′(x)>0;命题乙:f(x)在(a ,b)内是单调递增的,那么甲是乙的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析f(x)=x3在(-1,1)内是单调递增的,但f′(x)=3x2≥0(-1<x<1) ,故甲是乙的充分不必要条件,选A.2.函数y=12x2-ln x的单调减区间是()A.(0,1) B.(0,1)∪(-∞ ,-1) C.(-∞ ,1) D.(-∞ ,+∞)答案 A解析∵y=12x2-ln x的定义域为(0 ,+∞) ,∴y′=x-1x,令y′<0 ,即x-1x<0 ,解得:0<x<1或x<-1.又∵x>0 ,∴0<x<1 ,应选A.3.函数f(x)=x3+ax2+bx+c ,其中a ,b ,c为实数,当a2-3b<0时,f(x)是() A.增函数B.减函数C.常函数D.既不是增函数也不是减函数答案 A解析求函数的导函数f′(x)=3x2+2ax+b ,导函数对应方程f′(x)=0的Δ=4(a2-3b)<0 ,所以f′(x)>0恒成立,故f(x)是增函数.4.以下函数中,在(0 ,+∞)内为增函数的是() A.y=sin x B.y=x e2C.y=x3-x D.y=ln x-x答案 B解析 显然y =sin x 在(0 ,+∞)上既有增又有减 ,故排除A ;对于函数y =x e 2 ,因e 2为大于零的常数 ,不用求导就知y =x e 2在(0 ,+∞)内为增函数; 对于C ,y ′=3x 2-1=3⎝⎛⎭⎪⎫x +33⎝ ⎛⎭⎪⎫x -33 ,故函数在⎝ ⎛⎭⎪⎫-∞ -33 ,⎝ ⎛⎭⎪⎫33 +∞上为增函数 , 在⎝ ⎛⎭⎪⎪⎫-33 33上为减函数;对于D ,y ′=1x -1 (x >0). 故函数在(1 ,+∞)上为减函数 , 在(0,1)上为增函数.应选B.5.函数y =f (x )在其定义域⎝ ⎛⎭⎪⎪⎫-32 3内可导 ,其图象如下图 ,记y =f (x )的导函数为y=f ′(x ) ,那么不等式f ′(x )≤0的解集为________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤-13 1∪[2,3)6.函数y =ln(x 2-x -2)的递减区间为________. 答案 (-∞ ,-1) 解析 f ′(x )=2x -1x 2-x -2,令f ′(x )<0得x <-1或12<x <2 ,注意到函数定义域为(-∞ ,-1)∪(2 ,+∞) ,故递减区间为(-∞ ,-1).7.函数f (x )=x 3+ax +8的单调递减区间为(-5,5) ,求函数y =f (x )的递增区间. 解 f ′(x )=3x 2+a .∵(-5,5)是函数y =f (x )的单调递减区间 ,那么-5,5是方程3x 2+a =0的根 ,∴af′(x)=3x2-75 ,令f′(x)>0 ,那么3x2-75>0 ,解得x>5或x<-5 ,∴函数y=f(x)的单调递增区间为(-∞ ,-5)和(5 ,+∞).二、能力提升8.如果函数f(x)的图象如图,那么导函数y=f′(x)的图象可能是()答案 A解析由f(x)与f′(x)关系可选A.9.设f(x) ,g(x)在[a ,b]上可导,且f′(x)>g′(x) ,那么当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0 ,∴(f(x)-g(x))′>0 ,∴f (x )-g (x )在[a ,b ]上是增函数 , ∴当a <x <b 时f (x )-g (x )>f (a )-g (a ) , ∴f (x )+g (a )>g (x )+f (a ).10.(2021·大纲版)假设函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞是增函数 ,那么a 的取值范围是________. 答案 [3 ,+∞)解析 因为f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎪⎫12 +∞上是增函数 ,故f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立 , 即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎪⎫12 +∞上恒成立. 令h (x )=1x 2-2x ,那么h ′(x )=-2x 3-2 , 当x ∈⎝ ⎛⎭⎪⎪⎫12 +∞时 ,h ′(x )<0 ,那么h (x )为减函数 , 所以h (x )<h ⎝ ⎛⎭⎪⎫12=3 ,所以a ≥3.11.求以下函数的单调区间: (1)y =x -ln x ; (2)y =ln(2x +3)+x 2.解 (1)函数的定义域为(0 ,+∞) ,y ′=1-1x , 由y ′>0 ,得x >1;由y ′<0 ,得0<x <1.∴函数y =x -ln x 的单调增区间为(1 ,+∞) ,单调减区间为(0,1). (2)函数y =ln(2x +3)+x 2的定义域为⎝ ⎛⎭⎪⎪⎫-32 +∞.∵y =ln(2x +3)+x 2 ,∴y ′=22x +3+2x =4x 2+6x +22x +3=2(2x +1)(x +1)2x +3.当y ′>0 ,即-32<x <-1或x >-12时 , 函数y =ln(2x +3)+x 2单调递增; 当y ′<0 ,即-1<x <-12时 , 函数y =ln(2x +3)+x 2单调递减.故函数y =ln(2x +3)+x 2的单调递增区间为⎝ ⎛⎭⎪⎪⎫-32 -1 ,⎝ ⎛⎭⎪⎪⎫-12 +∞ ,单调递减区间为⎝ ⎛⎭⎪⎪⎫-1 -12. 12.函数f (x )=x 3+bx 2+cx +d 的图象经过点P (0,2) ,且在点M (-1 ,f (-1))处的切线方程为6x -y +7=0. (1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.解 (1)由y =f (x )的图象经过点P (0,2) ,知d =2 , ∴f (x )=x 3+bx 2+cx +2 ,f ′(x )=3x 2+2bx +c . 由在点M (-1 ,f (-1))处的切线方程为6x -y +7=0 , 知-6-f (-1)+7=0 ,即f (-1)=1 ,f ′(-1)=6. ∴⎩⎪⎨⎪⎧ 3-2b +c =6 -1+b -c +2=1 即⎩⎪⎨⎪⎧2b -c =-3 b -c =0 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6xf ′(x )>0 , 得x <1-2或x >1+2; 令f ′(x )<0 ,得1-2<x <1+ 2.故f (x )=x 3-3x 2-3x +2的单调递增区间为(-∞ ,1-2)和(1+ 2 ,+∞) ,单调递减区间为(1- 2 ,1+2). 三、探究与创新13.函数f(x)=mx3+nx2(m、n∈R ,m≠0) ,函数y=f(x)的图象在点(2 ,f(2))处的切线与x轴平行.(1)用关于m的代数式表示n;(2)求函数f(x)的单调增区间.解(1)由条件得f′(x)=3mx2+2nx ,又f′(2)=0 ,∴3m+n=0 ,故n=-3m.(2)∵n=-3m ,∴f(x)=mx3-3mx2 ,∴f′(x)=3mx2-6mx.令f′(x)>0 ,即3mx2-6mx>0 ,当m>0时,解得x<0或x>2 ,那么函数f(x)的单调增区间是(-∞,0)和(2 ,+∞);当m<0时,解得0<x<2 ,那么函数f(x)的单调增区间是(0,2).综上,当m>0时,函数f(x)的单调增区间是(-∞ ,0)和(2 ,+∞);当m<0时,函数f(x)的单调增区间是(0,2).4.3.2函数的极大值和极小值一、根底达标y=f(x)的定义域为(a,b) ,y=f′(x)的图象如图,那么函数y=f(x)在开区间(a ,b)内取得极小值的点有()A.1个B.2个C.3个D.4个答案 A解析当满足f′(x)=0的点,左侧f′(x)<0 ,右侧f′(x)>0时,该点为极小值点,观察题图,只有一个极小值点.2. "函数y=f(x)在一点的导数值为0”是 "函数y=f(x)在这点取得极值〞的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析对于f(x)=x3 ,f′(x)=3x2 ,f′(0)=0 ,不能推出f(x)在x=0处取极值,反之成立.应选B.3.假设a>0 ,b>0 ,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,那么ab的最|大值等于() A.2 B.3 C.6 D.9答案 D解析f′(x)=12x2-2ax-2b ,∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0 ,∴a+b=6.又a>0 ,b>0 ,∴a+b≥2ab,∴2ab≤6 ,∴ab≤9 ,当且仅当a=b=3时等号成立,∴ab的最|大值为9.4.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5 ,极小值-27B.极大值5 ,极小值-11C.极大值5 ,无极小值D.