2018-2019学年山西省运城市高一下学期期中调研测试数学试题
山西省运城市2023-2024学年高三上学期11月期中调研数学试题含解析

运城市2023–2024学年高三第一学期期中调研测试数学试题(答案在最后)2023.11本试题满分150分,考试时间120分钟.答案一律写在答题卡上.注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.答题时使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的虚部为()A. B. C. D.【答案】C【解析】【分析】根据的性质、复数的除法运算可得答案.【详解】,所以的虚部为.故选:C.2.若集合,,则()A. B. C. D.【答案】C【解析】【分析】先求出集合,进而根据交集的定义求解即可.【详解】因为,,所以.故选:C.3.已知平面向量,满足,,则在方向上的投影向量为()A. B. C. D.【答案】A【解析】【分析】根据投影向量的定义,结合向量夹角的运算,求解即可.【详解】依题意,在方向上的投影向量为:,又因为,,代入上式,所以在方向上的投影向量为:.故选:A.4.已知一个正四棱台的上下底面边长为、,侧棱长为,则棱台的体积为()A. B. C. D.【答案】D【解析】【分析】根据正四棱台的概念可知四边形为等腰梯形,进而可得四棱台的高,即可求得体积.【详解】如图所示,由正四棱台可知,四边形为等腰梯形,且,,,所以,所以,故选:D.5.已知,若,则()A. B. C. D.【答案】B【解析】【分析】利用诱导公式和二倍角公式即可解题.【详解】,若,则,所以,又因为,则,所以.故选:B.6.若函数在处取得极小值,则实数的取值范围是()A. B. C. D.【答案】C【解析】【分析】依题意,求出导函数,可求得极值点分别为或,再分类讨论,确定原函数的单调区间,结合极小值的定义,从而可得实数的取值范围.【详解】因为,则函数的定义域为,则,令,解得:或,当时,即,令,解得:,令,解得:,此时函数在处取得极大值,不符合题意,舍去;当时,即,则恒成立,此时函数单调递增,没有极值,不符合题意,舍去;当时,即,令,解得:,令,解得:,此时函数在处取得极小值,符合题意.故选:C.7.古印度数学家婆什伽罗在《丽拉沃蒂》一书中提出如下问题:某人给一个人布施,初日施2子安贝(古印度货币单位),以后逐日倍增,问一月共施几何?在这个问题中,以一个月天计算,记此人第日布施了子安贝(其中,),数列的前项和为.若关于的不等式恒成立,则实数的取值范围为()A. B. C. D.【答案】D【解析】【分析】由等比数列的定义写出通项公式和前n项和,将问题化为恒成立,应用基本不等式求右侧最小值,注意取值条件,即可得参数范围.【详解】由题设,是首项、公比都为2的等比数列,故,,所以,即,,,所以恒成立,而,当且仅当时等号成立,又,当,时;当,时;综上,即实数的取值范围为.故选:D8.定义在上的函数满足,,若,则()A. B. C. D.【答案】D【解析】【分析】由已知可得函数为奇函数、周期函数,计算出、、,再利用周期性可得答案.【详解】因为,,所以,即,所以的周期为,且,可得,再由可得,,,,又,所以,所以为奇函数,所以,因为,所以,,,所以.故选:D.【点睛】关键点点睛:解题的关键点是由已知得出函数为奇函数、周期函数.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知向量,,则()A.若,则B.若,则C.若与夹角为锐角,则且D.【答案】ACD【解析】【分析】对于A,根据两向量垂直时,数量积为零判断即可;对于B,根据两向量平行时,由判断即可;对于C,根据两向量夹角为锐角时,其数量积大于零判断即可;对于D,根据向量模的坐标运算求解即可.【详解】对于A,若,则,解得,故A正确;对于B,若,则,解得或,故B错误;对于C,若与夹角为锐角,则,即,且,解得且,故C正确;对于D,因为,故D正确.故选:ACD10.已知,,且,则()A B.C. D.【答案】BC【解析】【分析】由可得,进而利用消元法结合不等式的性质判断A;根据基本不等式中“1”的整体代换即可判断B;利用基本不等式结合对数运算、对数函数的性质即可判断C;利用消元法结合二次函数的性质即可判断D.【详解】对于A,由,得,即,则,故A错误;对于B,,当且仅当,即,时,等号成立,故B正确;对于C,由,即,当且仅当,即,时等号成立,所以,故C正确;对于D,,由A知,,所以当时,取得最小值,即,故D错误.故选:BC.11.已知数列满足,,则下列结论正确的是()A. B.为等比数列C. D.【答案】AD【解析】【分析】利用递推公式求出可判断A;由可判断B;由,利用等比数列的求和公式可判断C;由递推公式可得,再由由累加法可判断D.【详解】对于A,因为,,则,,则,,则,故A正确;对于B,,所以,,所以,,故不是等比数列,故B错误;对于C,,故C错误;对于D,由可得,由,两式相减可得:,所以,,,……,,上式相加可得:,,又因为,所以,故D正确.故选:AD.12.如图,棱长为的正方体中,点,分别是棱,的中点,则()A.直线平面B.C.过,,三点的平面截正方体的截面面积为D.三棱锥的外接球半径为【答案】ABD【解析】【分析】对于A,根据,利用线面平行的判定定理即可证明;对于B,通过平面,得到,同理得到,进而可得平面,再根据锥体得体积公式即可判断;对于C,首先得到截面图象,求出面积即可;对于D,由B选项可知,平面,且过外接圆的圆心,则三棱锥的外接球的球心在上,设球心为点,以点为原点建立空间直角坐标系,求出圆心坐标,即可得出半径.【详解】对于A,如下图,连接,因为点,分别是棱,的中点,则,又,所以,又平面,平面,所以平面,故A正确;对于B,如下图:连接交平面于点,连接,正方体中易知,平面,平面,则,又正方形中,平面,所以平面,又平面,所以,同理可证:,又平面,所以平面,易得,故四面体为正四面体,为的重心,又棱长1,所以,则则,故B正确;对于C,如图所示,由A选项可知等腰梯形即为所求截面,又,则高为,所以,故C错误;对于D,由B选项可知,平面,且过外接圆的圆心,则三棱锥的外接球的球心在上,设球心为点,如图,以点为原点建立空间直角坐标系,则,设,则,所以,由,得,解得,所以三棱锥的外接球半径为,故D正确.故选:ABD.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可;④坐标法:建立空间直角坐标系,设出外接球球心的坐标,根据球心到各顶点的距离相等建立方程组,求出球心坐标,利用空间中两点间的距离公式可求得球的半径.三、填空题:本题共4小题,每小题5分,共20分.13.等差数列的前项和为,若,则______.【答案】【解析】【分析】利用等差中项的性质,以及等差数列的前项和公式,计算即可.【详解】由等差中项的性质得:,所以,所以.故答案为:.14.已知复数满足,则的最小值为______.【答案】【解析】【分析】根据题意,由条件可得复数表示以为圆心,1为半径的圆,然后再结合其几何意义即可得到结果.【详解】设,∵,∴,表示以为圆心,1为半径的圆,∴,表示圆上的点到点的距离,∴的最小值为.故答案为:.15.已知函数,若在区间内没有最值,则的取值范围是______.【答案】【解析】【分析】利用辅助角公式化简函数,由函数在上单调列式求解作答.【详解】因为,函数的单调区间为,由,而,得,因此函数在区间上单调,因为函数在区间内没有最值,则函数在区间内单调,于是,则,解得,由,且,解得,又,从而或,当时,得,又,即有,当时,得,所以的取值范围是.故答案为:.16.已知函数有三个不同的零点,则实数的范围为______.【答案】【解析】【分析】利用导数的几何意义、函数零点的定义分析运算即可得解.【详解】解:由题意,,,当时,只有一个零点,不符合题意,故.∵,且当时有且只有一个零点,∴函数有三个不同的零点等价于函数有两个不同的零点,即与有两个不同的交点.如上图,当与相切时,设切点为,则由解得:,则.如上图,由与有两个不同的交点知,解得:,∴实数的范围为.故答案为:.【点睛】方法点睛:利用函数零点求参数范围的方法:1.利用零点的个数结合函数的单调性构建不等式求解.2.转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.3.分离参数()后,将原问题转化为的值域(最值)问题或转化为直线与的交点个数问题(优选分离、次选分类)求解.四、解答题:本题共6小题,共70分,17题10分,18-22各12分.解答应写出文字说明、证明过程或演算步骤.17.已知函数的图象关于直线对称.(1)求证:函数为奇函数.(2)将的图象向左平移个单位,再将横坐标伸长为原来的倍,得到的图象,求的单调递增区间.【答案】(1)证明见解析(2)【解析】【分析】(1)利用函数图象关于对称,求,进而得到函数解析式,从而证明;(2)由函数图象的变换规律,得到的解析式,即可求出单调增区间.【小问1详解】因为的图象关于直线对称,所以,得,,因为,所以当时,,所以,所以,因为,所以为奇函数成立.【小问2详解】由(1)可得:,将的图象向左平移个单位,再将横坐标伸长为原来的倍,则由可得,,故函数的单调递增区间是18.已知递增的等差数列满足,且是与的等比中项.(1)求数列的通项公式;(2)记,证明数列的前项和.【答案】18.19.