最新初中数学中的几道变式训练题

合集下载

人教版初中数学中考 练本 中考真题中的教材变式题(一题多变)

人教版初中数学中考 练本 中考真题中的教材变式题(一题多变)

(2)解:连接AQ,CQ.
∵四边形ABCD是正方形,
∴BA=BC,∠ABQ=∠CBQ=45°,∠ABF=90°.
∵BQ=BQ,∴△ABQ≌△CBQ(SAS),
∴QA=QC,∠BAQ=∠BCQ.
∵EQ垂直平分线段AF,∴QA=QF,
∴QC=QF,∴∠QFC=∠QCF,
∴∠QFC=∠BAQ.
∵∠QFC+∠BFQ=180°,
∴AB=BC,
∠B=∠BCD=90°.
∵CF平分∠DCH,
∴∠ECF=135°.
∵AG=CE,∴BG=BE,
∴△BGE是等腰直角三角形,
∴∠BGE=∠BEG=45°,∴∠AGE=135°=∠ECF.
∵AE⊥EF,∴∠AEB+∠FEC=90°.
∵∠BAE+∠AEB=90°,∴∠FEC=∠BAE,
∴△GAE≌△CEF,∴AE=EF.
的中点G,连接EG.)
变式1:(2022·泸州)如图,在边长为3的正方形ABCD中,E是边AB上的点,且
BE=2AE,过点E作DE的垂线,交正方形外角∠CBG的平分线于点F,交边BC于
点M,连接DF,交边BC于点N,则MN的长为(
B )
D.1
变式2:(2022·呼和浩特)下面图片是八年级教科书中的一道题.
∵CE⊥BF,∴∠BOE=90°,
∴∠2+∠3=90°,∴∠1=∠3.
∵∠DAB=90°=∠CME,
∵AB=BC,∠ABC=60°,
变式3:(2020·鞍山)在矩形ABCD中,E是射线BC上一动点,连接AE,过点B作
BF⊥AE于点G,交直线CD于点F.
(1)当矩形ABCD是正方形时,以点F为直角顶点在正方形ABCD的外部作等腰
变式3:(2022·兰州)综合与实践

初中数学变式训练

初中数学变式训练

初中数学教学变式训练题1、一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20米孟关良为了追上快艇,必须奋力前划,他如果以每秒6米的速度划行多少秒才能追上快艇?变式1:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了20秒,孟关良为了追上快艇,必须奋力前划,同学们,请你想一想他如果以每秒6米的速度划行多少秒才能追上快艇?(从先行20米改为先行了20秒)变式2:我们学校有一块300米的跑道在比赛跑步时经常会涉及到相遇问题和追及问题现有甲、乙两人比赛跑步,甲的速度是10米/秒,乙的速度是8米/秒,他们两人同地出发(1)两人同时相向而行经过几秒两人相遇。

(2)两人同时同向而行经过几秒两第一次相遇。

(3)乙先出发5秒,然后甲开始出发,问甲经过几秒两人第一次相遇。

变式3:一膄快艇与孟关良的皮艇同在起点,快艇以每秒5米的速度先行了10秒,教练要求他用45秒追上快艇,孟关良为了追上快艇,必须奋力前划,他以每秒6米的速度划行,划了5秒后他发现用这样的速度不能在规定的时间内追上,请问他的想法用45秒不能追上快艇对不对?如果他要追上请你算一算孟关良后来要用多少速度才能在规定的时间内追上快艇?2、16的算术平方根是。

变式1:16的平方根是。

变式2:的平方根是。

变式3:已知a的算术方根是2,则a= 。

3、“求证:顺次连结四边形各边中点所得的四边形是平行四边形.”变式1:顺次连结梯形各边中点所得的四边形是什么四边形?变式2:顺次连结矩形各边中点所得的四边形是什么四边形?变式3:顺次连结菱形各边中点所得的四边形是什么四边形?变式4:顺次连结正方形各边中点所得的四边形是什么四边形?变式5:顺次连结什么四边形中点可以得到平行四边形?变式6:顺次连结什么四边形中点可以得到矩形?4、例题:如图1,在平行四边形ABCD中,E、F分别是OB、OD的中点,四边形AECF是平行四边形吗?请说明理由。

