刀具补偿原理

合集下载

刀具补偿

刀具补偿

引言:1.为什么需要刀具补偿?(1)编程时通常设定刀架上各刀在工作位时,其刀尖位置是一致的,但由于刀具的几何开关,安装不同,其刀尖位置也不一样,相对于原点的距离不相同。

解决办法:一是各刀设置不同的工件原点二是各刀位置进行比较,设定刀具偏差补偿。

,可以使加工程序不随刀尖位置的不同而改变。

(2)刀具使用一段时间后会磨损,会使加工尺寸产生误差。

解决:将磨损量测量获得后进行补偿,可以不修改加工程序。

(3)数控程序一般是针对刀位点,按工件轮廓尺寸编制的,当刀尖不是理想点而是一段圆弧时,会造成实际切削点与理想刀位点的位置偏差。

解决:对刀尖圆弧半径进行补偿可以使按工件轮廓编程不受影响。

2.刀具补偿的概念是补偿实际加工时所用的刀具与编程时使用的理想刀具或对刀时使用的基准刀具之间的偏差值,保证加工零件符合图纸要求的一种处理方法。

3.刀具补偿的种类分为刀具偏置补偿(T****实现),和刀尖圆弧半径补偿刀具偏置补偿又分为几何位置补偿和磨损补偿4.刀具的偏置补偿(1)几何位置补偿用于补偿各刀具安装好后,其刀位点(如刀尖)与编程时理想刀具或基准刀具刀位点的位置偏移的,通常是在所用的多把车刀中选定一把作为基准车刀,对刀编程主要是以该车刀为准。

补偿数据获取:分别测得各刀尖相对于刀架基准面的偏离距离(X1.Z1)(X2.Z2)(X3.Z3)若选用刀具1为对刀用的基准刀具,则各刀具的几何偏置分别是(2)磨损补偿主要是针对某把车刀而言,当某把车刀批量加工一批零件后,刀具自然磨损后而导致刀尖位置尺寸的改变,此即为该刀具的磨损补偿。

批量加工后,各把车刀都应考虑磨损补偿(包括基准车刀)(3)刀具几何补偿的合成若设定的刀具几何位置补偿和磨损补偿都有效存在时,实际几何补偿将是这两者的矢量和。

(4)刀具几何补偿的实现,刀具的几何补偿是通过引用程序中使用的T 来实现的,过程:将某把车刀的几何偏置和磨损补偿值存入相应的刀补地址中,当程序执行到含有T****的程序行的内容时,即自动到刀补地址中提取刀偏及刀补数据驱动刀架托板进行相应的位置调整T**00取消几何补偿对于有自动换刀功能的数控车床来说,执行T指令时,将先让刀架转位,按刀具号选择好刀具后,再调整刀架托板位置来实施刀补。

刀具长度补偿的原理是什么

刀具长度补偿的原理是什么

刀具长度补偿的原理是什么刀具长度补偿是在数控加工中,为了满足工件表面轮廓要求,对刀具的实际路径进行调整的一种方法。

它是在加工过程中根据刀具的几何特征和运动轨迹,通过对刀具路径进行微调,使得刀具能够按照工件表面的设计要求进行加工。

在机床切削加工中,刀具的实际使用长度与理论使用长度之间存在一定的差别。

这个差别的主要原因是刀具与工件的接触面不是刀具刃部与工件的接触面,而是刃尖为切入点,刃槽为空泡的刀具与工件接触,也就是说,在机床切削加工中,刀具不能直接与工件接触,需要通过一段空气间隙与工件接触。