证明见解析【解析】【分析】(1)利用等差数列的通项公式和等比数列的等比中项求解,得到数列的通项公式.(2)利用错位相减,计算数列的前项和,根据判断大小.小问1详解】设等差数列的公差为,由题可知,因为,所以,又是与的等比中项,所以,即,得或(舍去),所以.【小问2详解】由(1)知:所以数列的前项和①①得:②两式相减得:,化简得:.因为,所以,所以.19.在中,,,分别为角,,所对的边,为的面积,且.(I)求角的大小;(II)若,,为的中点,且,求的值.【答案】(I);(II).【解析】【分析】(I)利用正余弦定理及面积公式,代入对应公式得,解得,(II)为的中点,利用向量,再根据余弦定理得,解得,,最后根据正弦定理可得解.【详解】(I)由已知得,∴.即.∴.又∵,,(II)由得:,又∵为的中点,∴,,∴,即又∵,∴.又∵,∴,,∴.20.如图①,在等腰梯形中,,分别为的中点,,为的中点.现将四边形沿折起,使平面平面,得到如图②所示的多面体.在图②中:(1)证明:;(2)求平面与平面夹角的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)根据折叠前后垂直的关系不变可得,由线面垂直的判定定理可得平面,由线面垂直性质可得;(2)根据面面垂直性质可知以为坐标原点,分别以所在直线为轴建立空间直角坐标系,利用二面角的空间向量求法可得平面与平面夹角的余弦值为.【小问1详解】由题意知在等腰梯形中,,又分别为的中点,所以,即折叠后,,所以平面,又平面,所以.【小问2详解】∵平面平面,平面平面,且,所以平面,平面,,两两垂直,以为坐标原点,分别以所在直线为轴,建立空间直角坐标系,易知,所以,则设平面的法向量,则,取,则,得;设平面的法向量则,取,则,可得,,由图易知平面与平面夹角为锐角,所以平面与平面夹角的余弦值为.21.已知函数在点处的切线为:,函数在点处的切线为:.(1)若,均过原点,求这两条切线斜率之间的等量关系.(2)当时,若,此时的最大值记为m,证明:.【答案】(1)(2)证明见解析【解析】【分析】(1)求导,利用导数结合点斜式求解切线方程,根据切线经过原点即可求解;(2)构造,求导确定单调性即可求解.【小问1详解】由题可得,,:,:,因为均过原点,所以,因为均过原点,所以,所以.【小问2详解】由题,,记,,记,在单调递减,且,,使得,即,且在上单调递增,在上单调递减.,∵,又∵,故得证.22.已知函数.(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.【答案】(1)答案见解析(2)【解析】【分析】含参数的单调性讨论问题,求导后分情况讨论根的个数与大小即可.指对同构问题,将所求不等式变形,构造新函数,再利用单调性求解.【小问1详解】的定义域是,令当时,∵,∴∴,∴在单调递增当时,,若,即时,,∴,∴在单调递减若,即时,令,解得,,易得在单调递减,在单调递增,在单调递减,综上所述:当时,在单调递增当时,在单调递减,在单调递增,在单调递减,当时,在单调递减【小问2详解】解法一:由题易得令,有在为增函数原式等价于,即即,令由(1)知时,在为减函数,∴,∴解法二:由题易得令,有在为增函数原式等价于,即设对恒成立首先,即,下面证明时,恒成立由(1)知,当时,,,此题的证∴.【点睛】本题第一问属于含参数的单调性讨论问题,先求导,再用参数讨论方程的根个数与大小,得出不等式的解集即为函数的单调区间;第二问属于指对同构类问题,一般指数和对数函数同时出现时考虑指对同构,再构造新函数,利用单调性求参数的范围即可.。
山西省太原市2018-2019学年九年级上学期数学期中考试试卷及参考答案

山西省太原市2018-2019学年九年级上学期数学期中考试试卷一、选择题 1. 若= =2(b+d≠0),则的值为( )A . 1B . 2C .D . 42. 将方程(x+1)(2x-3)=1化成“ax +bx+c=0”的形式,当a=2时,则b ,c 的值分别为( )A ., B ., C ., D . ,3. 矩形、菱形、正方形都具有的性质是( )A . 对角线相等B . 对角线互相平分C . 对角线互相垂直D . 对角线平分对角4. 如图,一组互相平行的直线a ,b ,c 分别与直线l , 1交于点A ,B ,C ,D ,E ,F ,直线1 , l 交于点O ,则下列各式不正确的是( )A .B .C .D .5. 一元二次方程x +6x+9=0的根的情况是( )A . 有两个相等的实数根B . 有两个不相等的实数偎C .只有一个实数根 D . 没有实数根6. 小明要用如图的两个转盘做“配紫色”游戏,每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为( )A .B .C .D . 7. 用配方法解方程x -8x+5=0,将其化为(x+a )=b 的形式,正确的是( )A .B .C .D .8. 如图,△ABC 中,点P 是AB 边上的一点,过点P 作PD ∥BC ,PE ∥AC ,分别交AC ,BC于点D ,E ,连按CP .若四边形CDPE 是菱形,则线段CP 应满足的条件是( ) A . CP 平分 B . C . CP 是AB 边上的中线 D .9. 为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x 米,则根据题意可列出方程( )A .B .C .D . 2121222210. 如图,在矩形ABCD 内有一点F ,FB 与FC 分别平分∠ABC 和∠BCD ,点E 为矩形ABCD 外一点,连接BE ,CE .现添加下列条件:①EB ∥CF ,CE ∥BF ;②BE=CE ,BE=BF ;③BE ∥CF ,CE ⊥BE ;④BE=CE ,CE ∥BF ,其中能判定四边形BECF 是正方形的共有( )A . 1个B . 2个C . 3个D . 4个二、填空题11. 一元二次方程x +3x=0的解是________.12. 经过某十字路口的行人,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两人经过该路口,则恰好有一人直行,另一人左拐的概率为________.13. 如图,正方形ABCD 中,点E 是对角线BD 上的一点,BE=BC ,过点E 作EF ⊥AB ,EG ⊥BC ,垂足分别为点F ,G ,则正方形FBGE 与正方形ABCD 的相似比为________.14. 如图,正方形ABCD 中,AB=2,对角线AC ,BD 相交于点O ,将△OBC 绕点B 逆时针旋转得到△O′BC′,当射线O′C′经过点D 时,线段DC′的长为________.15. 如图,在菱形ABCD 中,AB=4,AE ⊥BC 于点E ,点F ,G 分别是AB ,AD 的中点,连接EF ,FG ,若∠EFG=90°,则FG 的长为________.三、计算题16. 解下列方程:(1) x -6x+3=0;(2) 3x (x-2)=2(x-2).17. 如图,矩形ABCD 中,AB=4,点E ,F 分别在AD ,BC 边上,且EF ⊥BC ,若矩形ABFE ∽矩形DEFC,且相似比为1:2,求AD 的长.22景点介绍,求甲、乙两人中恰好有一人介绍,到2018年“早黑宝”的种植面积达到EFB的边长.22. 已知:如图,菱形ABCD8 .2. 3. 4. 5. 6. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。
2018-2019学年高一下学期期中考试数学试卷

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin 50cos 20cos50sin 20-= ( )A.12 B. 13 C. 2 D. 32. 下列函数中,以π为周期且在区间(0,)2π上为增函数的是( ). A. sin 2xy = B.sin y x = C.tan y x =- D.cos 2y x =-3. 已知向量()1,2a = ,()1,0b = ,()3,4c = .若λ为实数, +)//a b c λ(,则λ=( ) A.14 B. 12C. 1D. 2 4.给出下面四个命题:①0AB BA += ;② AB BC AC += ;③ -AB AC BC =;④00AB ⋅=。
