小学三年级奥数之难点逻辑推理问题
小学三年级奥数之难点逻辑推理问题

小学三年级奥数之难点:逻辑推理问题逻辑推理问题犹如侦探破案一样,掌握一定的方法就可以“线索”层层拨开进行破解。
【铺垫】三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判断:不是苹果,也不是梨淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果老猴子判断他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另外一只猴子完全说错了,你知道三只小猴子中谁是对的,谁是错的,谁是只对了一半吗?【分析】拿到这道题目关键是找线索,不妨看淘淘和皮皮的话,淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果两个人说得话完全对立,那么可以判断当中必然有一个是完全正确,有一个是完全错误,必然可以判断聪聪是说对了一半的人。
接下来利用聪聪的话作为标准进行假设判断淘淘和皮皮的话,1)首先我们假设淘淘全说真话,那么淘淘判断:不是苹果,而是桃子,每一句话都和聪聪判断:不是苹果,也不是梨都符合,那么说明在这个假设下聪聪淘淘都说得完全正确,那么就出现矛盾了(聪聪是说对了一半的人),说明淘淘就应该说得全部不正确最后结果:聪聪是说对一半的人,淘淘是全部不正确的人,皮皮是全部正确的人【点拨】在解答这类题型的时候,找对立面进行判断,然后利用假设法进行破解。
【拓展】数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌”,结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁的铜牌?【分析】同样的道理利用老师只猜对了一个进行假设,那么(1)假设小明得金牌是对的,在这个假设下那么“小华不得金牌”这句话是错误的,也就是小华应该得金牌,就和假设发生矛盾,所以假设不成立。
(2)假设小华不得金牌是对的,说明小华得银牌和铜牌,而在这个假设下那么“小明得金牌”是错误的,即小明也不得金牌,只能够是铜牌和银牌,接下来一句话“小强不得铜牌”也是错误的,那么小强就应该得铜牌,这样就可以知道这三个人都没有人得金牌,假设又错误。
三年级逻辑推理问题

小学三年级奥数之难点:逻辑推理问题逻辑推理问题犹如侦探破案一样,掌握一定的方法就可以“线索”层层拨开进行破解。
【铺垫】三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判断:不是苹果,也不是梨淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果老猴子判断他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另外一只猴子完全说错了,你知道三只小猴子中谁是对的,谁是错的,谁是只对了一半吗?【分析】拿到这道题目关键是找线索,不妨看淘淘和皮皮的话,淘淘判断:不是苹果,而是桃子皮皮判断:不是桃子,而是苹果两个人说得话完全对立,那么可以判断当中必然有一个是完全正确,有一个是完全错误,必然可以判断聪聪是说对了一半的人。
接下来利用聪聪的话作为标准进行假设判断淘淘和皮皮的话,(1)首先我们假设淘淘全说真话,那么淘淘判断:不是苹果,而是桃子,每一句话都和聪聪判断:不是苹果,也不是梨都符合,那么说明在这个假设下聪聪淘淘都说得完全正确,那么就出现矛盾了(聪聪是说对了一半的人),说明淘淘就应该说得全部不正确最后结果:聪聪是说对一半的人,淘淘是全部不正确的人,皮皮是全部正确的人【点拨】在解答这类题型的时候,找对立面进行判断,然后利用假设法进行破解。
【拓展】数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌”,结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁的铜牌?【分析】同样的道理利用老师只猜对了一个进行假设,那么(1)假设小明得金牌是对的,在这个假设下那么“小华不得金牌”这句话是错误的,也就是小华应该得金牌,就和假设发生矛盾,所以假设不成立。