图1变式训练:变式1:若将例题中的已知条件E、F分别是OB、OD的中点改为点E、F三等分对角线BD,其它条件不变,问上述结论成立吗?为什么?变式2:若将例题中的已知条件E、F分别是OB、OD的中点改为BE=DF,其它条件不变,结论成立吗?为什么?变式3:若将例题中的已知条件E、F分别是OB、OD的中点改为E、F为直线BD上两点且BE=DF,结论成立吗?为什么?5、如图14,已知,是一次函数的图象和反比例函数的图象的两个交点.求反比例函数和一次函数的解析式;变式一、求直线与轴的交点的坐标及△的面积;变式二、求方程的解(请直接写出答案);变式三、求不等式的解集(请直接写出案).6、已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是: ____________.(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:____________.并证明你的结论(3)运用:已知三角形ABC,AB=5cm,AC=3cm,分别以AB、BC、CA为边作正方形(如图3),则图中阴影部分的面积和最大值是. ____________7、正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上.分别连接BD、BF、FD,得到△BFD.(1)在图①~图③中,若正方形CEFG的边长分别为1、3、4,且正方形ABCD的边长均为3,请通过计算填写下表:正方形CEFG的边长 1 3 4△BFD的面积(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图③证明你的猜想.8、如图(1),四边形ABCD内部有一点P,使得S△APD +S△BPC=S△PAB+S△PCD填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F。

初中数学中的几道变式训练题

初中数学中的几道变式训练题

初中数学中的几道变式训练题一、已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。

变式1:在△ABC中,AB=AC,∠OA=4,OB=6,OC=2求∠AOC的度数。

变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?二、已知:C为AB上一点,△ACM和△CBN为等边三角形(如图所示)求证:AN=BMAB COACAB CO(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。

问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。

探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗?探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗?探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗?三、轴对称:已知直线l 及同侧两点A 、B ,试在直线l 上选一点C ,使点C 到点A 、B 的距离和最小。

变式1:如图,请你设计出两种方案的路线和最短的行走路线(画图并说明理由)方案1:小华由家先去河边,再去姥姥家;MACBBAl方案2:小华由家先去姥姥家,再去河边;变式2:已知: AB 、AC 表示两条交叉的小河, P 点是河水化验室, 现想从P 点出发, 先到AB 河取点水样, 然后再到AC 河取点水样, 最后回到P 处化验河水, 怎么走路程最短呢?实验员小王说:“我从P 点笔直向A 走, 同时取好两河水样再原路返回, 这样走, 路最近。

初中数学变式训练题2

初中数学变式训练题2

初中数学变式教学研究-----------10道变式题1:平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-) 变式1:平面直角坐标系中,已知A(6,3),B (1,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(1,0)(6,0)变式2:平面直角坐标系中,已知A(0,2),B (5, 2),点C 是x 轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(1,0)(4,0)(5,0)变式3:平面直角坐标系中,已知A(2,2),B (-2,2),点C 是坐标轴上的点,若△ABC 为直角三角形,则满足要求的所有点C 有 个.答案 8个2.平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-) 变式1:平面直角坐标系中,已知A(1,0),B (5, 0),点C 是直线2y x =-上的点,若△ABC 为直角三角形,则点C 的坐标为 .答案(1,-1)(5,3)(275-,271-)(275+,271+) 变式2:平面直角坐标系中,已知A(-2,0),B (2, 0),点C 是双曲线 上的点,若△ABC 为直角三角形,则满足要求的点C 的个数为 个.答案 3变式3:平面直角坐标系中,已知A(3,0),B (0, 4),点C 是抛物线 的对称轴上的点,若△ABC 为直角三角形,则点C 的坐标为 .答案(4,2)(4,7)(4, )3.平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,并且△ABC 为直x y 2=1682+-=x x y 43角三角形,请求出满足要求的所有点C 的坐标 .答案(0,0)(49-,0)(0,316-)变式1:平面直角坐标系中,已知A(4,0),B (0,3),点C 是坐标轴上的点,点D 在平面直角坐标系内,使 A 、B 、C 、D 为矩形,则点C 的坐标为 .答案(0,0)(49-,0)(0,316-) 变式2:平面直角坐标系中,已知A(0,2),B (5, 2),点C 是x 轴上的点,点D 在第一象限内,使 A 、B 、C 、D 为矩形,则点D 的坐标为 .答案(1,4)(4,4)变式3:平面直角坐标系中,已知A(1,0),B (5, 0),点C 是直线2y x =-上的点,点C 是坐标轴上的点,点D 在平面内,使 A 、B 、C 、D 为顶点的四边形为矩形,则点C 的坐标为 .答案(1,-1)(5,3)(275-,271-)(275+,271+)4:直角梯形ABCD 中,AD=1, BC=4 , DC =4。