其中正确的个数为 ( )A. 1个 B .2个 C .3个 D .4个5.已知=5a ,=4b ,a 与b 的夹角为120,则b 在a 方向上的投影为( )A. 5-2B. 52 C. -2 D. 26.已知函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><的部分图象如下图所示,则函数()f x 的解析式( )A.1()2sin()26f x x π=+B.1()2sin()26f x x π=-C.()2sin(2)6f x x π=-D.()2sin(2)6f x x π=+7. 将函数y=sin2x 的图象向左平移ϕ(ϕ>0)个单位,得到的图象恰好关于直线6x π=对称,则ϕ的一个值是( )A . 12πB .6πC .4π D .3π8. 在Rt ABC ∆中,=90C ∠,=4AC ,则AB AC ⋅=( )A . -16B .-8C .8D .16 9. 若α是锐角,且满足1sin()63απ-=,则αcos 的值为( ). A.6162+ B.6162- C.4132+ D.4132- 10.ABC Rt ∆中, 90=∠C ,2==BC AC ,E D , 分别是BC AC ,的中点,则=⋅AE BD ( )A. 4B.-4C.225 D. 225-11.在ABC ∆中,设222AC AB AM BC -=⋅,那么动点M 的轨迹必通过ABC ∆的( ) A .垂心 B.内心 C .外心 D.重心 12. 函数()2sin()f x x ωϕ=+(0ω>)的图象经过,26A π⎛⎫-- ⎪⎝⎭、,24B π⎛⎫⎪⎝⎭两点,则ω( )A. 最小值为125 B. 最大值为125C. 最小值为3D. 最大值为3二、填空题(本大题共4小题,每小题5分,共20分)13.若扇形的弧长为6cm ,圆心角为2弧度,则扇形的面积为 cm 2.14.已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知,AB a AD b ==,则DO =.15.若tan α,tan β是方程2560++=x x 的两个根,且,(0,)2παβ∈,则αβ+= .16.若点M 是ABC ∆所在平面内的一点,且满足53AM AB AC =+,则ABM ∆与ABC ∆的面积比为 .三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分) 已知角α的终边过点43(,)55P -. (1)求sin ,cos ,tan ααα的值;(2)求sin()tan()2sin()sin(3)πααπαππα--⋅+-的值.18.(12分) 已知向量(2,1),(3,4)a b =-=-.(1)求+2)a b a b ⋅-()(的值;(2)求向量a 与+a b的夹角.19.(12分) 已知函数()sin()(>0,>0,<)2f x A x A πωϕωϕ=+的最小正周期为π,且点,26P π⎛⎫⎪⎝⎭是该函数图象的一个最高点. (1) 求函数()f x 的解析式;(2)若,02x π⎡⎤∈-⎢⎥⎣⎦,求函数()y f x =的值域.20.(12分)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =. (1)若α是第一象限角,且()f α=()g α的值; (2)求使()()f x g x ≥成立的x 的取值范围.21.(12分) 已知函数()2cos (sin cos )1,f x x x x x =-+∈R .(1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向左平移4π个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图象,求()g x 的最大值及取得最大值时的x 的集合.22. (12分)如图,在△ABC 中,已知CA=1,CB=2,∠ACB=60°. (1)求|AB |;(2)已知点D 是AB 上一点,满足=λ,点E 是边CB 上一点,满足=λBC . ①当λ=21时,求AE •; ②是否存在非零实数λ,使得AE ⊥?若存在,求出的λ值;若不存在,请说明理由.答案一、选择题:1----5 ADBBC 6----10 DADBB 11----12 CA二、填空题:13. 9 14. 1-2a b ()15. 4π16. 35三、解答题:17.解:(1)由已知,点P 是α的终边与单位圆的交点,由任意角三角函数的定义知,34334sin =-,cos =,tan =-=-55554ααα -------------------------------4分(2)sin()tan()cos tan 52=sin()sin(3)sin sin 3πααπαααππααα--⋅⋅=+-- ------------------------10分18.解:(1)()()+=1-32=-7a b a b -,,,6+2)=1-7+-36=-25a b a b ∴⋅-⨯⨯()(()()----------------------------5分(2)()=-2,1+=1-3a a b(),,+)=-2-3=-5a a b ∴⋅ (又+a a b,(+)cos 2+a a b a a bθ⋅∴==-⋅[]0θπ∈ , 3=4πθ∴ -----------------------------12分19.解:(1)由题意可得,A=2, =π,∴ω=2.再根据函数的图象经过点M (,2),可得2sin (2×+φ)=2,结合|φ|<,可得ω=,∴f(x )=2sin (2x+). -------------------5分(2)∵x∈[﹣,0],∴2x+∈[﹣,],∴sin(2x+)∈[﹣1,]∴ f (x )=2sin (2x+)∈[﹣2,1]. -------------------12分20.解:(1)1()sin()cos(cos 632f x x x x x ππ=-+-- 1cos 2x x +x ,2g()2sin 1cos 2xx x ==-由()f α=α,3sin =5α∴又α是第一象限角,所以4cos 5α==1()1cos 5g αα∴=-=-------------------------6分(2)由()()f x g x ≥1cos x x ≥-+cos 1x x ≥ 于是1sin 62x π⎛⎫+≥ ⎪⎝⎭ 522,666k x k k Z πππππ∴+≤+≤+∈ 即222,3k x k k Z πππ≤≤+∈ 所以,所求的集合是222,3x k x k k Z πππ⎧⎫≤≤+∈⎨⎬⎩⎭-----------------12分21.解:(1)2()2cos (sin cos )1=2sin cos 2cos 1f x x x x x x x =-+-+sin 2cos 2)4x x x π=--令2-22,242k x k k Z πππππ≤-≤+∈得3-,88k x k k Z ππππ≤≤+∈ 所以,函数的单调递增区间为3-88k k k Z ππππ⎡⎤+∈⎢⎥⎣⎦,() -------------------6分(2)将函数())4y f x x π==-的图象向左平移4π个单位后,所得图象的解析式为2++)444y x x πππ⎡⎤=-⎢⎥⎣⎦(),再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()4y g x x π=+的图象。
2018-2019学年第二学期期中质量检测八年级数学试题(带答案)

姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题(时间 120分钟 分值 120分)一.选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,是关于x 的一元二次方程的是( ) A .ax 2+bx +c =0(a ,b ,c 为常数) B .x 2﹣x ﹣2=0 C .+﹣2=0D .x 2+2x =x 2﹣12.一元二次方程x 2+ax+a ﹣1=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根C .有实数根D .没有实数根3.如果关于x 的一元二次方程(m ﹣3)x 2+3x +m 2﹣9=0有一个解是0,那么m 的值是( )A .﹣3B .3C .±3D .0或﹣34.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则应邀请( )个球队参加比赛. A.6 B.7C.8D.95.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )A.1B.2C.-1D.-26.已知点A(-3,y 1),B(2,y 2),C(3,y 3)在抛物线y =2x 2-4x +c 上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 2>y 3>y 17.某烟花厂为春节烟火晚会特别设计制作一种新型礼炮,这种礼炮的升空高度h(m )与飞行时间t(s )的关系式是h =-52t 2+20t +1,若这种礼炮点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 8.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x ≥1时,y 随x 的增大而减小D .若a <0,则当x ≤1时,y 随x 的增大而增大9.在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )10. 如图,抛物线y =ax 2+bx +c(a≠0)与x 轴交于点A(-2,0),B(1,0), 直线x =-0.5与此抛物线交于点C ,与x 轴交于点M , 在直线上取点D ,使MD =MC ,连接AC ,BC ,AD ,BD , 某同学根据图象写出下列结论:①a-b =0;②当-2<x<1时,y>0;③四边形ACBD 是菱形; ④9a-3b +c>0,你认为其中正确的是( )A .②③④B .①②④C .①③④D .①②③ 第10题图二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分) 11.