(2)假设小华不得金牌是对的,说明小华得银牌和铜牌,而在这个假设下那么“小明得金牌”是错误的,即小明也不得金牌,只能够是铜牌和银牌,接下来一句话“小强不得铜牌”也是错误的,那么小强就应该得铜牌,这样就可以知道这三个人都没有人得金牌,假设又错误。
小学三年级数学思维拓展逻辑推理与数学问题解决技巧

小学三年级数学思维拓展逻辑推理与数学问题解决技巧数学是要求学生具备扎实的基础知识和一定的思维逻辑能力的学科,在小学三年级这个阶段,学生开始接触到一些比较抽象和复杂的数学概念和问题。
为了帮助小学三年级学生拓展数学思维,提高逻辑推理能力,并能够有效地解决数学问题,我们需要引导他们掌握一些技巧和方法。
首先,数学思维的拓展需要培养学生的逻辑推理能力。
逻辑推理指的是根据已知的条件进行思考和判断,通过推理出合理的结论。
在小学三年级,我们可以通过以下方式进行逻辑推理的训练:1. 图形推理:给学生展示一系列图片或图形,让他们观察并找出规律。
例如,让学生观察一个由三角形组成的序列图形,然后要求他们推理出下一个图形是什么样的。
通过这样的练习,学生可以提高对图形的观察和推理能力。
2. 数字推理:给学生一组数字序列,要求他们找出其中的规律,并预测下一个数字是多少。
例如,给出序列1, 4, 7, 10, ...,学生可以通过分析得出规律为每次增加3,然后可以推测下一个数字应该是13。
这样的练习可以让学生锻炼对数字序列的分析和推理能力。
3. 文字推理:给学生一些文字描述或故事情节,要求他们理解并回答相关问题。
例如,给出一段描述一群人乘坐不同颜色的船到达一个岛屿的情景,学生可以通过分析不同人物与船的对应关系,推理出每个人乘坐的船的颜色。
这样的练习可以提高学生对文字信息的理解和推理能力。
除了逻辑推理能力的培养,我们还需要教导学生一些解题的技巧。
在解决数学问题时,学生可能会遇到一些起初难以突破的难题,这时候需要他们学会灵活运用一些技巧。
以下是一些常见的数学问题解决技巧:1. 图形分解法:当遇到图形题时,学生可以将复杂的图形分解为几个简单的几何图形,然后逐个解决。
例如,遇到一个复杂的多边形问题,可以将其分解为若干个正方形或长方形,再计算每个子图形的面积,最后将结果合并得到最终答案。
2. 已知推未知法:当问题中给出的是已知条件,但需要求解的是未知量时,学生可以根据已知条件进行逆向推导。
小学奥数之逻辑推理专题训练(附详解)

三年级奥数之逻辑推理专题训练:1、在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?从标签为(黑+白)箱子里抽出一个球来,如果是黑球(白球),那么这个箱子里应该是两个黑球(白球),贴了(2黑)标签的箱子里应该是2白球(白+黑),贴了(2白)的箱子里应该是黑+白(2黑)2.甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?应该是4号,假设甲是2号,则丁是1号,丙是3号,乙是2号,与甲重复,假设不成立。
假设乙是3号,则丙是4号,丁是2号,甲是1号。
符合要求。
3.某校数学竞赛,A,B,C,D,E,F,G,H这8位同学获得前8名.老师让他们猜一下谁是第一名.A说:“或者F是第一名,或者H是第一名.”B说:“我是第一名.”C说:“G 是第一名.”D说:“B不是第一名.”E说:“A说得不对.”F说:“我不是第一名,H也不是第一名.”G说:“C不是第一名.”H说:“我同意A的意见.”老师指出:8个人中有3人猜对了.那么第一名是谁?B和D两个人中一个对一个错,假设A对则H对E和F错,并且C、G错。
那么C是第一名,这样就和A说的矛盾,所以假设不成立。
所以A错且H错,则E 对F对,C、G也错,同样推出C是第一名。
4.某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?假设C、D两地都去,则没去B地,再假设去了E地,则一定去了A地,也必须去B地,矛盾,所以没去E地,同样也没有去A地;假设C、D两地都不去,则去了E地,去了E地,一定要去A、D地,矛盾。
小学奥数:逻辑推理(二)计算逻辑

逻辑推理(二)计算逻辑莫泽凡例1:在一座办公大楼里,有30名办事员。
某天上班有一名办事员没有和其他办事员见面。
请问这一天在大楼里办公的人最多能遇到几位同事?随堂练习1:某次集会共到了68人,每人头上都戴了一顶帽子,颜色分红、蓝两种,任意两个到会的人中至少有一个人戴红帽子。
问戴红帽子的人数比戴蓝帽子的人数多了多少个人?例2:如图。
六张四位数的纸片互相纵横交错叠在一起。