最新初中数学一题多变、一题多解

最新初中数学一题多变、一题多解

CBAS 2S 3S 1CBAS 3S 2S 1S 3S 2S 1CBA一题多解、一题多变原题条件或结论的变化所谓条件或结论的变化,就是对某一问题的条件或结论进行变化探讨,并针对问题的内涵与外延进行深入与拓展,从而得到一类变式题组。

通过对问题的分析解决,使我们掌握某类问题的题型结构,深入认识问题的本质,提高解题能力。

例1 求证:顺次连接平行四边形各边中点所得的四边形是平行四边形。

变式1 求证:顺次连接矩形各边中点所得的四边形是菱形。

变式2 求证:顺次连接菱形各边中点所得的四边形是矩形。

变式3 求证:顺次连接正方形各边中点所得的四边形是正方形。

变式4 顺次连接什么四边形各边中点可以得到平行四边形? 变式5 顺次连接什么四边形各边中点可以得到矩形? 变式6 顺次连接什么四边形各边中点可以得到菱形? ……通过这样一系列变式训练,使学生充分掌握了四边形这一章节所有基础知识和基本概念,强化沟通了常见特殊四边形的性质定理、判定定理、三角形中位线定理等,极大地拓展了学生的解题思路,活跃了思维,激发了兴趣。

一、几何图形形状的变化如图1,分别以Rt ABC 的三边为边向外作三个正方形,其面积分别为321S S S 、、,则321S S S 、、之间的关系是图1 图2 图3E S 3S 2S 1DCBAS 3S 2S 1ABCDABCD S 3S 2S 1变式1:如图2,如果以Rt ∆ABC 的三边为直径向外作三个半圆,其面积分别为321S S S 、、,则321S S S 、、之间的关系是变式2:如图3,如果以Rt ∆ABC 的三边为边向外作三个正三角形,其面积分别为321S S S 、、,则321S S S 、、之间的关系是变式3:如果以Rt ∆ABC 的三边为边向外作三个一般三角形,其面积分别为321S S S 、、,为使321S S S 、、之间仍具有上述这种关系,所作三角形应满足什么条件?证明你的结论。

中考数学试题变式 变式训练

中考数学试题变式 变式训练
15 -3 ,) 2 9 3 D4 ( - 2 ,)
D3
C
O
x
D3 ( -
D2
等腰三角形的分类讨论
腰 一边

顶角 一角 底角 一腰上的高
形内 形外
一高
底边上的高
简解:过点A作AE⊥PB于E,过点C作CF⊥PB,交BP延 长线于F,由PB=5,S△PBC=5,得CF=2,由 PB=5,S△PAB=10, 得AE=4,易证 ∴BE=CF=2,∴S正ABCD=AB2=BE2+AE2=20
3、如图6,P是正方形ABCD外一点,PB=5, S△PAB=10,AM上是否存在点C,使 △ABC是等腰三角形
3 10 C1( 3 10 - 6,) - 6 - 3 10) ,- 3 10 C 2( 12 , 18 C 3( ) - 1 , 5) C 4(
变式二
平行四边形中点的存在性问题
如图,在平面直角坐标系中,函数y=2x+ 12的图象分别交x轴、y轴于A、B两点.过 点A的直线交y轴正半轴于点M,且点M为 线段OB的中点。
变式一
三角形中的点的存在性问题
如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、 B两点.过点A的直线交y轴正半轴于点M,且点M为线段OB的中点。 在坐标轴上是否存在点C,使以A,B,C为顶点的三角形是等腰三角形?
如图,在平面直角坐标系中,函数y=2x+12的图 象分别交x轴、y轴于A、B两点.过点A的直线交y轴 正半轴于点M,且点M为线段OB的中点。
如图,在平面直角坐标系中,函数y=2x+12的图 象分别交x轴、y轴于A、B两点.过点A的直线交y 轴正半轴于点M,且点M为线段OB的中点。
在平面内是否存在点C,使以 A,B,M,C为顶点的四边形是等腰梯形?