如果y =(m ﹣2)是关于x 的二次函数,则m =__________.12. 如果一元二次方程x 2﹣4x+k =0经配方后,得(x ﹣2)2=1,那么k = . 13.若m 是方程2x 2+3x ﹣1=0的根,则式子4m 2+6m+2019的值为 .14. 已知抛物线c bx ax y ++=2经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是__________.15. 若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为 __________.16.已知关于x 的方程(k ﹣2)2x 2+(2k+1)x+1=0有实数根,则k 的取值范围是__________. 17.把二次函数y =12x 2+3x +52的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3). 若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2), 点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为__________. 第18题图三.解答题(本大题共7小题,共62分)19.(8分)选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.(7分)已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.21.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.(8分)为落实素质教育要求,促进学生全面发展,我市某中学2016年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2018年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2016年到2018年,该中学三年为新增电脑共投资多少万元?23.(9分)已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.24.(10分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?25.(12分)在2016年巴西里约奥运会上,中国女排克服重重困难,凭借顽强的毅力和超强的实力先后战胜了实力同样超强的巴西队,荷兰队和塞尔维亚队,获得了奥运冠军,为祖国和人民争了光.如图,已知女排球场的长度OD为18米,位于球场中线处的球网AB的高度为2.24米,一队员站在点O处发球,排球从点O的正上方2米的C点向正前方飞去,排球的飞行路线是抛物线的一部分,当排球运行至离点O的水平距离OE为6米时,到达最高点F,以O为原点建立如图所示的平面直角坐标系.(1)当排球运行的最大高度为2.8米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)之间的函数关系式.(2)在(1)的条件下,这次所发的球能够过网吗?如果能够过网,是否会出界?请说明理由.(3)喜欢打排球的李明同学经研究后发现,发球要想过网,球运行的最大高度h(米)应满足h>2.32,但是他不知道如何确定h的取值范围,使排球不会出界(排球压线属于没出界),请你帮忙解决并指出使球既能过网又不会出界的h的取值范围.姓名: 班级: 考号: 考场: 座号: 密 封 线 内 不 要 答 题2018-2019学年第二学期期中质量检测八年级数学试题答案一.选择题(本大题共10小题,每小题3分,共30分)1. B2. C3. A4.B5. D6.B7.B8. D9. C 10.D二.填空题(本大题共8小题,其中11-14小题每小题3分,15-18题每小题4分,共28分)11. m=-1 12. 3 13. 2021 14. (1,-8) 15. -1或2或1 16. k ≥ 17. (-1,1) 18. 12三.解答题(本大题共7小题,共62分)19.(8分)解:(1)3x ﹣1=±(x ﹣1)………………………………………………1分 即3x ﹣1=x ﹣1或3x ﹣1=﹣(x ﹣1)……………………3分 所以x 1=0,x 2=;……………………4分(2)3x (x ﹣1)+2(x ﹣1)=0…………………………………1分(x ﹣1)(3x +2)=0x ﹣1=0或3x +2=0…………………3分 所以x 1=1,x 2=﹣.……………………4分20.解:(1)当m =0时,方程为x 2+x ﹣1=0. △=12﹣4×1×(﹣1)=5>0. ∴x =, ∴x 1=,x 2=.…………………4分(2)∵方程有两个不相等的实数根, ∴△>0即(﹣1)2﹣4×1×(m ﹣1) =1﹣4m +4 =5﹣4m >0 ∵5﹣4m >0∴m <.…………………7分21. (8分)解:设AB 的长度为x 米,则BC 的长度为(100-4x)米,根据题意得 (100-4x)x =400,解得x 1=20,x 2=5,………………4分 则100-4x =20或100-4x =80,∵80>25,∴x 2=5舍去, 即AB =20,BC =20,则羊圈的边长AB ,BC 分别是20米,20米。
2018-2019学年山西省运城实验中学八年级(下)期中数学试卷

2018-2019学年山西省运城实验中学八年级(下)期中数学试卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2018春•胶州市期中)已知实数a、b满足a+2>b+2,则下列选项错误的为()A.a>b B.a+1>b+1C.﹣a<﹣b D.2a>3b2.(3分)(2018•北塔区模拟)下列四个图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2012•凉山州)设a、b、c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是()A.c<b<a B.b<c<a C.c<a<b D.b<a<c4.(3分)(2018春•大田县期中)△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()cmA.6B.8C.D.55.(3分)(2019春•新罗区期中)如图,将周长为8的△ABC沿BC方向向右平移2个单位长度,得到△DEF,连接AD,则四边形ABFD的周长为()A.6B.8C.10D.126.(3分)(2020秋•莒南县期末)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC=15,则CD的长为()于点D,AB=10,S△ABDA.3B.4C.5D.67.(3分)(2019春•平度市期中)如图,在△ABC中,AC=BC,D、E分别是AB、AC上一点,且AD=AE,连接DE并延长交BC的延长线于点F,若DF=BD,则∠A的度数为()A.30B.36C.45D.728.(3分)(2015•辽阳)如图,直线y=﹣x+2与y=ax+b(a≠0且a,b为常数)的交点坐标为(3,﹣1),则关于x的不等式﹣x+2≥ax+b的解集为()A.x≥﹣1B.x≥3C.x≤﹣1D.x≤39.(3分)(2014•孝感)如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)10.(3分)(2018春•胶州市期中)如图,△ABC中,AB=AC=10,BC=12,D是BC的中点,DE⊥AB于点E,则DE的长为()A.B.C.D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.(3分)(2015春•崇明区期末)将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是.12.(3分)(2019春•峄城区期中)如图,在Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B=.13.(3分)(2019春•市中区期中)如图,在Rt△ABC中,∠ACB=90°,AC=BC,AB=3,将△ABC沿AB方向平移得△DEF,若△ABC与△DEF重叠部分的面积为2,则AD=.14.(3分)(2018春•胶州市期中)如图,△ABC中,AB=AC,BC=15,∠BAC=120°,过点A作AD⊥AB,交BC于点D,则CD=.15.(3分)(2018春•太原期中)如图,△ABC是边长为24的等边三角形,△CDE是等腰三角形,其中DC=DE=10,∠CDE=120°,点E在BC边上,点F是BE的中点,连接AD、DF、AF,则AF的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(2019春•盐湖区校级期中)解答下列各题:(1)解不等式:2x+1≤3(3﹣x);(2)解不等式组,并将其解集表示在如图所示的数轴上.17.