其中有且只有一个数是完全平方数。
这个数是多少?例3:伟大的物理学家爱因斯坦A年B月14日生于德国乌尔姆(UIM),父母都是犹太人,他是相对论的创立者,诺贝尔物理奖获得者。
C年4月D日逝世于美国,享年E岁。
请将下列给出的一组数正确的填入A、B、C、D、E中。
(1)1955 (2)3 (3)1879 (4)76 (5)18随堂练习2:A年B月16日在德意志的波恩附近,一件破旧的阁楼上诞生了以后影响百年的音乐奇才——贝多芬。
他以非凡的英雄气概,与残酷的命运抗争,以无与伦比的意志和才华写出了无数欢乐的、悲壮的、田园诗一般温馨的不朽乐章。
在一个雷雨交加的夜晚,他圆睁双目注视着闪电,孤独地离开了人世。
一个陌生人替他合上了眼睛,时年C年3月D日,贝多芬享年E岁。
请将下列给出的一组数正确的填入A、B、C、D、E中。
(1)26 (2)57 (3)1827 (4)12 (5)1770例4:10个好朋友彼此住得很远,没有电话,只能靠写信互通消息。
现在这10个人每人都知道一条好消息,这10条好消息彼此不同,为使这10个人都知道所以的好消息,只能通过相互写信通报。
请问至少要让邮递员传送几封信?例5:甲、乙、丙、丁四个同学进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。
结果甲得第一,乙、丙并列第二,丁最后一名,那么乙得分。
随堂练习3:五个选手进行象棋比赛,每两个人之间都要赛一盘。
规定胜一盘得2分,平一盘各得1分,输一盘不得分。
已知比赛后,其中4位选手共得16分,则第5位选手得了分。
小学奥数-逻辑推理

小学奥数-逻辑推理逻辑推理(一)解题思路:以重要的条件为突破口,用排除、假设、反证、筛选等方法有条理地进行推理例1公路上按一路纵队排列着五辆大客车.每辆车的后面都贴上了该车的目的地的标志.每个司机都知道这五辆车有两辆开往A市,有三辆开往B市;并且他们都只能看见在自己前面的车的标志.调度员听说这几位司机都很聪明,没有直接告诉他们的车是开往何处的,而让他们根据已知的情况进行判断.他先让第三个司机猜猜自己的车是开往哪里的.这个司机看看前两辆车的标志,想了想说“不知道”.第二辆车的司机看了看第一辆车的标志,又根据第三个司机的“不知道”,想了想,也说不知道.第一个司机也很聪明,他根据第二、三个司机的“不知道”,作出了正确的判断,说出了自己的目的地。
请同学们想一想,第一个司机的车是开往哪儿去的;他又是怎样分析出来的?例2XXX、XXX、XXX三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛.事先规定.兄妹二人不许搭伴。
第一盘,XXX和XXX对XXX和XXX;第二盘,XXX和XXX对XXX和XXX的妹妹。
请你判断,XXX、XXX和XXX各是谁的妹妹。
例3“迎春杯”数学竞赛后,甲、乙、丙、XXX四名同砚推测他们之中谁能获奖.甲说:“假如我能获奖,那么乙也能获奖.”乙说:“假如我能获奖,那么丙也能获奖.”丙说:“假如丁没获奖,那么我也不能获奖.”实践上,他们之中只有一小我没有获奖.并且甲、乙、丙说的话都是正确的.那么没能获奖的同砚是___。
例4数学竞赛后,XXX、XXX、XXX各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌.XXX猜测:“XXX得金牌;XXX不得金牌;XXX不得铜牌.”结果XXX只猜对了一个.那么XXX得___牌,XXX得___牌,XXX得___牌。
例5有三只盒子,甲盒装了两个1克的砝码;乙盒装了两个2克的砝码;丙盒装了一个1克、一个2克的砝码.每只盒子外面所贴的标明砝码重量的标签都是错的.聪明的XXX只从一只盒子里掏出一个砝码,放到天平上称了一下,就把所有标签都矫正过来了.你晓得这是为何吗?例6四人打桥牌,某人手中有13张牌,四种花色样样有;四种花色的张数互不相同.红桃和方块共5张;红桃与黑桃共6张;有两张将牌(主牌).试问这副牌以什么花色的牌为主?1例7S、B、J、R四人分别获数学、英语、语文和逻辑学四个学科的奖学金,但他们都不知道自己获得的是哪一门获学金.他们相互猜测:S:“R得逻辑学奖”;B:“J得英语奖”;J:“S得不到数学奖”;R:“B得语文奖”。
小学奥数逻辑推理题及答案
小学奥数逻辑推理题及答案1.世界级的马拉松选手每天跑步不超过6公里。
因此,如果一名选手每天跑步超过6公里,它就不是一名世界级马拉松选手。