极小值-27 ,无极大值答案 C解析由y′=3x2-6x-9=0 ,得x=-1或x=3 ,当x<-1或x>3时,y′>0 ,当-1<x<3时,y′x=-1时,函数有极大值5;x取不到3 ,故无极小值.5.函数f(x)=x3+3ax2+3(a+2)x+3既有极大值又有极小值,那么实数a的取值范围是________.答案(-∞ ,-1)∪(2 ,+∞)解析∵f′(x)=3x2+6ax+3(a+2) ,令3x2+6ax+3(a+2)=0 ,即x2+2ax+a +2=0 ,∵函数f(x)有极大值和极小值,∴方程x2+2ax+a+2=0有两个不相等的实数根 ,即Δ=4a 2-4a -8>0 ,解得a >2或a <-1.6.假设函数y =x 3-3ax +a 在(1,2)内有极小值 ,那么实数a 的取值范围是________. 答案 (1,4)解析 y ′=3x 2-3a ,当a ≤0时 ,y ′≥0 ,函数y =x 3-3ax +a 为单调函数 ,不合题意 ,舍去;当a >0时 ,y ′=3x 2-3a =0⇒x =±a ,不难分析 ,当 1<a <2 ,即1<a <4时 ,函数y =x 3-3ax +a 在(1,2)内有极小值. 7.求函数f (x )=x 2e -x 的极值. 解 函数的定义域为R , f ′(x )=2x e -x+x 2·⎝ ⎛⎭⎪⎫1e x ′ =2x e -x -x 2e -x =x (2-x )e -x , 令f ′(x )=0 ,得x =0或x =2.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表: x (-∞ ,0) 0 (0,2) 2 (2 ,+∞) f ′(x ) -0 +0 -f (x )4e -2当x =2时 ,函数有极大值 ,且为f (2)=4e -2. 二、能力提升8.函数f (x ) ,x ∈R ,且在x =1处 ,f (x )存在极小值 ,那么( )A .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )<0B .当x ∈(-∞ ,1)时 ,f ′(x )>0;当x ∈(1 ,+∞)时 ,f ′(x )>0C .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )>0D .当x ∈(-∞ ,1)时 ,f ′(x )<0;当x ∈(1 ,+∞)时 ,f ′(x )<0 答案 C解析 ∵f (x )在x =1处存在极小值 , ∴x <1时 ,f ′(x )<0 ,x >1时 ,f ′(x )>0.9.(2021·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点 ,以下结论一定正确的选项是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 x 0(x 0≠0)是f (x )的极大值点 ,并不是最|大值点.故A 错;f (-x )相当于f (x )关于y 轴的对称图象的函数 ,故-x 0应是f (-x )的极大值点 ,B 错;-f (x )相当于f (x )关于x 轴的对称图象的函数 ,故x 0应是-f (x )的极小值点.跟-x 0没有关系 ,C 错;-f (-x )相当于f (x )关于坐标原点的对称图象的函数.故D 正确.y =f (x )的导函数的图象如下图 ,给出以下判断: ①函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-3 -12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭⎪⎪⎫-12 3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增; ④当x =2时 ,函数y =f (x )有极小值; ⑤当x =-12时 ,函数y =f (x )有极大值. 那么上述判断正确的选项是________.(填序号) 答案 ③解析 函数的单调性由导数的符号确定 ,当x ∈(-∞ ,-2)时 ,f ′(x )<0 ,所以f (x )在(-∞ ,-2)上为减函数 ,同理f (x )在(2,4)上为减函数 ,在(-2,2)上是增函数 ,在(4 ,+∞)上为增函数 ,所以可排除①和② ,可选择③.由于函数在x =2的左侧递增 ,右侧递减 ,所以当x =2时 ,函数有极大值;而在x = -12的左右两侧 ,函数的导数都是正数 ,故函数在x =-12的左右两侧均为增函数 ,所以x =-12不是函数的极值点.排除④和⑤.11.f (x )=x 3+12mx 2-2m 2x -4(m 为常数 ,且m >0)有极大值-52 ,求m 的值. 解 ∵f ′(x )=3x 2+mx -2m 2=(x +m )(3x -2m ) , 令f ′(x )=0 ,那么x =-m 或x =23m . 当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x (-∞ ,-m ) -m⎝ ⎛⎭⎪⎪⎫-m 23m 23m ⎝ ⎛⎭⎪⎪⎫23m +∞ f ′(x ) +0 -0 +f (x )极大值极小值∴f (x )极大值=f (-m )=-m 3+12m 3+2m 3-4=-52 ,∴m =1. 12.设a 为实数 ,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时 ,曲线y =f (x )与x 轴仅有一个交点 ? 解 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0 ,那么x =-13或x =1.当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x ⎝ ⎛⎭⎪⎪⎫-∞ -13 -13 ⎝ ⎛⎭⎪⎪⎫-13 1 1 (1 ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1 , 由此可知 ,x 取足够大的正数时 ,有f (x )>0 , x 取足够小的负数时 ,有f (x )<0 ,所以曲线y =f (x )与x 轴至|少有一个交点.由(1)知f (x )极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.∵曲线y =f (x )与x 轴仅有一个交点 ,∴f (x )极大值<0或f (x )极小值>0 , 即527+a <0或a -1>0 ,∴a <-527或a >1 ,∴当a ∈⎝ ⎛⎭⎪⎪⎫-∞ -527∪(1 ,+∞)时 ,曲线y =f (x )与x 轴仅有一个交点. 三、探究与创新13.(2021·新课标Ⅱ)函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点 ,求m ,并讨论f (x )的单调性; (2)当m ≤2时 ,证明f (x )>0. (1)解 f ′(x )=e x -1x +m. 由x =0是f (x )的极值点得f ′(0)=0 ,所以m =1. 于是f (x )=e x -ln(x +1) ,定义域为(-1 ,+∞) , f ′(x )=e x -1x +1. 函数f ′(x )=e x -1x +1在(-1 ,+∞)单调递增 ,且f ′(0)=0 ,因此当 x ∈(-1,0)时 ,f ′(x )<0;当x ∈(0 ,+∞)时 ,f ′(x )>0. 所以f (x )在(-1,0)单调递减 ,在(0 ,+∞)单调递增. (2)证明 当m ≤2 ,x ∈(-m ,+∞)时 ,ln(x +m )≤ ln(x +2) ,故只需证明当m =2时 ,f (x )>0. 当m =2时 , 函数f ′(x )=e x -1x +2在(-2 ,+∞)单调递增.又f′(-1)<0 ,f′(0)>0 ,故f′(x)=0在(-2 ,+∞)有唯一实根x0 , 且x0∈(-1,0).当x∈(-2 ,x0)时,f′(x)<0;当x∈(x0 ,+∞)时,f′(x)>0 ,从而当x=x0时,f(x)取得最|小值.由f′(x0)=0得e x0=1x0+2,ln(x0+2)=-x0 ,故f(x)≥f(x0)=1x0+2+x0=(x0+1)2x0+2>0.综上,当m≤2时,f(x)>0.4.3.3三次函数的性质:单调区间和极值一、根底达标1.函数y=f(x)在[a ,b]上() A.极大值一定比极小值大B.极大值一定是最|大值C.最|大值一定是极大值D.最|大值一定大于极小值答案 D解析由函数的最|值与极值的概念可知,y=f(x)在[a,b]上的最|大值一定大于极小值.2.函数y=x e-x ,x∈[0,4]的最|大值是()A.0 B.1e C.4e4 D.2e2答案 B解析y′=e-x-x·e-x=e-x(1-x) ,令y′=0 ,∴x=1 ,∴f(0)=0 ,f(4)=4e4,f(1)=e-1=1e,∴f(1)为最|大值,应选B.3.函数y=ln xx的最|大值为()A.e-1B.e C.e2 D.10 3答案 A解析令y′=(ln x)′x-ln x·x′x2=1-ln xx2=0.