在机床加工中,根据不同切削任务需要,刀具与工件的接触点会发生变化,这就导致了切削力的大小和方向会产生变化,进而影响加工的精度和质量。

为了解决这个问题,就需要进行刀具长度补偿。

刀具长度补偿的原理可以通过以下几个步骤来进行解释:第一步:刀具长度测量在数控加工过程中,首先需要测量刀具的实际长度。

这个长度是指从刀具接触点到刀具刃尖的距离。

通常情况下,使用专用的长度测量仪器,如Z轴传感器或工具预调装置来测量。

第二步:刀具长度补偿值计算在获得刀具的实际长度后,需要根据加工的需求,计算出刀具长度补偿值。

这个补偿值也称为沿刀具轴向的刀具净延伸长度。

这个值可以通过以下公式计算得到:刀具净延伸长度=刀具实际长度-刀具理论长度第三步:刀具长度补偿在加工过程中,根据刀具的几何特征和工件的设计要求,通过控制系统中的刀具长度补偿参数,对刀具路径进行微调。

根据刀具长度补偿值,可以调整刀具在机床工作过程中的实际位置,使得刀具的切入点与工件的接触点保持一致。

第四步:刀具路径调整在进行刀具长度补偿后,刀具的实际路径会相应地进行调整。

在程序中,刀具路径的坐标值会根据刀具长度补偿值进行调整,从而保证刀具能够按照工件的设计要求进行加工。

总结起来,刀具长度补偿的原理是通过测量刀具的实际长度,计算出刀具长度补偿值,然后根据这个补偿值对刀具路径进行微调,使得刀具能够按照工件表面的设计要求进行加工。

简述刀具补偿在数控加工中的作用

简述刀具补偿在数控加工中的作用

简述刀具补偿在数控加工中的作用
刀具补偿是一种在数控加工中常用的技术,旨在纠正加工过程中刀具的偏斜和长度不足等问题,保证加工质量和效率。

本文将简要介绍刀具补偿的基本原理和作用。

刀具补偿的基本原理是通过测量刀具的偏斜和长度不足,来调整数控加工中的刀具参数,使刀具沿着正确的轨迹运动,达到高质量的加工效果。

刀具补偿的主要工具是刀具补偿器,它可以通过改变刀具的偏斜和长度来补偿刀具的误差。

刀具补偿的作用包括:
1. 提高加工精度:刀具补偿可以帮助数控加工中心实现高精度加工,减少加工误差,提高产品的质量和一致性。

2. 降低加工成本:通过刀具补偿,可以实现刀具的精确定位,降低刀具的磨损和损坏,延长刀具的使用寿命,降低加工成本。

3. 改善加工过程的稳定性:刀具补偿可以帮助数控加工中心实现稳定的加工过程,降低加工过程中的噪声和震动,保证加工过程的一致性和稳定性。

刀具补偿在数控加工中的应用非常广泛,是实现高质量、高效率加工的重要技术之一。

随着数控加工技术的不断发展和进步,刀具补偿技术也在不断更新和改进,以适应不同的加工环境和需求。

刀补原理

刀补原理
′ X b = X b + ∆X Y b′ = Y b + ∆ Y ∠ BOx = ∠ B ′BK = β
y
B′(Xb′,Yb′)
ΔY B(Xb,Yb) K ΔX R r A′(Xa′,Ya′) A(Xa,Ya) x
β O
图9-6 圆弧刀具半径补偿 X ∆ X = r cos β = r b R Yb ∆ Y = r sin β = r R rX b ′ Xb = Xb + R rY b Y b′ = Y b + R
图93a建立刀具半径补偿的过程图93a建立刀具半径补偿的过程图93b刀具半径补偿的过程图93b刀具半径补偿的过程图93c撤消刀具半径补偿的过程图93c撤消刀具半径补偿的过程4过切过切有以下两种情况
数控装置的刀具补偿原理
一、刀具补偿概述
轮廓加工中,刀 具总有一定半径(如铣 刀或线切割钼丝),刀 具中心运动轨迹并不 等于加工零件的编程 轨迹。
G42为右偏刀具半径补偿(右刀补) ,定义:假设 工件不动,沿刀具运动方向向前看,刀具在零件右侧 的补偿, G40为取消刀具补偿指令。
图9-2b 右刀补补偿
3、工作过程 、 刀具半径补偿过程分为三个步骤:刀补建立、刀 补进行 、刀补撤销。 刀具半径补偿建立,一般是直线且为空行程,以 防过切。以G42为例,图9-3a表示建立刀补过程。 图9-3b表示的刀具半径补偿的工作过程。 刀具半径补偿结束用G40撤销,撤销时同样要防 止过切,图9-3c表示撤消刀具半径补偿的过程。 上述各图中,实线表示编程轨迹;点划线表示刀 具中心轨迹;r等于刀具半径,表示偏移向量。
图c
图d
图9-12 外轮廓直线转接过渡
3、结论
C刀补中对内轮廓过渡均采用缩短型处理,对外轮 廓过渡可根据两矢量加工轨迹间夹角的大小采用伸长型或 插入型处理。可见,对各种直线、圆弧间的连接过渡方式 都可通过数控系统,按上述规律作伸长缩短等处理,彻底 解决了数控加工中两程序段转接过程中的过渡问题。