推理方法相同的选项是:(E) 油漆三小时之内都不干。
如果某涂料在三小时内干了,则不是油漆。
改写:油漆一般需要三小时以上才能干透,如果某种涂料在三小时内干了,那么它就不是油漆。
2.19世纪有一位英国改革家说,每一个勤劳的农夫,都至少拥有两头牛。
那些没有牛的,通常是好吃懒做的人。
因此它的改革方式便是国家给每一个没有牛的农夫两头牛,这样整个国家就没有好吃懒做的人了。
相类似的选项是:(B) 这是一本好书,因为它的作者曾获诺贝尔奖。
改写:这本书的作者曾获得诺贝尔奖,因此它是一本好书。
3.有一天,某一珠宝店被盗走了一块贵重的钻石。
经侦破,查明作案人肯定在甲、乙、丙、丁之中。
于是,对这四个重大嫌疑犯进行审讯。
审讯所得到的口供如下:甲:我不是作案的。
___:丁是罪犯。
丙:乙是盗窃这块钻石的罪犯。
___:作案的不是我。
经查实:这四个人的口供中只有一个是假的。
那么,以下哪项才是正确的破案结果?正确的破案结果是:(B) 乙作案。
改写:在四个嫌疑犯的口供中,只有一个是假的,而乙嫌疑犯说丁是罪犯,因此乙是作案人。
4.古代一位国王和他的___、___、___、___、钱五位将军一同出外打猎,各人的箭上都刻有自己的姓氏。
打猎中,一只鹿中箭倒下,但不知是何人所射。
___说:"或者是我射中的,或者是___射中的。
"___:"不是___射中的。
"___:"如果不是___射中的,那么一定是王将军射中的。
"___:"既不是我射中的,也不是___射中的。
"钱说:"既不是___射中的,也不是___射中的。
"国王让人把射中鹿的箭拿来,看了看,说:"你们五位将军的猜测,只有两个人的话是真的。
"正确的结论是:(A) ___射中此鹿。
小学奥数之逻辑推理题(详细解析)
小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。
说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。
2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。
A说:“我肯定考得最好”。
-------(1)|B说:“我不会是最差的”。
-------(2)C说:“我没有A考得好,但也不是最差的”。
--------(3)D说:“可能我考得最差。
”-------(4)成绩一公布,只有一人说错了。
请你按照考试分数由高到低排出他们的顺序。
分析:假设法。
假设A是最差的,那么第(1)和(2)都是错的话。
矛盾了。
假设B是最差的,那么第(2)和(4)都是错的话。
矛盾了。
假设C是最差的,那么第(3)和(4)都是错的话。
矛盾了。
、所以证明了D是最差的。
那么第(4)句话是对的。
第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。
所以:第(1)句话是错的,第(3)必须对的。
根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。
所以A 是第二好,C是第三好,D是最差的。
由高到低排列为:B、A、从、D。
3、王涛、李明、江兵三人在一起谈话。
他们当中一位是校长,一位是老师,一位是学生家长。
现在只知道:(1)江兵比家长年龄大。
(2)王涛和老师不同岁。
(3)老师比李明年龄小。
你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。
因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。
【精选】小学三年级奥数— 逻辑推理图文百度文库
【精选】小学三年级奥数—逻辑推理图文百度文库一、拓展提优试题1.计算:100﹣99+98﹣97+96﹣95+94﹣93+93﹣92+91=.2.甲、乙两人今年的年龄和是43岁,4年后,甲比乙大3岁,甲今年岁.3.11×11=121,111×111=12321,1111×1111=1234321,1111111×1111111=.4.60名探险队员过一条河,河上只有一条可乘坐6人的橡皮艇(来回算两次),过一次河需要3分钟,全体队员渡到河对岸一共需要分钟.5.李老师将一根长12米的木条锯成4小段,要用12分钟.照这样的锯法,如果将这根木条锯成8小段一共需要用分钟.6.