(x>0)解得xx>e时,y′<0;当0<x<e时,y′>0.y极大值=f(e)=1e,在定义域(0 ,+∞)内只有一个极值,所以y max=1 e.4.函数y=4xx2+1在定义域内() A.有最|大值2 ,无最|小值B.无最|大值,有最|小值-2 C.有最|大值2 ,最|小值-2 D.无最|值答案 C解析令y′=4(x2+1)-4x·2x(x2+1)2=-4x2+4(x2+1)2=0 ,得xx变化时,y′ ,y随x的变化如下表:x (-∞ ,-1)-1(-1,1)1(1 ,+∞) y′-0+0-y 极小值极大值最|大值2.5.函数f(x)=e x-2x+a有零点,那么a的取值范围是________.答案(-∞ ,2ln 2-2]解析 函数f (x )=e x -2x +a 有零点 ,即方程e x -2x +a =0有实根 ,即函数 g (x )=2x -e x ,y =a 有交点 ,而g ′(x )=2-e x ,易知函数g (x )=2x -e x 在 (-∞ ,ln 2)上递增 ,在(ln 2 ,+∞)上递减 ,因而g (x )=2x -e x 的值域为 (-∞ ,2ln 2-2] ,所以要使函数g (x )=2x -e x ,y =a 有交点 ,只需 a ≤2ln 2-2即可.6.函数y =x +2cos x 在区间⎣⎢⎢⎡⎦⎥⎥⎤0 π2上的最|大值是________. 答案π6+ 3 解析 y ′=1-2sin x =0 ,x =π6 ,比拟0 ,π6 ,π2处的函数值 ,得y max =π6+ 3. 7.函数f (x )=2x 3-6x 2+a 在[-2,2]上有最|小值-37 ,求a 的值及f (x )在 [-2,2]上的最|大值.解 f ′(x )=6x 2-12x =6x (x -2) , 令f ′(x )=0 ,得x =0或x =2 ,当x 变化时 ,f ′(x ) ,f (x )的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) +0 - 0 f (x )-40+a极大值a-8+amin 当x =0时 ,f (x )的最|大值为3. 二、能力提升8.设直线x =t 与函数f (x )=x 2 ,g (x )=ln x 的图象分别交于点M ,N ,那么当|MN |到达最|小时t 的值为( )A .1 B.12 C.52 D.22 答案 D解析 由题意画出函数图象如下图 ,由图可以看出|MN |=y =t 2-ln t (t >0).y′=2t-1t=2t2-1t=2⎝⎛⎭⎪⎫t+22⎝⎛⎭⎪⎫t-22t.当0<t<22时,y′<0 ,可知y在⎝⎛⎭⎪⎫22上单调递减;当t>22时,y′>0 ,可知y在⎝⎛⎭⎪⎫22+∞上单调递增.故当t=22时,|MN|有最|小值.9.(2021·湖北重点中学检测)函数f(x)=x3-tx2+3x,假设对于任意的a∈[1,2] ,b ∈(2,3] ,函数f(x)在区间[a ,b]上单调递减,那么实数t的取值范围是() A.(-∞ ,3] B.(-∞ ,5] C.[3 ,+∞) D.[5 ,+∞)答案 D解析∵f(x)=x3-tx2+3x,∴f′(x)=3x2-2tx+3 ,由于函数f(x)在(a,b)上单调递减,那么有f′(x)≤0在[a ,b]上恒成立,即不等式3x2-2tx+3≤0在[a,b]上恒成立,即有t≥32⎝⎛⎭⎪⎫x+1x在[a,b]上恒成立,而函数y=32⎝⎛⎭⎪⎫x+1x在[1,3]上单调递增,由于a∈[1,2] ,b∈(2,3] ,当b=3时,函数y=32⎝⎛⎭⎪⎫x+1x取得最|大值,即y max=32⎝⎛⎭⎪⎫3+13=5 ,所以t≥5 ,应选D.10.如果函数f(x)=x3-32x2+a在[-1,1]上的最|大值是2 ,那么f(x)在[-1,1]上的最|小值是________.答案-1 2解析f′(x)=3x2-3x ,令f′(x)=0得x=0 ,或x=1.∵f(0)=a ,f(-1)=-52+a ,f(1)=-12+a ,∴f(x)max=a=2.∴f (x )min =-52+a =-12.11.函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ).(1)假设函数f (x )在x =-1和x =3处取得极值 ,试求a ,b 的值; (2)在(1)的条件下 ,当x ∈[-2,6]时 ,f (x )<2|c |恒成立 ,求c 的取值范围. 解 (1)f ′(x )=3x 2-2ax +b ,∵函数f (x )在x =-1和x =3处取得极值 , ∴-1,3是方程3x 2-2ax +b =0的两根. ∴⎩⎪⎨⎪⎧-1+3=23a -1×3=b3,∴⎩⎨⎧a =3b =-9.(2)由(1)知f (x )=x 3-3x 2-9x +c ,f ′(x )=3x 2-6x -9 ,令f ′(x )=0 ,得x =-1或x =3. 当x 变化时 ,f ′(x ) ,f (x )随x 的变化如下表:x (-∞ ,-1)-1 (-1,3) 3 (3 ,+∞) f ′(x ) +0 -0 +f (x )极大值c +5极小值 c -27∴当x ∈[-2,6]时 ,f (x )的最|大值为c +54 , 要使f (x )<2|c |恒成立 ,只要c +54<2|c |即可 , 当c ≥0时 ,c +54<2c ,∴c >54; 当c <0时 ,c +54<-2c ,∴c <-18.∴c ∈(-∞ ,-18)∪(54 ,+∞) ,此即为参数c 的取值范围. 12.函数f (x )=-x 3+3x 2+9x +a . (1)求f (x )的单调递减区间;(2)假设f (x )在区间[-2,2]上的最|大值为20 ,求它在该区间上的最|小值.解(1)∵f′(x)=-3x2+6x+9.令f′(x)<0 ,解得x<-1或x>3 ,∴函数f(x)的单调递减区间为(-∞ ,-1) ,(3 ,+∞).(2)∵f(-2)=8+12-18+a=2+a ,f(2)=-8+12+18+a=22+a ,∴f(2)>f(-2).于是有22+a=20 ,∴a=-2.∴f(x)=-x3+3x2+9x-2.∵在(-1,3)上f′(x)>0 ,∴f(x)在[-1,2]上单调递增.又由于f(x)在[-2 ,-1]上单调递减,∴f(2)和f(-1)分别是f(x)在区间[-2,2]上的最|大值和最|小值,∴f(-1)=1+3-9-2=-7 ,即f(x)最|小值为-7.三、探究与创新13.(2021·新课标Ⅰ)函数f(x)=x2+ax+b,g(x)=e x(cx+d) ,假设曲线y=f(x)和曲线y=g(x)都过点P(0,2) ,且在点P处有相同的切线y=4x+2.(1)求a ,b ,c ,d的值;(2)假设x≥-2时,f(x)≤kg(x) ,求k的取值范围.解(1)由得f(0)=2 ,g(0)=2 ,f′(0)=4 ,g′(0)=4 ,而f′(x)=2x+a ,g′(x)=e x(cx+d+c) ,∴a=4 ,b=2 ,c=2 ,d=2.(2)由(1)知,f(x)=x2+4x+2 ,g(x)=2e x(x+1) ,设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2(x≥-2) ,F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).有题设可得F(0)≥0 ,即k≥1 ,令F′(x)=0得,x1=-ln k ,x2=-2 ,①假设1≤k<e2 ,那么-2<x1≤0 ,∴当x∈(-2 ,x1)时,F′(x)<0 ,当x∈(x1 ,+∞)时,F′(x)>0 ,即F(x)在(-2 ,x1)单调递减,在(x1 ,+∞)单调递增,故F(x)在x=x1取最|小值F(x1) ,而F(x1)=2x1+2-x21-4x1-2=-x1(x1+2)≥0.∴当≥-2时,F(x)≥0 ,即f(x)≤kg(x)恒成立.②假设k=e2 ,那么F′(x)=2e2(x+2)(e x-e2) ,∴当x ≥-2时 ,F ′(x )≥0 ,∴F (x )在(-2 ,+∞)单调递增 ,而F (-2)=0 ,∴当x ≥-2时 ,F (x )≥0 ,即f (x )≤kg (x )恒成立 ,③假设k >e 2 ,那么F (-2)=-2k e -2+2=-2e -2(k -e 2)<0 ,∴当x ≥-2时 ,f (x )≤kg (x )不可能恒成立.综上所述 ,k 的取值范围为[1 ,e 2].4.4 生活中的优化问题举例一、根底达标1.方底无盖水箱的容积为256 ,那么最|省材料时 ,它的高为( )A .4B .6C .4.5D .8 答案 A解析 设底面边长为x ,高为h , 那么V (x )=x 2·h =256 ,∴h =256x 2 ,∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2.令S ′(x )=0 ,解得x =8 ,∴h =25682=4.2.某银行准备新设一种定期存款业务 ,经预算 ,存款量与存款利率的平方成正比 ,比例系数为k (k >0).贷款的利率为0.0486 ,且假设银行吸收的存款能全部放贷出去.设存款利率为x ,x ∈(0,0.0486) ,假设使银行获得最|大收益 ,那么x 的取值为( )A .0.016 2B .0.032 4C .0.024 3D .0.048 6 答案 B。