第三节刀具补偿原理PPT课件

第三节刀具补偿原理PPT课件

下午8时26分
数控技术
3
第三节 刀具补偿原理
3.2、刀具长度补偿计算
图2-11 数控车床刀具结构参数示意图
• 实现刀尖圆弧中心轨迹与刀架相关点的转换
下午8时26分
数控技术
4
第三节 刀具补偿原理
3.2、刀具长度补偿计算
由于在实际操作过程中F与S之间的距离难以直接 测得,而理论刀尖点P相对刀架参考点F的距离容 易测得,故先计算P相对F的偏移量,再根据情况 计算。
拐角:相邻两轮廓交接点处的切线在工件实体 一侧的夹角。0~3600
轨迹连接方式: 直线接直线; 直线接圆弧; 圆弧接圆弧; 圆弧接直线。
图2-14 拐角的定义 a)外拐角 b)内拐角
令当RsR=s≠0 0时
刀尖圆弧半径补偿——Rs很小,引起零件轮 廓的误差可以不考虑;调试过程及对刀过程
可得刀已具经长将度Rs补引偿起的误计差算包公含式在为内:。
零件轮廓轨迹经补偿后,通过控制F点来实现
下午8时26分
数控技术
5
第三节 刀具补偿原理
3.2、刀具长度补偿计算
钻床的刀具:刀具安装方式的刀 具长度补偿——
数控技术
13
第三节 刀具补偿原理
3.3.1、刀具半径补偿原理
刀具半径补偿执行过程相关问题:
上述刀具半径补偿算法只适用于自定的二维坐标平 面内,而平面的指定是通过G17/G18/G19来设定的。
硬件数控采用读一段,算一段,再走一段的数据流 方式,无法考虑到两个轮廓段之间刀具中心轨迹的 过渡问题,靠编程员解决。
CNC中,增设了两组刀补缓冲器,以便让至少两个 含有零件轮廓信息的加工程序段(一般保证3个段) 的信息同时在CNC系统内部被处理,从而可对刀具 中心轨迹及时修正,回避了刀具干涉现象的发生。

刀具半径补偿原理(详细)

刀具半径补偿原理(详细)

刀具半径补偿原理一、刀具半径补偿的基本概念(一)什么是刀具半径补偿根据按零件轮廓编制的程序和预先设定的偏置参数,实时自动生成刀具中心轨迹的功能成为刀具半径补偿功能。