小胖的妈妈去买苹果,想买5千克,付钱时发现还少3元5角,结果买了4千克,又剩下1元5角,小胖妈妈一共带了元钱.7.图中一共有个长方形,个三角形,条线段.8.切一个蛋糕,切1刀最多切成2块,切2刀最多切成4块,切3刀最多切成7块,照这样切下去,切5刀最多切成块.9.定义运算:a⊙b=(a×2+b)÷2.那么(4⊙6)⊙8=11.10.妹妹今年18岁,姐姐今年26岁,当两人年龄之和是20岁时,姐姐岁.11.(12分)同学们一起去划船,但公园船不够多,如果每船坐4人,会多出10人;如果每船坐5人,还会多出1人,共有()人去划船.A.36B.46C.51D.5212.如图,一个长方体由四块拼成,每块都由4个小立方体粘合而成,4块中有3块都可以完全看见,但包含黑色形状的那块只能看见一部分.那么,下列四个选项中的()是黑色块所在的形状.A.B.C.D.13.○○÷□=14…2,□内共有种填法.14.有一个挂钟,每到整点的时候会敲一次,而且几点钟就会敲几下.四点钟时,挂钟用了12秒钟敲完;那么到十二点时,要用秒钟才能敲完.15.在一根绳子上依次穿入5颗红珠、4颗白珠、3颗黄珠和2颗蓝珠,并按照此方式不断重复,如果从头开始一共穿了2014颗珠子,那么第2014颗珠子的颜色是色.【参考答案】一、拓展提优试题1.解:100﹣99+98﹣97+96﹣95+94﹣93+93﹣92+91,=(100﹣99)+(98﹣97)+(96﹣95)+(94﹣93)+(93﹣92)+91,=1×5+91,=5+91,=96.故答案为:96.2.解:由和差公式可得:甲今年的年龄是:(43+3)÷2=23(岁).答:甲今年23岁.故答案为:23.3.解:根据分析可得:1111111×1111111=1234567654321,故答案为:1234567654321.4.解:(60﹣6)÷5,=54÷5,≈11次,3×(11×2+1),=3×23,=69(分钟),答:全体队员渡到河对岸一共需要69分钟.故答案为:69.5.解:根据分析可得,12÷(4﹣1)×(8﹣1),=4×7,=28(分钟);答:将这根木条锯成8小段一共需要用28分钟.故答案为:28.6.解:单价:(3.5+1.5)÷(5﹣4),=5÷1,=5(元);共带:5×4+1.5=21.5(元);答:小胖妈妈一共带了21.5元.故答案为:21.5.7.解:根据题干分析可得:长方形有(3+2+1)×(2+1)=18个;三角形有:12+9+2=23(个),线段有:19+18+12=49(条),故答案为:18;23;49.8.解:当切1刀时,块数为1+1=2块;当切2刀时,块数为1+1+2=4块;当切3刀时,块数为1+1+2+3=7块;…当切n刀时,块数=1+(1+2+3…+n)=1+.则切5刀时,块数为1+=16块;故答案为:16.9.解:(4⊙6)⊙8,=[(4×2+6)÷2]⊙8,=7⊙8,=(7×2+8)÷2,=22÷2,=11,故答案为:11.10.解:(20+8)÷2,=28÷2,=14(岁);答:当两人年龄之和是20岁时,姐姐14岁.故答案为:14.11.解:(10﹣1)÷(5﹣4)=9÷1=9(条)4×9+10=36+10=46(人)答:共有46人去划船.故选:B.12.解:因为最上面一层都看得到,所以黑色块只在最下面一层,所以A、D 可以排除,又因为后面那行最右面一个也能看到,所以应为T字型,故图形应该是C.故选:C.13.解:因为余数<除数,所以□>2,因为14×6+2=86,14×7+2=100,被除数是两位数,所以□内最大填6,所以□内共有4种填法:3、4、5、6.故答案为:4.14.解:12÷(4﹣1)×(12﹣1)=12÷3×11=44(秒)答:敲十二点时要用44秒.故答案为:44.15.解:5+3+4+2=14(个)2014÷14=143…12,所以第2014颗珠子是第144周期的第12个,是黄颜色;答:第2014颗珠子的颜色是黄色.故答案为:黄.。
【经典】小学三年级奥数— 逻辑推理word百度文库