初中数学中的几道变式训练题

初中数学中的几道变式训练题

初中数学中的几道变式训练题一、 已知:点O 是等边△ABC 内一点,OA=4,OB=5,OC=3 求∠AOC 的度数。

变式1: 在△ABC 中,AB=AC ,∠ OA=4,OB=6,OC=2 求∠AOC 的度数。

变式2:如图,点O 是等边△ABC 内一点,∠AOB=110°, ∠BOC=135° 试问:(1)以OA 、OB 、OC 为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB 的大小保持不变,那么当∠BOC 等于多少度时, 以OA 、OB 、OC 为边的三角形是一个直角三角形?二、已知:C 为AB 上一点,△ACM 和△CBN 为等边三角形(如图所示)求证:AN=BM(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可ABC O A C A BC OMACB培养学生的创新素质)探索一:设CM、CN分别交AN、BM于P、Q,AN、BM交于点R。

问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。

探索二:△ACM和△BCN如在AB两旁,其它条件不变,AN=BM成立吗?探索三:△ACM和△BCN分别为以AC、BC为底且顶角相等的等腰三角形,其它条件不变,AN=BM成立吗?探索四:A、B、C三点不在一条直线上时,其它条件不变,AN=BM 成立吗?三、轴对称:已知直线l及同侧两点A、B,试在直线l上选一点C,使点C到点A、B的距离和最小。

变式1:如图,请你设计出两种方案的路线和最短的行走路线(画图并说明理由)方案1:小华由家先去河边,再去姥姥家;方案2:小华由家先去姥姥家,再去河边;小华家河流BAl变式2:已知: AB 、AC 表示两条交叉的小河, P 点是河水化验室, 现想从P 点出发, 先到AB 河取点水样, 然后再到AC 河取点水样, 最后回到P 处化验河水, 怎么走路程最短呢?实验员小王说:“我从P 点笔直向A 走, 同时取好两河水样再原路返回, 这样走, 路最近。

全等三角形中的变式训练题

全等三角形中的变式训练题

全等三角形中的变式训练题
设计者:海林市二道镇中学刘明玺
基本图形
习题:已知如图,AB⊥DC于B,且BD=BA,BE=BC。

求证:⑴DE=AC ⑵DE⊥AC
变式一、将上题中的△DBE沿DC方向平移至下图中的各种情况时,还有DE=AC、DE⊥AC吗?为什么?
变式二:已知:如图,△ABC中,AC=BC,AC⊥BC,直线EF交AC于F,交AB于E,交BC的延长线于D,且CF=CD,连结AD、BF,则BF与AD有何关系?试证明你的结论。

变式三:如图所示,在正方形ABCD中,E是正方形边AD上一点,F是BA延长线上一点,并且AF=AE,已知△ABE≌△ADF。

⑴在图中,可以通过平移、翻折、旋转中的哪一种方法,使△ABE与△ADF完全重合;
⑵指出图中线段BE与DF之间的关系。

变式四:已知:如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BE⊥AC,FD=CD,求证:BF=AC
变式五:△ABC中,∠A=90°,AB=AC,BD平分∠ABC交AC于点D,CE⊥BD于E,若BD=m,EC=n,试探m、n之间的关系式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中的几道变式训练题一、已知:点O是等边△ABC内一点,OA=4,OB=5,OC=3求∠AOC的度数。

变式1:在△ABC中,AB=AC,∠OA=4,OB=6,OC=2求∠AOC的度数。

变式2:如图,点O是等边△ABC内一点,∠AOB=110°, ∠BOC=135°试问:(1)以OA、OB、OC为边能否构成一个三角形?若能,请求出三角形各内角的度数;若不能,请说明理由.(2)如果∠AOB的大小保持不变,那么当∠BOC等于多少度时, 以OA、OB、OC为边的三角形是一个直角三角形?二、已知:C为AB上一点,△ACM和△CBN为等边三角形(如图所示)求证:AN=BMAB COACAB CO(分析:如对此题多做一些引申,既可以培养学生的探索能力,又可培养学生的创新素质)探索一:设CM 、CN 分别交AN 、BM 于P 、Q ,AN 、BM 交于点R 。