(二)刀具半径功能的主要用途(1)由于刀具的磨损或因换刀引起的刀具半径变化时,不必重新编程,只需修改相应的偏置参数即可。

(2)加工余量的预留可通过修改偏置参数实现,而不必为粗、精加工各编制一个程序。

(三)刀具半径补偿的常用方法1.B刀补特点:刀具中心轨迹的段间都是用圆弧连接过渡。

优点:算法简单,实现容易。

缺点:(1)外轮廓加工时,由于圆弧连接时,刀具始终在一点切削,外轮廓尖角被加工成小圆角。

(2)内轮廓加工时,必须由编程人员人为的加一个辅助的过渡圆弧,且必须保证过渡圆弧的半径大于刀具半径。

这样:一是增加编程工作难度;二是稍有疏忽,过渡圆弧半径小于刀具半径时,会因刀具干涉而产生过切,使加工零件报废。

2.C刀补特点:刀具中心轨迹段间采用直线连接过渡。

直接实时自动计算刀具中心轨迹的转接交点。

优点:尖角工艺性好;在加工内轮廓时,可实现过切自动预报。

两种刀补在处理方法上的区别:B刀补采用读一段,算一段,走一段的处理方法。

故无法预计刀具半径造成的下一段轨迹对本段轨迹的影响。

C刀补采用一次对两段进行处理的方法。

先处理本段,再根据下一段来确定刀具中心轨迹的段间过渡状态,从而完成本段刀补运算处理。

二、刀具半径补偿的工作原理(一)刀具半径补偿的过程刀具半径补偿的过程分三步。

1.刀补建立刀具从起点接近工件,在编程轨迹基础上,刀具中心向左(G41)或向右(G42)偏离一个偏置量的距离。

不能进行零件的加工。

2.刀补进行刀具中心轨迹与编程轨迹始终偏离一个偏置量的距离。

3.刀补撤消刀具撤离工件,使刀具中心轨迹终点与编程轨迹终点(如起刀点)重合。

不能进行加工。

(二)C机能刀具半径补偿的转接形式和过渡方式1.转接形式随着前后两段编程轨迹线形的不同,相应的刀具中心轨迹有不同的转接形式。

刀具半径补偿原理及补偿规则

刀具半径补偿原理及补偿规则

刀具半径补偿原理及补偿规则在加工过程中,刀具的磨损、实际刀具尺寸与编程时规定的刀具尺寸不一致以及更换刀具等原因,都会直接影响最终加工尺寸,造成误差。

为了最大限度的减少因刀具尺寸变化等原因造成的加工误差,数控系统通常都具备有刀具误差补偿功能。

通过刀具补偿功能指令,CNC系统可以根据输入补偿量或者实际的刀具尺寸,使机床自动加工出符合程序要求的零件。

1.刀具半径补偿原理(1)刀具半径补偿的概念用铣刀铣削工件的轮廓时,刀具中心的运动轨迹并不是加工工件的实际轮廓。

如图所示,加工内轮廓时,刀具中心要向工件的内侧偏移一定距离;而加工外轮廓时,同样刀具中心也要向工件的外侧偏移一定距离。

由于数控系统控制的是刀心轨迹,因此编程时要根据零件轮廓尺寸计算出刀心轨迹。

零件轮廓可能需要粗铣、半精铣和精铣三个工步,由于每个工步加工余量不同,因此它们都有相应的刀心轨迹。

另外刀具磨损后,也需要重新计算刀心轨迹,这样势必增加编程的复杂性。

为了解决这个问题,数控系统中专门设计了若干存储单元,存放各个工步的加工余量及刀具磨损量。

数控编程时,只需依照刀具半径值编写公称刀心轨迹。

加工余量和刀具磨损引起的刀心轨迹变化,由系统自动计算,进而生成数控程序。

进一步地,如果将刀具半径值也寄存在存储单元中,就可使编程工作简化成只按零件尺寸编程。

这样既简化了编程计算,又增加了程序的可读性。

刀具半径补偿原理(2)刀具半径补偿的数学处理①基本轮廓处理要根据轮廓尺寸进行刀具半径补偿,必需计算刀具中心的运动轨迹,一般数控系统的轮廓控制通常仅限于直线和圆弧。

对于直线而言,刀补后的刀具中心轨迹为平行于轮廓直线的一条直线,因此,只要计算出刀具中心轨迹的起点和终点坐标,刀具中心轨迹即可确定;对于圆弧而言,刀补后的刀具中心轨迹为与指定轮廓圆弧同心的一段圆弧,因此,圆弧的刀具半径补偿,需要计算出刀具中心轨迹圆弧的起点、终点和圆心坐标。

②尖角处理在普通的CNC装置中,所能控制的轮廓轨迹只有直线和圆弧,其连接方式有:直线与直线连接、直线与圆弧连接、圆弧与圆弧连接。

刀具补偿原理..