2019-2020年湘教版数学选修2-2配套课件:4-3-2函数的极大值和极小值

2019-2020年湘教版数学选修2-2配套课件:4-3-2函数的极大值和极小值
这个根处取得极小值;如果左右不改变符号,那么
f(x)在这个根处无极值.
跟踪演练1 求函数f(x)=3x+3ln x的极值. 解 函数f(x)=3x+3ln x的定义域为(0,+∞), f′(x)=-x32+3x=3xx-2 1. 令f′(x)=0,得x=1.
当x变化时,f′(x)与f(x)的变化情况如下表:
当x=2时,f(x)有极小值f(2)=-43.
规律方法 求可导函数f(x)的极值的步骤 (1)确定函数的定义区间,求导数f′(x);
(2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义区间
分成若干个小开区间,并列成表格.检测f′(x)在方 程根左右两侧的值的符号,如果左正右负,那么f(x) 在这个根处取得极大值;如果左负右正,那么f(x)在
x (0,1) 1 (1,+∞)
f′(x) - 0

f(x)
3
因此当x=1时,f(x)有极小值f(1)=3.
要点二 利用函数极值确定参数的值
例2 已知函数f(x)=ax3+bx2+cx(a≠0)在x=±1处 取得极值,且f(1)=-1. (1)求常数a,b,c的值; (2)判断x=±1是函数的极大值点还是极小值点,
高中数学·选修2-2·湘教版
4.3.2 函数的极大值和极小值
[学习目标]
1.了解极大(小)值的概念;结合图象,了解函数在 某点取得极值的必要条件和充分条件;
2.能利用导数求不超过三次的多项式函数的极大值, 极小值.
[知识链接]
在必修1中,我们研究了函数在定义域内的最大值 与最小值问题.但函数在定义域内某一点附近, 也存在着哪一点的函数值大,哪一点的函数值小 的问题,如何利用导数的知识来判断函数在某点

高二数学配套课件4.3.2 函数的极大值和极小值(湘教版选修2-2)

高二数学配套课件4.3.2 函数的极大值和极小值(湘教版选修2-2)

值点, f(c) 为f(x)的一个极大(小)值.极大值,极小值统称
f(c) ,极大值点和极小值点统称为 极值点 .
2 .如果函数 f(x) 在某(x); (2)求f(x)的驻点,即求 f′(x)=0 的根; (3)检查f′(x)在驻点左右的符号,如果在驻点左侧附近为 正(负) ,右侧附近为 负(正) 驻点处取得极大(小)值. ,那么函数y=f(x)在这个
要点阐释
1.函数极值概念的理解 (1)函数f(x)在点x0及其附近有定义是指在点x0及其左、右邻域 都有意义. (2)按定义,极值点xi是区间[a,b]内部的点(如图),不会是端 点a,b.
(3) 若f(x) 在 (a , b) 内有极值,那么 f(x) 在(a, b) 内绝不是单调
函数,即在区间上单调的函数没有极值. (4) 极大值与极小值没有必然的大小关系,即极大值不一定 比极小值大,极小值不一定比极大值小. (5)不可导函数也可能有极值点(例如函数y=|x|,它在点x=0
2
-x
解 (1)函数的定义域为R.
x2 x f′(x)= x ′= e
2
′ex-ex′x2 =2xe-x-x2e-x x 2 e
=x(2-x)e x.

令f′(x)=0,得x=0或x=2. 当x变化时,f′(x),f(x)的变化情况如下表: x f′(x) f(x) (-∞,0) 0 (0,2) - 0 0 + 2 0 4e-2 (2,+∞) -
又y′=3(x+3)(x-3), ∴y′>0⇔x<-3或x>3; y′<0⇔-3<x<3, 故x=-3是函数的极大值点, ∴y极大值=f(-3)=54. 答案 54
函数f(x)=ax3+bx在x=1处有极值-2,则a、b的值分别为__ 4.