问此题中还有其他的边相等以及特殊角、特殊图形吗?给予证明。

探索二:△ACM 和△BCN 如在AB 两旁,其它条件不变,AN=BM 成立吗?探索三:△ACM 和△BCN 分别为以AC 、BC 为底且顶角相等的等腰三角形,其它条件不变,AN=BM 成立吗?探索四:A 、B 、C 三点不在一条直线上时,其它条件不变,AN=BM 成立吗?三、轴对称:已知直线l 及同侧两点A 、B ,试在直线l 上选一点C ,使点C 到点A 、B 的距离和最小。

变式1:如图,请你设计出两种方案的路线和最短的行走路线(画图并说明理由)方案1:小华由家先去河边,再去姥姥家;MACBBAl方案2:小华由家先去姥姥家,再去河边;变式2:已知: AB 、AC 表示两条交叉的小河, P 点是河水化验室, 现想从P 点出发, 先到AB 河取点水样, 然后再到AC 河取点水样, 最后回到P 处化验河水, 怎么走路程最短呢?实验员小王说:“我从P 点笔直向A 走, 同时取好两河水样再原路返回, 这样走, 路最近。

”化验员小吴否定了小王的路线, 提出了自己的想法, 请同学们想一想, 小吴走怎样的路线?小华家河流变式3:变式4:如图,在定直线XY 外有一点P,试于XY 上求两点A 、B,使PA+PB 为最短,而AB 等于定长a.aXY·PXY· ·P /·P //a aBAPAB CABPBCAD C变式5:如图,在河的两侧有A 、B 两个村庄,现要在河上修一座桥,规定桥必须与河岸垂直,要使A 村到B 村的路程最短,问桥应修在何处?(河宽为定长为m)解:(1)过B 作BC ⊥a,且使BC = m; (2)连接AC 交b 于P;(3)过点P 作PQ ⊥a,垂足为点Q,那么PQ 就是桥的位置.四、1、如图①,一架梯子长2.5米,顶端A 靠在墙AC 上,梯子下端B 与墙角C 相距1.5米. (1) 这架梯子的顶端距地面多高?(2)如果这架梯子滑动后停留在DE 位置(如图②所示),测得BD 长为0.5米,这时梯子顶端下落多少米?图① 图②变式:梯子靠在墙上,梯子的底端A 到墙根O 的距离2米,梯子的顶端B 到地面的距离为7米,现将梯子的底端向外移动到C ,使梯子底端C 到墙根O 的距离等于3米,同时梯子的顶端B 下降至D ,A ··Ba ba b·BA ·C PQAAC CBB DE那么BD ( )A 、等于1米;B 、大于1米;C 、小于1米;D 、以上结果都不对。

四、1.小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答:_______________(填“能”、或“不能”)2、有一个长、宽各2米,高3米且封闭的长方形纸盒,一只昆虫从顶点A 要爬到与A 点相对的顶点B ,那么这只昆虫爬行的最短路程为( )米。

A 、3;B 、4;C 、5;D 、6。

变式1:一个圆柱的高为36,底面圆的半径为5,一只蚂蚁从上底面的点A 处爬到与点A 相对应的下底面点B 处的最端路程是多少?Π值取3。

变式2:如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________.变式3:如图,沿OA 将圆锥侧面剪开,展开成平面图形是扇形OAB.(1) 扇形的弧AB 的长与圆锥底面圆周的长是怎样的关系?点A 和点B 在圆锥的侧面上是怎样的位置关系?2032AB(2) 若角∠AOB=90°,则圆锥底面圆半径r 与扇形OAB 的半径R 之间有怎样的关系?(3) 若点A 在圆锥侧面上运动一圈后又回到原位,则点A 运动的最短路程应该怎样设计?若5.02=x ,且∠AOB=90°,求点A 运动的最短路程。