(10分)(2019春•盐湖区校级期中)在平面直角坐标系中,△ABC的位置如图所示(小方格是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)画出△A2B2C2,使得△ABC和△A2B2C2关于原点O中心对称.18.(10分)(2018秋•饶平县期末)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.19.(9分)(2018春•胶州市期中)已知:如图,△ABC中,D是AB上一点,DE⊥BC于E,DF⊥AC于F,点G在AC上,且DG=DB,FG=BE.求证:CD平分∠ACB.20.(8分)(2019春•岱岳区期末)某超市店庆期间开展了促销活动,出售A,B两种商品,A种商品的标价为60元/件,B种商品的标价为40元/件,活动方案有如下两种,顾客购买商品时只能选择其中的一种方案:A B方案一按标价的“七折”优惠按标价的“八折”优惠方案二若所购商品达到或超过35件(不同商品可累计),均按标价的“七五折”优惠若某单位购买A种商品x件(x>15),购买B种商品的件数比A种商品件数多10件,求该单位选择哪种方案才能获得更多优惠?21.(10分)(2018春•胶州市期中)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.22.(10分)(2020•灌阳县一模)某电器超市销售每台进价分别为200元,170元的A、B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.(10分)(2018春•胶州市期中)如图,在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PCE是否能成为等腰三角形?若能,指出所有情况(即写出△PCE为等腰三角形时BE的长);若不能,请说明理由.2018-2019学年山西省运城实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由不等式的性质得a>b,a+1>b+1,﹣a<﹣b.故选:D.2.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.3.【解答】解:依题意得b=2c;a>b.∴a>b>c.故选:A.4.【解答】解:设∠A=x,则∠B=2x,∠C=3x,由三角形内角和定理得∠A+∠B+∠C=x+2x+3x=180°解得x=30°即∠A=30°,∠C=3×30°=90°此三角形为直角三角形故AB=2BC=2×4=8cm故选:B.5.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴DF=AC,AD=CF=2,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+AD+CF=8+2+2=12.故选:D.6.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,=AB•DE=×10•DE=15,∴S△ABD解得DE=3,∴CD=3.故选:A.7.【解答】解:∵CA=CB,∴∠A=∠B,设∠A=∠B=x.∵DF=DB,∴∠B=∠F=x,∵AD=AE,∴∠ADE=∠AED=∠B+∠F=2x,∴x+2x+2x=180°,∴x=36°,故选:B.8.【解答】解:从图象得到,当x≤3时,y=﹣x+2的图象对应的点在函数y=ax+b的图象上面,∴不等式﹣x+2≥ax+b的解集为x≤3.故选:D.9.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.10.【解答】解:连接AD,∵AB=AC,D为BC的中点,BC=12,∴AD⊥BC,BD=DC=6,在Rt△ADB中,由勾股定理得:AD===8,∵S=,△ADB∴DE===,故选:D.二、填空题(每题3分,满分15分,将答案填在答题纸上)11.【解答】解:将点(1,2)先向左平移2个单位,再向下平移4个单位,所得到的点的坐标是(﹣1,﹣2).故答案为(﹣1,﹣2).12.【解答】解:在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD∵∠CAD:∠DAB=2:1∴4∠B=90°∴∠B=22.5°故答案为22.5°.13.【解答】解:由平移可得∠BDG=∠A=45°=∠ABC,∴△BDG是等腰直角三角形,∵△ABC与△DEF重叠部分的面积为2,∴DG×BG=2,∴DG=BG=2,∴BD==2,∴AD=AB﹣BD=3﹣2=,故答案为:.14.【解答】解:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=30°,AD=BD,∴DA=DC,∴BC=DC+2DC=15,∴CD=5,故答案为5.15.【解答】解:过D作DH⊥BC于H,∵DC=DE=10,∴EH=HC,∵∠CDE=120°,∴∠DCH=30°,∴CH=EH=5,∴CE=10,∴BE=BC﹣CE=24﹣10,∵F是BE的中点,∴BF==12﹣5,过A作AM⊥BC于M,∵△ABC是等边三角形,∴BM=BC=12,AM=12,∴FM=BM﹣BF=12﹣(12﹣5)=5,由勾股定理得:AF====13.故答案为:13.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.【解答】解:(1)去括号得:2x+1≤9﹣3x,移项合并得:5x≤8,解得:x≤1.6;(2),由①得:x>﹣2,由②得:x≤15,则不等式组的解集为﹣2<x≤15.17.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;18.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.19.【解答】证明:∵DE⊥BC于E,DF⊥AC于F,∴∠DEB=∠DFG=90°,在Rt△DBE与Rt△DGF中,∴Rt△DBE≌Rt△DGF(HL),∴DE=DF,∴CD平分∠ACB.20.【解答】解:根据题意得:某单位购买A种商品x件,则购买B种商品(x+10)件,按方案一购买花费为:y1=60×0.7x+40×0.8(x+10),按方案二购买花费为:y2=60×0.75x+40×0.75(x+10),y1﹣y2=﹣x+20,∵x>15,∴﹣x<﹣15,∴﹣x+20<5,若y1<y2,则﹣x+20<0,即x>20时,方案一的花费少于方案二,若y1=y2,则﹣x+20=0,即x=20时,方案一的花费等于方案二,若y1>y2,则﹣x+20>0,即15<x<20时,方案二的花费少于方案一,答:当购买A商品的数量多于20件时,选择方案一,当购买A商品的数量为20件时,选择方案一或方案二都可以,当购买A商品的数量多于15件少于20件时,选择方案二,这样才能获得更多优惠.21.【解答】解:如图所示,△ABC即为所求.22.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.23.【解答】解:(1)PD=PE,理由如下:连接PC,如图连接PB∵△ABC是等腰直角三角形,P是AB中点∴CP⊥AB,∠ACP=∠BCP=∠ACB=45°∴∠ACP=∠B=∠BCP=45°∴BP=CP∵∠DPC+∠CPE=90°=∠BPE+∠CPE∴∠DPC=∠PBE且BP=CP,∠ACP=∠B∴△DPC≌△PEB∴DP=PE(2)∵AC=BC=2,∠C=90°∴AB=2∴AP=BP=CP=△PCE是等腰三角形当PC=PE=时,即B,E重合,BE=0当PC=CE=时,E在线段BC上,则BE=2﹣当PE=EC,且∠PCB=45°∴∠PEC=90°∴EC=1∴BE=1。
高一数学下学期期中试题(含解析)

,
原式=
=
=
.
【点睛】本题考查了余弦函数的定义、同角三角函数关系中的正弦、余弦平方和为 1 的关系 和商关系,考查了数学运算能力.
18.(1)已知扇形的周长为 8,面积是 4,求扇形的圆心角.
(2)已知扇形的周长为 40,当它的半径和圆心角取何值时,才使扇形的面积最大?
【答案】(1)2;(2)当半径为 10 圆心角为 2 时,扇形的面积最大,最大值为 100.
体重超过
的总人数为
在
的人数为
,应抽取的人数为
,
在
的人数为
,应抽取的人数为
,
在
的人数为
,应抽取的人数为
.
所以在
,
,
三段人数分别为 3,2,1.
甘肃省会宁县第一中学 2018-2019 学年高一数学下学期期中试题(含
解析)
一、选择题(本大题共 12 小题,共 60.0 分)
1.与
终边相同的角是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据与 终边相同的角可以表示为
这一方法,即可得出结论.
【详解】与
角终边相同的角为:
,
当 时,
.
故选:C.
11.函数
的值域是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
因为角 的终边不能落在坐标轴上,所以分别求出角 终边在第一、第二、第三、第四象限时,
根据三角函数的正负性,函数的表达式,进而求出函数的值域.
【详解】由题意可知:角 的终边不能落在坐标轴上,
当角 终边在第一象限时,
2018-2019学年高一下学期期中考试数学试卷