刀具补偿原理..

LX X PF LZ Z PF
此时刀具长度补偿计算公式可写成:
X F X P LX Z F Z P LZ
(2-4)
X
F
35 B(-70,15) A(0,15) Z 20
G0 X0 Y15 G1 X-70 A点: B点:
X F X A X FP 15 35 50 Z F Z A Z FP 0 20 20
(2-1)
X F X P X PF Z F Z P Z PF
(2-1)
① 理论刀尖点P的坐标(ZP,XP)就是实际被加工零件的轮廓轨迹坐标, 该坐标值可以从数控加工程序中直接获得; ②(ZPF,XPF)为理论刀尖点P相对于刀架参考点F的坐标值。 设(ZFP,XFP)为刀架参考点F相对于理论刀尖点P的坐标值,则有:
LX X FP X PF LZ Z FP Z PF
Z F Z P LZ
(2-3)
② 而在有些数控系统中,刀具参数表中的刀具长度参数采用刀尖点P相对于 刀架参考点F的坐标值(ZPF,XPF) ,即
下一个程序段包含G40功能字
刀具半径补偿撤消状态
非半径补偿状态 假设数控系统的当前工作状态为非半径补偿状态。 ① 如果当前程序段不包含G41或G42功能字,则数控系统保持非半径补 偿状态。 ② 如果当前程序段包含G41或G42功能字,则数控系统转入刀具半径补 偿建立状态。 在非半径补偿状态下,当前编程轮廓的终点就是当前编程轮廓的转接点。 数控系统控制刀具中心直接运动到该点位置。
① 由用户来完成刀具补偿的计算工作 此时,数控加工程序段中的坐标数据就是刀具中心或刀架相关点的坐 标位置。 例:假设刀具半径为15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X F X B X FP 15 35 50 Z F Z B Z FP 70 20 50
讨论: 1)利用(2-3)式,我们可以得到测量刀具长度参数的计算公式:
l X X F X P lZ Z F Z P
其中: ①(ZF,XF):刀架相关点F的坐标; ②(ZP,XP):新刀具刀尖点坐标。
下一个程序段包含G40功能字
刀具半径补偿撤消状态
非半径补偿状态 假设数控系统的当前工作状态为非半径补偿状态。 ① 如果当前程序段不包含G41或G42功能字,则数控系统保持非半径补 偿状态。 ② 如果当前程序段包含G41或G42功能字,则数控系统转入刀具半径补 偿建立状态。 在非半径补偿状态下,当前编程轮廓的终点就是当前编程轮廓的转接点。 数控系统控制刀具中心直接运动到该点位置。
LX X FP X PF LZ Z FP Z PF
此时刀具长度补偿计算公式可写成:
X F X P LX Z F Z P LZ
(2-3)
② 而在有些数控系统中,刀具参数表中的刀具长度参数采用刀尖点P相对于 刀架参考点F的坐标值(ZPF,XPF) ,即
F F X XPF
M
Z
X
Z
ZPF
W
ZWM Z FM Z PF Z PW Z FM LZ Z PW X WM X FM X PF X PW X FM LX X PW
(2)假设刀尖圆弧半径RS ≠ 0
此时,刀具的补偿算法比较复杂,一方面要考虑刀尖圆弧半径的补偿 (刀具半径补偿类型),另一方面还要考虑刀具长度补偿。 但是,一般情况下RS很小,在有些生产场合可以不考虑它对零件轮廓的影 响,另一方面,在对刀过程中已经把RS在平行于坐标轴方向所引起的误差进行 了补偿,因此零件表面上平行于坐标轴的轮廓不会再产生附加误差(但斜线 或圆弧还是会有误差),在此暂时不考虑刀尖圆弧的补偿计算。
三、刀具半径补偿计算 (一)刀具半径补偿原理 (1)什么是刀具半径补偿 在零件轮廓的加工过程中,数控系统的控制对象是加工刀具的中心点。 在加工零件轮廓时,数控系统必须使刀具中心在零件轮廓的法矢量方向上偏 移一个刀具半径值,这种偏移操作就称为刀具半径补偿。 刀具半径补偿就是根据零件轮廓计算出刀具中心轨迹的操作。一般来说, 有两种计算手段。
LX X PF LZ Z PF
此时刀具长度补偿计算公式可写成:
X F X P LX Z F Z P LZ
(2-4)
X
F
35 B(-70,15) A(0,15) Z 20
G0 X0 Y15 G1 X-70 A点: B点:
X F X A X FP 15 35 50 Z F Z A Z FP 0 20 20
X F
Y
F
Z
r L1
r