湘教版高中数学选修2-2《函数的极大值和极小值》导学案

湘教版高中数学选修2-2《函数的极大值和极小值》导学案

4.3.2 函数的极大值和极小值典例剖析题型一 函数极值的求法例1.已知32()f x x ax bx c =+++在1x =与23x =-时,都取得极值. (1) 求,a b 的值;(2)若3(1)2f -=,求()f x 的单调区间和极值;题型二例2.设函数32()f x x ax bx c =+++的图象如图所示,且与0y =在原点相切,若函数的极小值为4-,(1)求,,a b c 的值;(2)求函数的递减区间.分析;从图上可得0=x 是函数的极大值点,函数的图象经过(0,0)点且图象与x 轴相切于(0,0)点,可先求出,,a b c 的值。

备选题例3:已知函数21)(xx f =+lnx, 求)(x f 的极值.点击双基1、函数y=1+3x-x 3有( )A .极大值1,极小值-1B .极小值-2,极大值2C .极大值3 ,极小值 –2D .极小值-1,极大值32、函数y=3+mx+x 3有极值的充要条件是( )A .m>0B .m<0C . m ≤0D .m ≥03、f '(x)在区间(a,b )的图像如右,则f(x) 区间(a,b )内有极大值点( )A .2个B .3个C .4个D 4、y=x+x4的极大值为 ,极小值为5、若函数()()2f x x x c =-在2x =处有极大值,则常数c 的值为_________.课外作业一.选择题1、函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件2、函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则=a ( )A .2B .3C .4D .53、函数)(x f =-x 3+3x 2-3x+6有( )A .极大值5B .极小值5C .极小值1D .无极值4、函数a x x x f +-=2332)(的极大值为6,那么a 等于( )A .6B .0C .5D .115、下列四个函数,在0=x 处取得极值的函数是( )①3x y = ②12+=x y ③||x y = ④x y 2=A .①②B .②③C .③④D .①③6、函数)(x f =ax 3+3x 2+(a-1)x-5有极值的充要条件是( )A .a=-3或a=4B . -3<a<4C . a>4或a<-3D . a ∈R7、如右图是函数)x (f y =的导数)(x f '的图象,则)(x f 有( )A .唯一极值点x=1B .x=0极大值点,x=2是极小值点C .x=0极小值点,x=2是极大值点D .无极值8、函数)(x f =2sinx-x 则有( )A . x=3π是极小值点, B .x=6π是极小值点 C .x=3π是极大值点, D . x=6π是极大值点 二.填空题9、函数()323922y x x x x =---<<的极大值为 .10、函数)(x f =-x-x2的极大值为 . 11、函数y =31x 3-4x +31的极小值为 .三.解答题12、求函数44313+-=x x y 的极值. 13、求函数的极值:y =2 e x +e x -.14、求函数y =x 4-8 x 2 +2的极值.思悟小结1.可导函数f (x )在极值点的导数为0,但是导数为0的点不一定是极值点.如果f (x )在x 0处连续,在x 0两侧的导数异号,那么点x 0是函数f (x )的极值点.2.求可导函数f (x )的极值的步骤如下:(1)求f (x )的定义域,求f '(x );(2)由f '(x )=0,求其稳定点;(3)检查f '(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取极大值;如果左负右正,那么f (x )在这个根处取极小值;如果左右同号,那么f (x )在这个根处不取极值.。