一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求. 请在答题卡上填涂相应选项。
1. 若2sin()3απ-=,则cos2α=( ) A .59 B .19 C .19- D .59- 2. 在△ABC 中,60A ∠=,45B ∠=,23AC =BC =( )A .42B .32C .26D 6 3. cos80cos 20sin(80)sin160⋅--⋅的值是( ) A.12 B. 32 C. 1-2D. 3-24. 下列命题正确的是( )A.如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行B. 若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行C. 垂直于同一条直线的两条直线相互垂直D.若两条直线与第三条直线所成的角相等,则这两条直线互相平行.5. 设△ABC 的内角A B C ,,的对边分别为a b c ,,,若cos cos a a B b A =+,则△ABC 的形状为( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形 6. 在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的余弦值为( ) A .23B 5C 5D 7 7. 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积与原正方体的体积比为( )A. 2:3B. 3:4C. 4:5D. 5:68. 如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是50m ,则河流的宽度BC 等于( )A .100(31)m -B .200(31)m -C .200(21)m -D .20(31)m +9. 在ABC ∆中,a ,b ,c 分别为内角A ,B ,C 所对的边长,若22()4c a b =-+,3C π=,则ABC ∆的面积是( )A .32B .3C .3D . 2310. 已知某圆柱的底面周长为12,高为2,矩形ABCD 是该圆柱的轴截面,则在此圆柱侧面上,从A 到C 的路径中,最短路径的长度为( ) A .210B .25C .3D .211. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”若圆周率约为3,则可估算出米堆的体积约为( )A .9立方尺B .18立方尺C .36立方尺D .72立方尺12. 如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( ) A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分.请将答案填在答题卡对应题号的位置上,答错位置、写不清、模棱两可均不得分。
山西省太原市2018-2019学年高二下学期阶段性测评(期中)数学理试题Word版含解析

山西省太原市2018-2019学年高二下学期阶段性测评(期中)数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复平面内,点表示的复数为()A. B. C. D.【答案】D【解析】分析:一般利用复平面内复数的几何意义(复数x+yi(x,y∈R)在复平面内与点(x,y)一一对应)解答即可.详解:由复数的几何意义得点(0,-1)表示的复数为0+(-1)×i=-i.故选D.点睛:本题涉及到的知识点是复数的几何意义,复数x+yi(x,y∈R)在复平面内与点(x,y)一一对应.2. 已知函数,则()A. B. C. D.【答案】A【解析】分析:一般先求导,再求.详解:因为所以,所以=cos0-1=1-1=0,故选A.点睛:注意基本初等函数的导数,,有些同学容易记错.3. 下列结论正确的是()A. 归纳推理是由一般到个别的推理B. 演绎推理是由特殊到一般的推理C. 类比推理是由特殊到特殊的推理D. 合情推理是演绎推理【答案】C【解析】分析:直接利用归纳推理、演绎推理、类比推理和合情推理的定义分析判断.详解:对于A选项,由于归纳推理是从个别到一般的推理,所以A不正确;对于B选项,由于演绎推理是从一般到特殊的推理,所以B不正确;对于C选项,由于类比推理是从特殊到特殊的推理,所以C正确;对于D选项,由于合情推理是归纳推理和类比推理,所以D不正确.点睛:对于归纳推理、演绎推理、类比推理和合情推理的定义要理解掌握,不要死记硬背,要理解它们之间的区别和联系.4. 已知是复平面内的平行四边形,,,三点对应的复数分别是,,,则点对应的复数为()A. B. C. D.【答案】D详解:由题得A(-2,1),B(1,-1),C(2,2),设D(x,y),则因为,所以,解之得x=-1,y=4.所以点D的坐标为(-1,4),所以点D对应的复数为-1+4i,故选D.点睛:本题方法比较多,但是根据求点D的坐标,是比较简单高效的一种方法,大家解题时,注意简洁高效.5. 已知推理:“因为所有的金属都能够导电,而铜能导电,所以铜是金属”.则下列结论正确的是()A. 此推理大前提错误B. 此推理小前提错误C. 此推理的推理形式错误D. 此推理无错误【答案】C【解析】分析:一般利用三段论来分析解答. 如果三段论的大前提是范围对象A具有某性质,小前提应该是B元素属于范围对象A,结论是B具有某性质,这个推理的形式才是正确的.详解:已知推理的大前提是:因为所有的金属都能够导电,所以推理的小前提应该是说A材料是金属,结论是A能导电. 但是推理的小前提是说铜能导电,违背了三段论的推理要求,所以此推理的推理形式错误,故选C.点睛:三段论看似简单,但是遇到真正的问题,有些同学又比较含糊. 如果三段论的大前提是范围对象A具有某性质,小前提应该是B元素属于范围对象A,结论是B具有某性质,这个推理的形式才是正确的.6. 用反证法证明“三角形的三个内角中至少有一个不大于”时的假设为()A. 三个内角中至多有一个不大于B. 三个内角中至少有两个不大于C. 三个内角都不大于D. 三个内角都大于【答案】D【解析】分析:一般利用命题的否定来解答,三角形的三个内角中至少有一个不大于的否定应该是三个内角都大于.详解:由于“三角形的三个内角中至少有一个不大于”的否定是“三个内角都大于60°”,故选D.点睛:利用反证法证明时,首先要假设原命题不成立,原命题的反面成立,所以这里涉及到命题的否定,命题的否定就是只否定命题的结论,命题的否命题是条件和结论都同时否定,这两个大家要区分开来.7. 复平面内,若与复数对应的点在第四象限,则实数的取值范围是()A. B. C. D.【答案】B【解析】分析:复数对应的点在第四象限,就是说复数的实部大于零,虚部小于零,得到关于m的不等式组,解不等式组即得m的取值范围.详解:由题得,解之得0<m<1,故选B.点睛:本题解答主要是根据复数的几何意义来解答的,复数x+yi(x,y∈R)与复平面内的点(x,y)一一对应.8. 观察下列各式:,,,……,则的末两位数字为()A. B. C. D.【答案】D【解析】分析:由题意依次求出7的乘方对应的值,归纳出末两位数出现的规律,再确定72018的末两位数.详解:根据题意得,72=49,73=343,74=2401,75=16807,76=117649,77=823543,78=5764801,79=40353607…,发现:74k﹣2的末两位数字是49,74k﹣1的末两位数字是43,74k的末两位数字是01,74k+1的末两位数字是07,(k=1、2、3、4、…),∵2018=504×4+2,∴72018的末两位数字为49,故选D.点睛:要解答本题,一定要多列举找到规律,不能只写几个就下结论,所以本题列举了8个式子,这样总结的结论才更准确.9. 函数的单调递减区间是A. B. 和 C. D.【答案】B【解析】分析:一般先求导得再解不等式得到它的解集,最后和定义域求交集,即可得到原函数的单调减区间.详解:由题得,令,所以x<1,因为x≠0,所以x<1,且x≠0,所以函数的单调减区间为和,故选B.点睛:本题是一个易错题,容易漏掉函数的定义域,得到函数的减区间为,主要是因为没有考虑定义域{x|x≠0}.对于函数的任何问题,必须遵循定义域优先的原则,否则会出错.10. 已知函数在处的切线平行于轴,则的极大值与极小值的差为()A. B. C. D.【答案】C【解析】分析:先求导,再求出,再解方程,求出a的值,再求函数的极大值和极小值,最后求极大值和极小值的差.详解:由题得,所以故a=0,所以,所以函数f(x)在(1,+∞)和(-∞,-1)上是增函数,在(-1,1)上是减函数.∴,∴的极大值与极小值的差为2+b+2-b=4,故选C.点睛:求函数的极值的一般步骤是:求定义域求导解方程列表下结论.11. 在直角坐标平面内,由曲线,,和轴所围成的封闭图形的面积为()A. B. C. D.【答案】A【解析】分析:先求出直线y=x和曲线xy=1的交点的横坐标,再利用定积分求出曲线,,和轴所围成的封闭图形的面积.详解:联立xy=1和y=x得x=1,(x=-1舍).由题得由曲线,,和轴所围成的封闭图形的面积为,故选A.点睛:求曲线围成的不规则的图形的面积,一般利用定积分来求解.12. 已知函数在上单调递增,则实数的取值范围为()A. B. C. D.