五、变式1:求下列不等式的解 (1)2X 〉3 (2)-4X 〉52,4____4;2____23,_______;,45X 2kx-1<2k-x x<1,K X 2kx-1<2k-x K a b a b a b x y ax ay a x y <--<<< 变式: 若则 变式: 若则中,应满足 若则ax>ay 中,a 应满足_______. 变式: 解不等式:(k+2)x>5变式: 若关于的不等式的解集为求的取值范围 若关于的不等式的解集为x>1,求的取值范围六、图1中,在ΔABC 中,∠C=90°在ΔABC 外,分别以AB 、BC 、CA 为边作正方形,这三个正方形的面积分别记为1,2,3s s s ,探索1,2,3s s s 之间的关系。

AOB图1 图2 图3变式1:如图2,在ΔABC中,∠C=90°在ΔABC外,分别以AB、BC、CA为边作正三角形,这三个正三角形的面积分别记为s s s,请探1,2,3索s s s之间的关系。

1,2,3变式2:如图3,在ΔABC中,∠C=90°在ΔABC外,分别以AB、BC、CA为直径作半圆,这三个半圆的面积分别记为s s s请探索1,2,3s s s之间的关系。

1,2,3变式3:你认为所作的图形具备什么特征时,s s s均有这样的关1,2,3系。

七、如图(1)A是CD上一点,⊿ABC、⊿ADE都是正三角形,求证CE=BD:如图2,⊿ABD、⊿ACE都是正三角形,求证CD=BE题3:如图3,分别以⊿ABC的边AB、AC为一边画正方形AEDB和正方形ACFG,连接CE、BG,求证BG=CE问题1:你能从(1),(2),(3)三题中选择一个进行证明吗?问题2:三个命题的证明方式为什么是一样的?用到了哪些知识点?问题3:这些命题在证明过程中哪些条件起到解决问题的决定性作用?变式1:如图4,有公共顶点的两个正方形ABCD、BEFG,连接AG、EC,求证AG=EC 对吗?变式2:在图4中,若将正方形BEFG 绕点B 旋转任意角度α,AG=EC 还成立吗?变式3:如图5,P 是正方形ABCD 内一点,⊿ABP 绕点B 顺时针方向旋转能与⊿CBP ’重合,若PB=3,求PP ’八、当x__________时,分式321-+x x 的值为零?变形1:当x__________时,分式3212--x x 的值为零?(分子为零时x=1±)变形2:当x__________时,分式112--x x 的值为零?(1=x 时分母为零因此要舍去)变形3:当x__________时,分式654322----x x x x 的值为零?(此时分母可以因式分解为)1)(6(+-x x ,因此x 的取值就不能等于6且不能等于-1)九、已知二次函数的图像经过A(-3,0)、B (1,0)、C (0,-3)三点,求这个二次函数的解析式。

变式1:已知二次函数的图像经过一次函数y=-x-3的图像与x 轴、y 轴的交点A 、C ,并且经过点B (1,0),求这个二次函数的解析式。

变式2:已知抛物线经过两点B (1,0)、C (0,-3)。

且对称轴是直线x=-1,求这条抛物线的解析式。

变式3:已知一次函数的图像经过点(1,0),且在y轴上的截距是-1,它与二次函数的图像相交于A(1,m)、B(n,4)两点,又知二次函数的对称轴是直线x=2,求这两个函数的解析式。

十、如图,在平行四边形ABCD中,E、F分别是OB、OD的中点,四边形AECF是平行四边形吗?请说明理由。

(引导学生分析,完成此例题)变式1:若将例题中的已知条件E、F分别是OB、OD的中点改为点E、F三等分对角线BD,其它条件不变,问上述结论成立吗?为什么?变式2:若将例题中的已知条件E、F分别是OB、OD的中点改为BE=DF,其它条件不变,结论成立吗?为什么?变式3:若将例题中的已知条件E、F分别是OB、OD的中点改为E、F为直线BD上两点且BE=DF,结论成立吗?为什么?变式4:如图7:在平行四边形ABCD中,H、G、E、F分别为线段BO、DO、AO、CO的中点,问四边形EGFH是平行四边形吗?为什么?精品文档若结论成立,那么直线EG、FH有什么位置关系?图7 图8变式5:如图8在平行四边形ABCD中,E、F是对角线AC上的两个点;G、H是对角线BD上的两点。

已知AE=CF,DG=BH,上述结论仍旧成立吗?精品文档。

相关文档
最新文档