L1
L2
F
Z
立铣刀
X
钻头
X
外圆车刀
刀具补偿时所使用的刀具参数主要有:刀具半径、刀具长度、刀具中心 偏移量等等。这些刀具参数应该在程序运行前预先存入刀具参数表中。
在刀具参数表中,不同的刀具补偿号(刀沿)对应着不同的一组刀具参 数。在编制数控加工程序时,可以通过调用不同的刀具补偿号来实现不同的 刀具补偿计算。
① 人工计算 人工计算出刀具中心轨迹,然后按计算结果编写数控加工程序。 例:假设刀具半径为15
Y
(35,165) (50,150) (165,165) (150,150)
(35,50) (50,50) (50,35) (150,50) (165,35)
G01 X35 Y50 F100 Y165 X165 Y35 X50 G40 X0 Y0
② 由数控系统来自动完成刀具补偿的计算工作。 启用数控系统的刀具补偿功能后,刀具补偿的计算工作将由数控系统来 自动完成。此时数控加工程序段中的坐标数据采用零件轮廓的实际坐标数据, 既数控加工时刀尖或刀刃边缘的实际坐标位置。
(50,150)
(150,150)
(50,50)
(150,50)
G0 G41 X50 Y50 G1 Y150 X150 Y50 X50 G0 G40 X0 Y0
X F X P X FP Z F Z P Z FP
(2-2)
理论刀尖点P相对于刀架参考点F的坐标值(ZPF,XPF)、或刀架参考点F相 对于理论刀尖点P的坐标值(ZFP,XFP)可以从刀具参数表中的刀具参数来获取。 ① 在有些数控系统中,刀具参数表中的刀具长度参数采用刀架参考点F 相对于刀尖点P的坐标值(ZFP,XFP) ,即
(2-1)
X F X P X PF Z F Z P Z PF
(2-1)
① 理论刀尖点P的坐标(ZP,XP)就是实际被加工零件的轮廓轨迹坐标, 该坐标值可以从数控加工程序中直接获得; ②(ZPF,XPF)为理论刀尖点P相对于刀架参考点F的坐标值。 设(ZFP,XFP)为刀架参考点F相对于理论刀尖点P的坐标值,则有:
X
② 数控系统自动计算 当用户启用数控系统的刀具半径补偿功能后,数控系统将根据刀具参数 表中的刀具参数和数控加工程序中的零件轮廓坐标数据自动计算出刀具中心 轨迹,并控制刀具中心依此运动。
Y (50,150) (150,150)
G01 G41 X50 Y50 Y150 X150 Y50 X50 G40 X0 Y0
G41 A C B
G42 G42 A' B' C' G41
(3)零件轮廓拐角处的过渡处理 在两段零件轮廓的交点处,刀具半径补偿功能必须进行适当的过渡处理。 主要有两种处理方法:直线过渡和圆弧过渡。
G41 A C B
G42 G42 A' B' C' G41
① 圆弧过渡 圆弧过渡可以使刀具中心轨迹或工件轮廓光滑过渡,但在尖角处的加工 误差可能变大,尖角不尖。 ② 直线过渡 直线过渡在尖角处的加工误差比较小,并且还可以避免刀具在尖角处出 现加工停顿现象或刀具干涉现象,但拐角过渡不如圆弧过渡光滑。 本课程重点讨论直线过渡的刀具半径补偿算法。
二、刀具长度补偿计算 当刀具的长度尺寸发生变化而影响工件轮廓的加工时,数控系统应对这种 变化实施补偿,即刀具长度补偿。 X