数学新同步湘教版选修2-2讲义+精练:第4章 4.3.2 函数的极大值和极小值 Word版含解析

数学新同步湘教版选修2-2讲义+精练:第4章 4.3.2 函数的极大值和极小值 Word版含解析

4.3.2函数的极大值和极小值[读教材·填要点]1.极值与极值点(1)极大值点与极大值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都小于f(x0)(即f(x)<f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极大值,x0称为f(x)的一个极大值点.(2)极小值点与极小值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都大于f(x0)(即f(x)>f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极小值,x0称为f(x)的一个极小值点.极大值和极小值统称极值,极大值点和极小值点统称为极值点.2.极大值与极小值的判断(1)如果f(x)在(a,x0]上递增,在[x0,b)上递减,则f(x)在x=x0处取到极大值;(2)如果f(x)在(a,x0]上递减,在[x0,b)上递增,则f(x)在x=x0处取到极小值.3.极值的求法(1)求导数f′(x);(2)求f(x)的驻点,即求f′(x)=0的根;(3)检查f′(x)在驻点左右的符号,得到极大值或极小值.[小问题·大思维]1.导数为0的点都是极值点吗?提示:不一定.y=f(x)在x=x0及附近有定义,且f′(x0)=0,y=f(x)是否在x=x0处取得极值,还要看f′(x)在x0两侧的符号是否异号.例如f(x)=x3,由f′(x)=3x2知f′(0)=0,但x=0不是f(x)=x3的极值点.2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有几个极小值点?提示:由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以函数f(x)在开区间(a,b)内只有一个极小值点,极小值点为x=x2.3.函数y=f(x)在给定区间上一定有极值点吗?极大值是否一定比极小值大?提示:(1)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能即有极大值,又有极小值.(2)极大值不一定比极小值大,极小值也不一定比极大值小.求下列函数的极值:(1)f (x )=x 4-2x 2;(2)f (x )=x 2e -x .[自主解答] (1)函数f (x )的定义域为R. f ′(x )=4x 3-4x =4x (x +1)(x -1). 令f ′(x )=0,得x =0或x =-1或x =1. 列表:当x =0时,函数有极大值,且f (0)=0; 当x =-1或x =1时,函数有极小值, 且f (-1)=f (1)=-1. (2)函数的定义域为R.f ′(x )=⎝⎛⎭⎫x 2e x ′=(x 2)′e x -(e x )′x 2(e x )2=2x e -x -x 2e -x =x (2-x )e -x =-e -x x (x -2).令f ′(x )=0,得x =0或x =2. 列表:当x =2时,函数有极大值,且f (2)=4e 2.求可导函数f (x )极值的步骤 (1)求函数的导数f ′(x );(2)令f ′(x )=0,求出全部的根x 0;(3)列表,方程的根x 0将整个定义域分成若干个区间,把x ,f ′(x ),f (x )在每个区间内的变化情况列在这个表格内;(4)判断得结论,若导数在x 0附近左正右负,则在x 0处取得极大值;若左负右正,则取得极小值.要注意函数的定义域.1.求函数f (x )=2xx 2+1-2的极值. 解:函数f (x )的定义域为R.f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-1时,函数有极小值,且f (x )极小值=-3; 当x =1时,函数有极大值,且f (x )极大值=-1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0.求a ,b 的值.[自主解答] ∵f (x )在x =-1时有极值0且 f ′(x )=3x 2+6ax +b .∴⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0, 解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数.所以f (x )在x =-1时取得极小值,因此a =2,b =9.若将“在x =-1时有极值0”改为“在x =-1和x =3处有极值”,如何求解? 解:f ′(x )=3x 2+6ax +b , ∵-1,3是f (x )的极值点, ∴-1,3是f ′(x )=0的两个根. 即-1,3是3x 2+6ax +b =0的两根.由根与系数的关系知⎩⎨⎧-6a3=-1+3,b3=(-1)×3,解得a =-1,b =-9.解决此类问题通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.2.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极小值还是极大值,并说明理由. 解:(1)f ′(x )=3ax 2+2bx +c ,由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)由(1)可得f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上为减函数. ∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点. [自主解答] (1)f ′(x )=3x 2-2x -1=(x -1)(3x +1). 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )变化情况如下表:所以f (x )的极大值是f ⎝⎭⎫-13=527+a ,极小值是f (1)=a -1. (2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1.由此可知x 取足够大的正数时有f (x )>0,x 取足够小的负数时有f (x )<0, 所以曲线y =f (x )与x 轴至少有一个交点. 结合f (x )的单调性可知, 当f (x )的极大值527+a <0,即a ∈⎝⎛⎭⎫-∞,-527时它的极小值也小于0, 因此曲线y =f (x )与x 轴仅有一个交点,它在(1,+∞)上; 当f (x )的极小值a -1>0,即a ∈(1,+∞)时它的极大值也大于0, 因此曲线y =f (x )与x 轴仅有一个交点,它在⎝⎛⎭⎫-∞,-13上. 所以当a ∈⎝⎛⎭⎫-∞,-527∪(1,+∞)时, 曲线y =f (x )与x 轴仅有一个交点.在本例(2)中,若将“曲线y =f (x )与x 轴仅有一个交点”改为“曲线y =f (x )与x 轴有三个交点”呢?解:由于曲线y =f (x )与x 轴有三个交点, ∴f (x )极大值>0且f (x )极小值<0. 即⎩⎪⎨⎪⎧527+a >0,a -1<0,解得-527<a <1.即a 的取值范围为⎝⎛⎭⎫-527,1.利用导数求极值,要先讨论函数的单调性,涉及参数时,必须对参数的取值情况进行讨论,在存在极值的情况下,求出极值.3.已知函数f (x )=x 3-3ax +b (a ≠0),求函数f (x )的单调区间与极值点. 解:f ′(x )=3(x 2-a )(a ≠0), 当a <0时,f ′(x )>0恒成立, 即函数在(-∞,+∞)上单调递增, 此时函数没有极值点.当a >0时,令f ′(x )=0,得x 1=a ,x 2=-a , 当x 变化时,f ′(x )与f (x )的变化如下表:a ),此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点.a 为何值时,方程x 3-3x 2-a =0恰有一个实根、两个不等实根、三个不等实根,有没有可能无实根?[巧思] 方程x 3-3x 2-a =0根的个数,即为直线y =a 和函数f (x )=x 3-3x 2图象交点的个数,因此可借助函数的单调性和极值画出函数f (x )=x 3-3x 2的图象,然后借助图象判断根的个数.[妙解] 令f (x )=x 3-3x 2,则f (x )的定义域为R , 由f ′(x )=3x 2-6x =0,得x =0或x =2. 所以当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.函数f (x )在x =0处有极大值0,在x =2处有极小值-4,如图所示,故当a >0或a <-4时,原方程有一个根; 当a =0或a =-4时,原方程有两个不等实根; 当-4<a <0时,原方程有三个不等实根; 由图象可知,原方程不可能无实根.1.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0, 即3×(-3)2+2×(-3)a +3=0,解得a =5. 答案:D2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.答案:D3.若a >0,b >0,且函数ƒ(x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:函数的导数为ƒ′(x )=12x 2-2ax -2b ,由函数ƒ(x )在x =1处有极值, 可知函数ƒ(x )在x =1处的导数值为零, 即12-2a -2b =0,所以a +b =6.由题意知a ,b 都是正实数,所以ab ≤⎝⎛⎭⎫a +b 22=⎝⎛⎭⎫622=9,当且仅当a =b =3时取到等号. 答案:D4.若函数f (x )=-x 3+6x 2+m 的极大值为13,则实数m 等于______. 解析:f ′(x )=-3x 2+12x =-3x (x -4).由f ′(x )=0,得x =0或x =4. 当x ∈(-∞,0)∪(4,+∞)时,f ′(x )<0;x ∈(0,4)时,f ′(x )>0, ∴x =4时f (x )取到极大值.故-64+96+m =13,解得m =-19. 答案:-195.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为__________.解析:由题意,f ′(x )=3x 2+2x -a ,则f ′(-1)f ′(1)<0,即(1-a )(5-a )<0,解得1<a <5,另外,当a =1时,函数f (x )=x 3+x 2-x -4在区间(-1,1)上恰有一个极值点, 当a =5时,函数f (x )=x 3+x 2-5x -4在区间(-1,1)没有极值点. 故实数a 的范围为[1,5). 答案:[1,5)6.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y = 4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).一、选择题1.当函数y =x ·2x 取极小值时,x =( )A.1ln 2 B .-1ln 2C .-ln 2D .ln 2解析:令y ′=2x +x ·2x ln 2=0,∴x =-1ln 2. 答案:B2.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值解析:由导函数的图象可知:x ∈(-∞,0)∪(2,4)时,f ′(x )>0,即x ∈(0,2)∪(4,+∞)时,f ′(x )<0,因此f (x )在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以x =0取得极大值,x =2取得极小值,x =4取得极大值,因此选C.答案:C3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .2或-23解析:由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧ 3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧ a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9, 经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.