【答案】D【解析】分析:求出函数f(x)的导数,问题转化为a≥在恒成立,令g(x)=,x∈,根据函数的单调性求出函数g(x)的最大值,即得实数a的范围.详解::f(x)=(2a﹣1)x﹣cos2x﹣a(sinx+cosx),=2a﹣1+sin2x﹣a(cosx﹣sinx),若f(x)在递增,则≥0在恒成立,即a≥在恒成立,令g(x)=,x∈,则=,令>0,即sinx>cosx,解得:x>,令<0,即sinx<cosx,解得:x<,故g(x)在[0,)递减,在(,]递增,故g(x)max=g(0)或g(),而g(0)=1,g()=,故a≥1,故选D.点睛:本题解答用到了分离参数的方法,把≥0在恒成立通过分离参数转化为a≥在恒成立,再求函数g(x)=,x∈的最大值.处理参数问题常用的有分类讨论和分离参数方法,如果分离参数不便,就利用分类讨论.大家要注意这两种方法的区别和联系.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知复数满足,则复数的共轭复数为__________.【答案】【解析】分析:先由题得到,再利用复数的除法化简得到z,最后求z的共轭复数.详解:由题得.所以z的共轭复数为2-i.故填2-i.点睛:本题主要考查复数的除法运算和共轭复数的概念,解题时,不要求出z就直接填进去了,主要还要求z的共轭复数.14. 若,则实数__________.【答案】【解析】分析:直接利用微积分基本原理化简已知,得到m的方程,求出m的值.详解:由题得,所以,∴m=2.故填2.点睛:本题主要考查微积分基本原理,关键是找到的原函数.15. “扫雷”游戏,要求游戏者找出所有的雷,游戏规则是:一个方块下面有一个雷或没有雷,如果无雷,掀开方块下面就会标有数字(如果数学是,常省略不标),此数字表明它周围的方块中雷的个数(至多八个),如图甲中的“”表示它的周围八个方块中有且仅有个雷.图乙是小明玩的游戏中的局部,根据图乙中信息,在这七个方块中,有雷的方块为__________.【答案】ADFG【解析】分析:解答时,先确定F和G有雷,再确定C,D中必有一个有雷,这时再利用假设法否定C有雷D 无雷,后面再确定A和B是否有雷.详解:第4行第7个数字2,所以F、G方块有雷. 第4行第6个数字4,说明E方块没有雷.由于第4行第4个数字3,说明C、D中必有一个有雷. 假设C有雷,D无雷. 由于第6行第7个数字2,所以第7行6、7、8、9都没有雷,第5个有雷,但是第6行第4 个数字2,这样第6行第4个数字周围就有3个雷,与题目矛盾,故C无雷,D有雷.由于第4行第3个数字1,所以B五雷,由于第4行第2个数字1,所以A有雷. 故有雷的是A、D、F、G.故填A、D、F、G.点睛:本题主要考查推理论证,在推理时主要要从简单的入手,再讨论复杂的,如果不能确定可以进行假设分析,找到矛盾和答案.16. 设函数,观察下列各式:,,,,…,,……,根据以上规律,若,则整数的最大值为__________.【答案】【解析】分析:先归纳得到f n(x)=f(f n﹣1(x))=,再求出f n()=,最后解不等式,得到n的最大值.详解:由题意,所给的函数式的分子不变都是x,而分母是由两部分的和组成,第一部分的系数分别是1,3,7,15…2n﹣1,第二部分的数分别是2,4,8,16…2n.∴f n(x)=f(f n﹣1(x))=,∴f n()=.∴,∴,∴整数的最大值为9.故填9.点睛:本题主要考查归纳推理,所以归纳出f n(x)=f(f n﹣1(x))=是关键.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知复数,,,是实数,为虚数单位.(1)若,求复数,;(2)若,求复数,.【答案】(1),;(2),.【解析】分析:(1)把代入,得到关于a、b的方程,根据复数相等的概念得到关于a、b的方程组,解方程组即可求出复数、.(2) 把代入,得到关于a、b的方程,根据复数相等的概念得到关于a、b的方程组,解方程组即可求出复数,.详解:(1)∵,∴,∴∴,;(2)∵,∴∴,∴,.点睛:本题主要考查复数的运算和复数相等的概念,属于基础题.18. 已知函数.(1)求的单调区间;(2)当时,求的值域.【答案】(1)单调增区间为和,单调减区间为;(2).【解析】分析:(1)先求导,再利用导数求函数的单调区间. (2)先写出函数在的单调区间,再根据函数的单调区间写出函数f(x)的值域.详解:(1)由题意得,,令,则或;令,则;∴的单调增区间为和,单调减区间为;(2)由(1)得在和上单调递增,在上单调递减,∵,,,,∴的值域为.点睛:本题主要考查利用导数求函数的单调区间和函数的值域,属于基础题.19. 已知点,是椭圆的左右顶点,是椭圆上异与,的点,则直线与的斜率满足.(1)类比椭圆的上述结论,写出双曲线的相应结论,并证明;(2)请利用(1)的结论解决以下问题:已知点,是双曲线的左右顶点,是该双曲线上异与,的点,若直线的斜率为,求直线的方程.【答案】(1)答案见解析;(2).【解析】分析:(1)类比椭圆的上述结论,写出双曲线的相应结论, 再证明. (2)先利用前面的结论得到再写出直线的点斜式方程化简即得直线的方程.详解:(1)已知点,是双曲线的左右顶点,双曲线上异与,的点,则直线与的斜率满足;证明:由题意得,,∴∵是双曲线上的点,∴,∴,∴直线与的斜率满足.(2)由(1)得,∵,∴,∵是双曲线的右顶点,∴,∴直线的方程为.点睛:本题主要考查类比推理的能力和圆锥曲线的基本运算,属于基础题.说明:请考生在(A),(B)两个小题中任选一题作答.20. 已知数列满足,.(1)计算,,,根据计算结果,猜想的表达式;(2)用数学归纳法证明你猜想的结论.【答案】(1)答案见解析;(2)证明见解析.【解析】分析:(1)计算,,,根据计算结果,猜想. (2)用数学归纳法证明猜想的结论.详解:(1)当时,;当时,;当时,,由此猜想;(2)下面用数学归纳法证明,①当时,显然成立,②假设当时猜想成立,即,由题意得,∴当时猜想也成立;由①和②,可知猜想成立,即.点睛:在利用数学归纳法证明数学问题时,一定要注意利用前面的时的假设,否则就是伪数学归纳法,是错误的.21. 已知数列的前项和为,且满足,.(1)计算,,,根据计算结果,猜想的表达式;(2)用数学归纳法证明你猜想的结论.【答案】(1)答案见解析;(2)证明见解析.【解析】分析:(1)计算,,,根据计算结果,猜想. (2)用数学归纳法证明猜想的结论.详解:(1)当时,,∴,当时,,∴,当时,,∴,由此猜想,(2)下面用数学归纳法证明,①当时,显然成立,②假设当时猜想成立,即,由题意得,∴,∴,∴当时猜想也成立,由①和②,可知猜想成立,即.说明:请考生在(A),(B)两个小题中任选一题作答.22. 已知函数.(1)讨论函数的单调性;(2)当时,证明:在上至多有一个零点.【答案】(1)答案见解析;(2)证明见解析.【解析】分析:(1)先求导,再对a分类讨论,求函数的单调性.(2)对a分类讨论,根据函数的图像分析每一种情况函数在上零点个数,即得在上至多有一个零点.详解:(1)由题意得①当时,令,则;令,则,∴在上单调递减,在上单调递增;②当时,令,则或,(ⅰ)当时,令,则或;令,则,∴在和上单调递增,在上单调递减;(ⅱ)当时,,∴在上单调递增;(ⅲ)当时,令,则或;令,则,∴在和上单调递增,在上单调递减;(2)由(1)得当时,在和上单调递增,在上单调递减,∴在处取得极大值,∵,∴此时在上至多有一个零点;当时,在上单调递增,∴此时在上至多有一个零点;当时,在和上单调递增,在上单调递减;∴在处取得极大值,∵,∴此时在上至多有一个零点;综上所述,当时,在上至多有一个零点.点睛:对于函数的零点问题,一般利用图像法分析解答.一般先求导,再求出函数的单调区间、最值、极值等,再画图分析函数的零点情况.23. 已知函数.(1)讨论函数的单调性;(2)当函数有两个零点,求实数的取值范围.【答案】(1)答案见解析;(2).【解析】分析:(1)先求导,再对a分类讨论,求函数的单调区间. (2)对a分类讨论,作出函数的图像,分析出函数f(x)有两个零点所满足的条件,从而求出a的取值范围.详解:(1)由题意得①当时,令,则;令,则,∴在上单调递减,在上单调递增;②当时,令,则或,(ⅰ)当时,令,则或;令,则,∴在和上单调递增,在上单调递减;(ⅱ)当时,,∴在上单调递增;(ⅲ)当时,令,则或;令,则,∴在和上单调递增,在上单调递减;(2)由(1)得当时,在和上单调递增,在上单调递减,∴在处取得极大值,∵,∴此时不符合题意;当时,在上单调递增,∴此时不符合题意;当时,在和上单调递增,在上单调递减;∴的处取得极大值,∵,∴此时不符合题意;当时,在上单调递减,在上单调递增,∵,,∴在上有一个零点,(ⅰ)当时,令,当时,∵,∴在上有一个零点,∴此时符合题意;(ⅱ)当时,当时,,∴在上没有零点,此时不符合题意;综上所述,实数的取值范围为.点睛:对于含参的问题,注意分类讨论思想的运用. 本题的导数,由于无法直接写出函数的单调区间,所以必须要分类讨论.分类讨论时,要注意分类的起因、分类的标准、分类的过程和分类的结论.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年第二学期期中调研测试高一数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A. B. C. D.【答案】B【解析】【分析】运用诱导公式,结合特殊角的三角函数求解即可。