(1)车床情况 数控车床的刀具结构如右图所示。 S :刀尖圆弧圆心; RS:刀尖圆弧半径; P(ZP,XP):理论刀尖点; F(ZF,XF):刀架相关点; (ZPF,XPF):P点相对于F点的坐标。
① 由用户来完成刀具补偿的计算工作 此时,数控加工程序段中的坐标数据就是刀具中心或刀架相关点的坐 标位置。 例:假设刀具半径为15
Y
(35,165) (50,150)
(165,165) (150,150)
(35,50) (50,50) (50,35)
(150,50)
(165,35) X
G0 X35 Y50 G1 Y165 F100 X165 Y35 X50 G0 X0 Y0
(50,50)
(150,50) X
(2)刀具半径补偿方向 对于同一条刀具中心轨迹,刀具的运动方向有两个。 ① 沿编程轨迹(零件轮廓)的前进方向看去,如果刀具中心轨迹始终在 编程轨迹的左边,则称为左刀补,用指令G41表示。 ② 沿编程轨迹(零件轮廓)的前进方向看去,如果刀具中心轨迹始终在 编程轨迹的右边,则称为右刀补,用指令G42表示。 当不需要再进行刀具补偿时,用指令G40来撤消由G41或G42所建立的刀具 半径补偿。
(1)假设刀尖圆弧半径RS = 0 此时,P点与S点重合,根据图示的几何关系可知:
rF rP rPF
已知:
rF (Z F ,
XF )
rP (Z P ,
XP)
rPF (Z PF , X PF )
代入上式后得刀具长度补偿计算公式为:
X F X P X PF Z F Z P Z PF
(2)刀具补偿的作用 采用刀具补偿功能,不仅可以大大简化数控加工程序的编写工作,还可 以提高数控加工程序的利用率,主要表现在两方面。 ① 当刀具尺寸发生变化(刀具磨损、刀具更换等)时,只需修改相应 的刀具参数即可。 ② 在同一台机床上对同一零件轮廓进行粗加工、半精加工和精加工等 多道工序时,不必编写三种加工程序,可将各道工序所预留的加工余量加入 刀具参数即可。
当前程序段不包含G41或G42功能字
非半径补偿状态
当前程序段包含G40功能字 当前程序段包含G41或G42功能字
刀具半径补偿建立状态
当前程序段不包含G40功能字但 下一个程序段包含G40功能字 当前程序段不包含G40功能字且 下一个程序段也不包含G40功能字
下一个程序段 不包含G40功能字
刀具半径补偿进行状态
(5)刀具半径补偿的执行过程 刀具半径补偿的执行过程分为四个工作阶段,如下图所示。
Y
(50,110) (90,110)
刀具半径补偿撤消
(120,80) 切入点(切出点) (50,50) 刀具半径补偿起始点 非半径补偿 刀具半径补偿建立G42 (30,20) 非半径补偿 刀具半径补偿进行
刀具半径补偿终点
F X L
(2-4)
Z lZ ZF
在图示的情况下: ZF为系统维护并显示的刀架 相关点F的Z坐标。 新刀具刀尖点的Z坐标ZP = L。 根据(2-4),系统可以计算出新 刀具Z方向的刀具参数为: Lz = ZF - ZP = ZF - L
2)采用相似的分析方法,我们可以得到建立工件坐标系的计算公式
F
XPF
rpF
S P ZPF
RS P
Z
S
rF rp
X F
XPF
rpF
S P ZPF
RS P
相关文档
最新文档