答案:A4.设函数f (x )=e x sin x ,x ∈[0,π],则( ) A .x =π2为f (x )的极小值点B .x =π2为f (x )的极大值点C .x =3π4为f (x )的极小值点D .x =3π4为f (x )的极大值点解析:∵f (x )=e x sin x ,∴f ′(x )=e x (sin x +cos x ) =2e x sin ⎝⎛⎭⎫x +π4, 由f ′(x )≤0,得sin ⎝⎛⎭⎫x +π4≤0, ∴2k π+π≤x +π4≤2k π+2π(k ∈Z),即2k π+3π4≤x ≤2k π+7π4(k ∈Z),∵x ∈[0,π],∴f (x )在⎣⎡⎦⎤0,3π4上单调递增,f (x )在⎣⎡⎦⎤3π4,π上单调递减, ∴x =3π4为f (x )的极大值点.答案:D 二、填空题5.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.解析:∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a ×1+3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:46.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为________. 解析:y ′=e x +a ,由y ′=0,得x =ln(-a ), 由题意知ln(-a )>0,∴a <-1. 答案:(-∞,-1)7.函数f (x )=ax 2+bx 在x =1a 处有极值,则b 的值为________. 解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a 处有极值,∴f ′⎝⎛⎭⎫1a =2a ·1a +b =0,即b =-2. 答案:-28.若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是________. 解析:f ′(x )=3x 2-6b ,若f (x )在(0,1)内有极小值, 只需f ′(0)·f ′(1)<0,即-6b ·(3-6b )<0,解得0<b <12. 答案:⎝⎛⎭⎫0,12 三、解答题9.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点. (1)求a 和b 的值;(2)讨论f (x )的单调性.解:(1)f ′(x )=e x -1(2x +x 2)+3ax 2+2bx =x e x -1(x +2)+x (3ax +2b ), 因为x =-2和x =1是f (x )的极值点,所以f ′(-2)=f ′(1)=0,即⎩⎪⎨⎪⎧ -6a +2b =0,3+3a +2b =0,解方程组得⎩⎪⎨⎪⎧ a =-13,b =-1.(2)因为a =-13,b =-1, 所以f ′(x )=x (x +2)(e x -1-1). 令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0;当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0,所以f (x )在(-2,0),(1,+∞)上单调递增;在(-∞,-2),(0,1)上单调递减.10.设函数f (x )=a 3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4. (1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式;(2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.解:由f (x )=a 3x 3+bx 2+cx +d , 得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =ax 2+2bx +c -9x =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧ a +2b +c -9=0,16a +8b +c -36=0.(*) (1)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0. 解得b =-3,c =12.又因为曲线y =f (x )过原点,所以d =0,故f (x )=x 3-3x 2+12x .(2)由于a >0,所以“f (x )=a 3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点 ”等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”. 由(*)式得2b =9-5a ,c =4a .又Δ=(2b )2-4ac =9(a -1)(a -9).解⎩⎪⎨⎪⎧a >0,Δ=9(a -1)(a -9)≤0得a ∈[1,9]. 即a 的取值范围是[1,9].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.2函数的极大值和极小值[读教材·填要点]1.极值与极值点(1)极大值点与极大值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都小于f(x0)(即f(x)<f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极大值,x0称为f(x)的一个极大值点.(2)极小值点与极小值:设函数y=f(x)在区间(a,b)内有定义,x0是(a,b)内的一个点,若点x0附近的函数值都大于f(x0)(即f(x)>f(x0),x∈(a,b)),就说f(x0)是函数y=f(x)的一个极小值,x0称为f(x)的一个极小值点.极大值和极小值统称极值,极大值点和极小值点统称为极值点.2.极大值与极小值的判断(1)如果f(x)在(a,x0]上递增,在[x0,b)上递减,则f(x)在x=x0处取到极大值;(2)如果f(x)在(a,x0]上递减,在[x0,b)上递增,则f(x)在x=x0处取到极小值.3.极值的求法(1)求导数f′(x);(2)求f(x)的驻点,即求f′(x)=0的根;(3)检查f′(x)在驻点左右的符号,得到极大值或极小值.[小问题·大思维]1.导数为0的点都是极值点吗?提示:不一定.y=f(x)在x=x0及附近有定义,且f′(x0)=0,y=f(x)是否在x=x0处取得极值,还要看f′(x)在x0两侧的符号是否异号.例如f(x)=x3,由f′(x)=3x2知f′(0)=0,但x=0不是f(x)=x3的极值点.2.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有几个极小值点?提示:由图可知,在区间(a,x1),(x2,0),(0,x3)内f′(x)>0;在区间(x1,x2),(x3,b)内f′(x)<0.即f(x)在(a,x1)内单调递增,在(x1,x2)内单调递减,在(x2,x3)内单调递增,在(x3,b)内单调递减.所以函数f(x)在开区间(a,b)内只有一个极小值点,极小值点为x=x2.3.函数y=f(x)在给定区间上一定有极值点吗?极大值是否一定比极小值大?提示:(1)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能即有极大值,又有极小值.(2)极大值不一定比极小值大,极小值也不一定比极大值小.求下列函数的极值:(1)f (x )=x 4-2x 2;(2)f (x )=x 2e -x .[自主解答] (1)函数f (x )的定义域为R. f ′(x )=4x 3-4x =4x (x +1)(x -1). 令f ′(x )=0,得x =0或x =-1或x =1. 列表:当x =0时,函数有极大值,且f (0)=0; 当x =-1或x =1时,函数有极小值, 且f (-1)=f (1)=-1. (2)函数的定义域为R.f ′(x )=⎝⎛⎭⎫x 2e x ′=(x 2)′e x -(e x )′x 2(e x )2=2x e -x -x 2e -x =x (2-x )e -x =-e -x x (x -2).令f ′(x )=0,得x =0或x =2. 列表:当x =2时,函数有极大值,且f (2)=4e 2.求可导函数f (x )极值的步骤 (1)求函数的导数f ′(x );(2)令f ′(x )=0,求出全部的根x 0;(3)列表,方程的根x 0将整个定义域分成若干个区间,把x ,f ′(x ),f (x )在每个区间内的变化情况列在这个表格内;(4)判断得结论,若导数在x 0附近左正右负,则在x 0处取得极大值;若左负右正,则取得极小值.要注意函数的定义域.1.求函数f (x )=2xx 2+1-2的极值. 解:函数f (x )的定义域为R.f ′(x )=2(x 2+1)-4x 2(x 2+1)2=-2(x -1)(x +1)(x 2+1)2. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =-1时,函数有极小值,且f (x )极小值=-3; 当x =1时,函数有极大值,且f (x )极大值=-1.已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0.求a ,b 的值.[自主解答] ∵f (x )在x =-1时有极值0且 f ′(x )=3x 2+6ax +b .∴⎩⎪⎨⎪⎧ f ′(-1)=0,f (-1)=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0, 解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0, 所以f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数.所以f (x )在x =-1时取得极小值,因此a =2,b =9.若将“在x =-1时有极值0”改为“在x =-1和x =3处有极值”,如何求解? 解:f ′(x )=3x 2+6ax +b , ∵-1,3是f (x )的极值点, ∴-1,3是f ′(x )=0的两个根. 即-1,3是3x 2+6ax +b =0的两根.由根与系数的关系知⎩⎨⎧-6a3=-1+3,b3=(-1)×3,解得a =-1,b =-9.解决此类问题通常是利用函数的导数在极值点处的取值等于零来建立关于参数的方程,从而求出参数的值.需注意的是,可导函数在某点处的导数值等于零只是函数在该点处取得极值的必要条件,所以必须对求出的参数值进行检验,看是否符合函数取得极值的条件.2.已知f (x )=ax 3+bx 2+cx (a ≠0)在x =±1时取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极小值还是极大值,并说明理由. 解:(1)f ′(x )=3ax 2+2bx +c ,由f ′(-1)=f ′(1)=0,得3a +2b +c =0,3a -2b +c =0. 又f (1)=-1,∴a +b +c =-1. ∴a =12,b =0,c =-32.(2)由(1)可得f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1).当x <-1或x >1时,f ′(x )>0;当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上为减函数. ∴当x =-1时,函数取得极大值f (-1)=1;当x =1时,函数取得极小值f (1)=-1.设a 为实数,函数f (x )=x 3-x 2-x +a .(1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点. [自主解答] (1)f ′(x )=3x 2-2x -1=(x -1)(3x +1). 