【详解】,故本题选B。
【点睛】本题考查了诱导公式,特殊角的三角函数,属于基础题.2.若向量,,向量与共线,则实数的值为()A. B. C. -3 D. 3【答案】C【解析】【分析】利用向量共线的充要条件,可直接求解。
【详解】因为向量与共线,所以有,故本题选C。
【点睛】本题考查了共线向量的坐标表示,意在考查学生的计算能力,较为基础。
3.函数是()A. 最小正周期为的偶函数B. 最小正周期为的偶函数C. 最小正周期为的奇函数D. 最小正周期为的奇函数【答案】A【解析】【分析】运用公式,直接求出周期,判断之间的关系,结合函数奇偶性的定义进行判断即可。
【详解】,,所以函数最小正周期为,是偶函数,因此本题选A。
【点睛】本题考查了余弦型函数的最小正周期以及奇偶性,利用函数奇偶性的定义进行判断是解题的关键。
4.已知正六边形中,()A. B. C. D.【答案】B【解析】【分析】利用向量加法的几何意义及共线向量的概念进行化简。
【详解】,故本题选B。
【点睛】本题考查了向量加法的几何意义及共线向量的概念,意在考查学生的计算、推理能力。
5.已知函数的图象关于点对称,则可以是()A. B. C. D.【答案】C【解析】【分析】把点代入解析式,求出的表达式,结合选项,选出答案。
【详解】因为函数的图象关于点对称,所以有,令,故本题选C。
【点睛】本题考查了正弦型函数的对称性,解题的关键是利用整体代入,考查学生分析、解决问题的能力。
6.已知向量,,则与垂直的向量是()A. B. C. D.【答案】A【解析】【分析】计算出的坐标表示,然后分别与四个选项中的向量作数量积运算,结果为零,就符合题意。
【详解】=选项A:=,()∙()=0,故选项A符合题意;选项B:=(1,-3),()∙(),故选项B不符合题意;选项C: =(3,1),()∙(),故选项C不符合题意;选项D:=(1,3),()∙(),故选项D不符合题意,因此本题选A。
【点睛】本题考查了向量垂直的判断,旨在考查学生的运算能力.7.已知点在第二象限,角顶点为坐标原点,始边为轴的非负半轴,则角的终边落在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点的位置,得到不等式组,进行判断角的终边落在的位置。
【详解】点在第二象限在第三象限,故本题选C。
【点睛】本题考查了通过角的正弦值和正切值的正负性,判断角的终边位置,利用三角函数的定义是解题的关键。
8.将函数的图像上各点的横坐标伸长到原来的2倍(纵坐标不变),再把图像向右平移个单位长度,所得图像的函数解析式是()A. B.C. D.【答案】D【解析】【分析】按照伸缩变换、平移变换的规律求出解析式。
【详解】函数的图像上各点的横坐标伸长到原来的2倍(纵坐标不变)得到,把图像向右平移个单位长度得到,故本题选D。
【点睛】本题考查了正弦函数的伸缩变换、平移变换。
解题的关键是用函数解析式的改变,体现图象的变换特征。
9.已知,则的值为()A. B. C. D.【答案】B【解析】【分析】用二角和的正弦公式把已知等式化简,然后平方,可求出的值。
【详解】,两边同时平方得:,所以,故本题选B。
【点睛】本题考查了之间的关系,重点考查了公式之间的联系.10.已知函数,且此函数的图像如图所示,则此函数的解析式可以是()A. B.C. D.【答案】A【解析】【分析】通过二个相邻零点,可以求出周期,利用最小正周期公式,可以求出的值,把其中一个零点代入解析式中,求出的值。
【详解】由图象可知;,又因,函数图象通过点,所以,而,所以,故本题选A。
【点睛】本题考查了通过图象求函数解析式,考查了数学结合,考查了学生分析、解决问题的能力。
11.已知平面向量,满足,,则向量在向量方向上的投影为()A. 2B.C.D.【答案】D【解析】【分析】通过,可以求出的值,也就可以求出向量在向量方向上的投影的大小。
【详解】,向量在向量方向上的投影为,故本题选D。
【点睛】本题考查了数量积的几何意义,旨在考查对公式的理解.12.已知,则()A. 2B. 3C. 2或-1D. 3或1 【答案】C【解析】【分析】用二倍角的余弦公式,化简等式,得到或,然后分类求值。
【详解】或,当时,,;当时,,故本题选C。
【点睛】本题考查了二倍角的余弦公式及两角和的正切公式,本题易错的是,把方程两边同时除以,造成少解现象.二、填空题:本大题共4小题,每小题5分,共20分.13.计算的值等于__________.【答案】.【解析】【分析】先用诱导公式,化简,再逆用两角差的正弦公式求解。
【详解】【点睛】本题考查了诱导公式及逆用两角差的正弦公式,考查了学生分析、解决问题的能力。
14.已知与均为单位向量,它们的夹角为120°,那么__________.【答案】.【解析】【分析】先将所求向量的模平方,然后求算术平方根。
【详解】【点睛】本题考查了求向量模的方法。
遇到本题的关型就是遇模则平方,然后开算术平方。
15.已知,则的值是__________.【答案】2.【解析】分析】利用二角和的正切公式,可以直接求解。
【详解】==2.【点睛】本题考查了二角和的正切公式,以及整体代换思想,掌握公式的特征是解题的关键.考查了学生分析、解决问题的能力.16.给出下列四个语句:①函数在区间上为增函数②正弦函数在第一象限为增函数.③函数的图象关于点对称④若,则,其中.以上四个语句中正确的有__________(填写正确语句前面的序号).【答案】①③.【解析】【分析】语句①:求出的取值范围,然后进行判断;语句②:举特例加以判断;语句③:结合正切函数的图象进行判断;语句④:由两个角的正弦值相等,得出式子,进行判断。
【详解】语句①:,显然正确;语句②;,显然正弦函数在第一象限为增函数,是错误的。
正弦函数是以为最小正周期的函数,故这种说法是不正确的。
语句③:结合正切函数的图象,可以判断语句③说法正确;语句④:或,因此语句④说法不正确。
综上:四个语句中正确的有①③。
【点睛】本题考查了正弦函数、正切函数的图象和性质,结合三角函数的图像和性质进行判断是解题的关键。
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或流算步骤17.如图,中,,分别是,中点,为,交点,若,,.试以,为基底表示、【答案】见解析.【解析】【分析】根据向量的加减法的几何意义、重心的性质、用,为基底表示、。
【详解】是的重心,【点睛】本题考查了平面向量的加减法的几何意义和平面向量基本定理。
重点考查了重心性质。
18.已知.(1)求的值;(2)求的值【答案】(1);(2).【解析】【分析】(1)利用诱导公式对式子进行化简,根据同角的三角函数的关系,进行弦化切;(2)把所求的式子写成分母为1的形式,然后用代换,再根据同角的三角函数关系,进行弦化切。
【详解】(1)(2)【点睛】本题考查了同角的三角函数的关系。
本题是关于的双齐次式子,一般是弦化切的转化方法。
19.已知、、是同一平面内的三个向量,其中.(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.【答案】(1),或;(2).【解析】【分析】(1)设出的坐标,根据,且,列出二个方程,解这个方程组,即可;(2)根据两个向量垂直,它们的数量积为零,列出等式。
最后求出与的夹角。
【详解】(1)设,∵,,∴,∴∵,∴,∴,,∴或∴,或(2)∵,∴,∴∵,,代入上式,∴∴∵,,∴∵∴【点睛】本题考查了向量共线、垂直、数量积的运算,记准公式正确计算是解题的关键.20.已知函数的最大值为2.(1)求实数的值;(2)在答题卡上列表并作出在上的简图【答案】(1);(2)见解析.【解析】【分析】(1)运用二角和的正弦公式及辅助角公式对函数解析式进行化简,根据函数的最大值求出的值;(2)在中求出让等于时,的值,在给定的坐标系内,画出图象。
【详解】(1),因为最大值为,∴.(2)列表如下:画图如下:【点睛】本题考查了已知函数最小值,求参数的问题。
重点考查了给定区间画出正弦型函数的图象。
21.已知向量,,且(1)求·及;(2)若,求的最小值【答案】(1)见解析;(2).【解析】【分析】(1)运用向量数量积的坐标表示,求出·;运用平面向量的坐标运算公式求出,然后求出模。
(2)根据上(1)求出函数的解析式,配方,利用二次函数的性质求出最小值。
【详解】(1)∵∴∴ (2)∵∴∴【点睛】本题考查了平面向量数量积的坐标表示,以及平面向量的坐标加法运算公式。
重点是二次函数求最小值问题。
22.已知函数 的最小正周期为. (1)求的值及的单调递增区间; (2)若关于方程,在区间上有两个实数解,试求的取值范围。
【答案】(1),的单调递增区间为 ; (2). 【解析】【分析】(1)运用二倍角的降幂公式,诱导公式、二倍角的正弦公式、辅助角公式对函数的解析式进行化简,根据最小正周期公式求出的值,根据正弦函数的单调性写出增区间。
(2)求出在区间上的取值范围,利用数形结合,求出的取值范围。
【详解】(1)因为函数的最小正周期为,且, 所以,解得.所以函数的单调递增区间为.由,得所以的单调递增区间为.(2)由(1)得.方程化为因为,所以,由正弦函数图像可知内有两解,因此,解得∴的取值范围为.【点睛】本题考查了正弦型函数的单调性、值域。
解决本题的关键是正确进行三角恒等变换及数形结合的运用。