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )变化情况如下表:所以f (x )的极大值是f ⎝⎭⎫-13=527+a ,极小值是f (1)=a -1. (2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1.由此可知x 取足够大的正数时有f (x )>0,x 取足够小的负数时有f (x )<0, 所以曲线y =f (x )与x 轴至少有一个交点. 结合f (x )的单调性可知, 当f (x )的极大值527+a <0,即a ∈⎝⎛⎭⎫-∞,-527时它的极小值也小于0, 因此曲线y =f (x )与x 轴仅有一个交点,它在(1,+∞)上; 当f (x )的极小值a -1>0,即a ∈(1,+∞)时它的极大值也大于0, 因此曲线y =f (x )与x 轴仅有一个交点,它在⎝⎛⎭⎫-∞,-13上. 所以当a ∈⎝⎛⎭⎫-∞,-527∪(1,+∞)时, 曲线y =f (x )与x 轴仅有一个交点.在本例(2)中,若将“曲线y =f (x )与x 轴仅有一个交点”改为“曲线y =f (x )与x 轴有三个交点”呢?解:由于曲线y =f (x )与x 轴有三个交点, ∴f (x )极大值>0且f (x )极小值<0. 即⎩⎪⎨⎪⎧527+a >0,a -1<0,解得-527<a <1.即a 的取值范围为⎝⎛⎭⎫-527,1.利用导数求极值,要先讨论函数的单调性,涉及参数时,必须对参数的取值情况进行讨论,在存在极值的情况下,求出极值.3.已知函数f (x )=x 3-3ax +b (a ≠0),求函数f (x )的单调区间与极值点. 解:f ′(x )=3(x 2-a )(a ≠0), 当a <0时,f ′(x )>0恒成立, 即函数在(-∞,+∞)上单调递增, 此时函数没有极值点.当a >0时,令f ′(x )=0,得x 1=a ,x 2=-a , 当x 变化时,f ′(x )与f (x )的变化如下表:a ),此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点.a 为何值时,方程x 3-3x 2-a =0恰有一个实根、两个不等实根、三个不等实根,有没有可能无实根?[巧思] 方程x 3-3x 2-a =0根的个数,即为直线y =a 和函数f (x )=x 3-3x 2图象交点的个数,因此可借助函数的单调性和极值画出函数f (x )=x 3-3x 2的图象,然后借助图象判断根的个数.[妙解] 令f (x )=x 3-3x 2,则f (x )的定义域为R , 由f ′(x )=3x 2-6x =0,得x =0或x =2. 所以当x <0或x >2时,f ′(x )>0; 当0<x <2时,f ′(x )<0.函数f (x )在x =0处有极大值0,在x =2处有极小值-4,如图所示,故当a >0或a <-4时,原方程有一个根; 当a =0或a =-4时,原方程有两个不等实根; 当-4<a <0时,原方程有三个不等实根; 由图象可知,原方程不可能无实根.1.若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4D .5解析:f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0, 即3×(-3)2+2×(-3)a +3=0,解得a =5. 答案:D2.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.答案:D3.若a >0,b >0,且函数ƒ(x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9解析:函数的导数为ƒ′(x )=12x 2-2ax -2b ,由函数ƒ(x )在x =1处有极值, 可知函数ƒ(x )在x =1处的导数值为零, 即12-2a -2b =0,所以a +b =6.由题意知a ,b 都是正实数,所以ab ≤⎝⎛⎭⎫a +b 22=⎝⎛⎭⎫622=9,当且仅当a =b =3时取到等号. 答案:D4.若函数f (x )=-x 3+6x 2+m 的极大值为13,则实数m 等于______. 解析:f ′(x )=-3x 2+12x =-3x (x -4).由f ′(x )=0,得x =0或x =4. 当x ∈(-∞,0)∪(4,+∞)时,f ′(x )<0;x ∈(0,4)时,f ′(x )>0, ∴x =4时f (x )取到极大值.故-64+96+m =13,解得m =-19. 答案:-195.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)上恰有一个极值点,则实数a 的取值范围为__________.解析:由题意,f ′(x )=3x 2+2x -a ,则f ′(-1)f ′(1)<0,即(1-a )(5-a )<0,解得1<a <5,另外,当a =1时,函数f (x )=x 3+x 2-x -4在区间(-1,1)上恰有一个极值点, 当a =5时,函数f (x )=x 3+x 2-5x -4在区间(-1,1)没有极值点. 故实数a 的范围为[1,5). 答案:[1,5)6.已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y = 4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4,故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)⎝⎛⎭⎫e x -12. 令f ′(x )=0,得x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0. 故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减. 当x =-2时,函数f (x )取得极大值, 极大值为f (-2)=4(1-e -2).一、选择题1.当函数y =x ·2x 取极小值时,x =( )A.1ln 2 B .-1ln 2C .-ln 2D .ln 2解析:令y ′=2x +x ·2x ln 2=0,∴x =-1ln 2. 答案:B2.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x )( )A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值解析:由导函数的图象可知:x ∈(-∞,0)∪(2,4)时,f ′(x )>0,即x ∈(0,2)∪(4,+∞)时,f ′(x )<0,因此f (x )在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以x =0取得极大值,x =2取得极小值,x =4取得极大值,因此选C.答案:C3.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab 的值为( )A .-23B .-2C .-2或-23D .2或-23解析:由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧ 3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧ a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9, 经检验⎩⎪⎨⎪⎧a =-6,b =9满足题意,故a b =-23.答案:A4.设函数f (x )=e x sin x ,x ∈[0,π],则( ) A .x =π2为f (x )的极小值点B .x =π2为f (x )的极大值点C .x =3π4为f (x )的极小值点D .x =3π4为f (x )的极大值点解析:∵f (x )=e x sin x ,∴f ′(x )=e x (sin x +cos x ) =2e x sin ⎝⎛⎭⎫x +π4, 由f ′(x )≤0,得sin ⎝⎛⎭⎫x +π4≤0, ∴2k π+π≤x +π4≤2k π+2π(k ∈Z),即2k π+3π4≤x ≤2k π+7π4(k ∈Z),∵x ∈[0,π],∴f (x )在⎣⎡⎦⎤0,3π4上单调递增,f (x )在⎣⎡⎦⎤3π4,π上单调递减, ∴x =3π4为f (x )的极大值点.答案:D 二、填空题5.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.解析:∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a ×1+3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:46.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为________. 解析:y ′=e x +a ,由y ′=0,得x =ln(-a ), 由题意知ln(-a )>0,∴a <-1. 答案:(-∞,-1)7.函数f (x )=ax 2+bx 在x =1a 处有极值,则b 的值为________. 解析:f ′(x )=2ax +b ,∵函数f (x )在x =1a 处有极值,∴f ′⎝⎛⎭⎫1a =2a ·1a +b =0,即b =-2. 答案:-28.若函数f (x )=x 3-6bx +3b 在(0,1)内有极小值,则实数b 的取值范围是________. 解析:f ′(x )=3x 2-6b ,若f (x )在(0,1)内有极小值, 只需f ′(0)·f ′(1)<0,即-6b ·(3-6b )<0,解得0<b <12. 答案:⎝⎛⎭⎫0,12 三、解答题9.设函数f (x )=x 2e x -1+ax 3+bx 2,已知x =-2和x =1为f (x )的极值点. (1)求a 和b 的值;(2)讨论f (x )的单调性.解:(1)f ′(x )=e x -1(2x +x 2)+3ax 2+2bx =x e x -1(x +2)+x (3ax +2b ), 因为x =-2和x =1是f (x )的极值点,所以f ′(-2)=f ′(1)=0,即⎩⎪⎨⎪⎧ -6a +2b =0,3+3a +2b =0,解方程组得⎩⎪⎨⎪⎧ a =-13,b =-1.(2)因为a =-13,b =-1, 所以f ′(x )=x (x +2)(e x -1-1). 令f ′(x )=0,解得x 1=-2,x 2=0,x 3=1.因为当x ∈(-∞,-2)∪(0,1)时,f ′(x )<0;当x ∈(-2,0)∪(1,+∞)时,f ′(x )>0,所以f (x )在(-2,0),(1,+∞)上单调递增;在(-∞,-2),(0,1)上单调递减.10.设函数f (x )=a 3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4. (1)当a =3且曲线y =f (x )过原点时,求f (x )的解析式;(2)若f (x )在(-∞,+∞)内无极值点,求a 的取值范围.解:由f (x )=a 3x 3+bx 2+cx +d , 得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =ax 2+2bx +c -9x =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧ a +2b +c -9=0,16a +8b +c -36=0.(*) (1)当a =3时,由(*)式得⎩⎪⎨⎪⎧2b +c -6=0,8b +c +12=0. 解得b =-3,c =12.又因为曲线y =f (x )过原点,所以d =0,故f (x )=x 3-3x 2+12x .(2)由于a >0,所以“f (x )=a 3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点 ”等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”. 由(*)式得2b =9-5a ,c =4a .又Δ=(2b )2-4ac =9(a -1)(a -9).解⎩⎪⎨⎪⎧a >0,Δ=9(a -1)(a -9)≤0得a ∈[1,9]. 即a 的取值范围是[1,9].。

相关文档
最新文档