【经典】小学三年级奥数—逻辑推理word百度文库一、拓展提优试题1.1到100的所有单数的和是.2.两数的和是432,商是5,大数=,小数=.3.有9颗钢珠,其中8颗一样重,另有一颗比这8颗略轻,用一架天平最少称几次,可以找到那颗较轻的钢珠?4.有一个挂钟,3时敲3下,要用6秒.这个挂钟12时敲12下,需要用秒.5.在中,不同的字母代表不同的数字,则A+B+C+D+E+F+G =.6.甲乙两数的差是144,甲数比乙数的3倍少14,那么甲数是.7.奶奶生日那天对小明说:“我出生以后只过了18个生日.”奶奶今年应该是岁.8.只用2,3,5三个数(可重复使用)填在右图中的○内,使得每个三角形三个顶点上的三个数的和都相等.9.有一种特殊的计算器,当输入一个10~49的自然数后,计算器会先将这个数乘以2,然后将所得结果的十位和个位顺序颠倒,再加2后显示出最后的结果.那么,下列四个选项中,()可能是最后显示的结果.A.44B.43C.42D.4110.有20间房间,有的开着灯,有的关着灯,在这些房间里的人都希望与大多数房间保持一致.现在,从第一间房间的人开始,如果其余19间房间的灯开着的多,就把灯打开,否则就把灯关上,如果最开始开灯与关灯的房间各10间,并且第一间的灯开着.那么,这20间房间里的人轮完一遍后,关着灯的房间有()间.A.0B.10C.11D.2011.一个不透明的布袋中有黑、白、黄三种颜色的筷子各10根,最少拿出根筷子就能保证有一双是同样颜色的筷子.12.两个长7厘米,宽3厘米的长方形重叠成右边的图形.这个图形的周长是厘米.13.四个海盗杰克、吉米、汤姆和桑吉共分280个金币.杰克说:“我分到的金币比吉米少11个,比汤姆多15个,比桑吉少20个.”那么,桑吉分到了个金币.14.在一根绳子上依次穿入5颗红珠、4颗白珠、3颗黄珠和2颗蓝珠,并按照此方式不断重复,如果从头开始一共穿了2014颗珠子,那么第2014颗珠子的颜色是色.15.小明将买来的一筐桔子分别装入几个盘子中,如果每个盘子装10个,则多余2个,如果每个盘子装12个,则可以少用一个盘子,那么买来的一筐桔子共有多少只?【参考答案】一、拓展提优试题1.解:(1+99)×50÷2,=100×25,=2500;故答案为:2500.2.解:小数:432÷(5+1),=432÷6,=72;大数:72×5=360;故答案为:360,72.3.解:(1)把9个钢珠平均分成3组,把其中两组放在天平上称量,若重量一样,则较轻的在第三组;若重量不一样,则较轻的在天平上升的一组;(2)再把有较轻的钢珠的一组,拿出两个分别放在天平的左右两边,若天平平衡,则剩下的一个就是较轻的,若天平不平衡,则上升一方就是较轻的;这样用2次就一定能找出那个较轻的钢珠.答:用一架天平最少称2次,可以找到那颗较轻的钢珠.4.解:6÷(3﹣1)×(12﹣1),=6÷2×11,=3×11,=33(秒),答:需要33秒;故答案为:33.5.解:因为A、B、C、D、E、F、G是不同的数字,由题意可得:D+G=10,C+F=10,B+E=9,A=1,所以:A+B+C+D+E+F+G=A+(B+E)+(C+F)+(D+G)=1+9+10+10=30故答案为:30.6.解:(144+14)÷(3﹣1)+144,=158÷2+144,=79+144,=223,答:甲数是223.故应填:223.7.解:18×4=72(岁),答:奶奶今年应该是72岁.故答案为:72.8.解:这个幻方可以是(答案不唯一):9.解:A:44﹣2=42,颠倒后是24,24÷2=12;12是10~49的自然数,符合要求;B:43﹣2=41,颠倒后是14,14÷2=7,7不是10~49的自然数,不符合要求;C:42﹣2=40,颠倒后是4,4÷2=2,2不是10~49的自然数,不符合要求;D:41﹣2=39,颠倒后是93,93÷2=46.5,46.5不是10~49的自然数,不符合要求;故选:A.10.解:因为最开始开灯和关灯的各是10间,由于第一间的灯是开着的,所以,第一间人看到的,开灯的9间,关灯的10间,之后,他就关灯,以后无论开灯的出来看,还是关灯的出来看,始终关灯的多,即:一轮结束,灯全部会关闭,故选:D.11.解:把三种颜色的筷子构造为三个抽屉,分别放黑、白、黄不同颜色的筷子.从最不利情况考虑,拿了3根,颜色各不同放到三个抽屉里,此时再任意拿1根,即可出现一个抽屉里能放了2根筷子.即出现一个抽屉里2根,另外两个抽屉里各1根筷子的情况,共计2+1+1=4根.故答案为:4.12.解:周长:(7+3)×2×2﹣3×4=40﹣12=28(厘米)答:这个图形的周长是28厘米.故答案为:28.13.解:设杰克得金币x个,所以x+(x+11)+(x﹣15)+(x+20)=280,解得x=66,所以桑吉分到了66+20=86个金币,另解:此题考查的是和差问题,通过与杰克的关系进行转化得知:杰克的金币数为:(280﹣11+15﹣20)÷4=66(个)桑吉的金币数为:66+20=86(个)故答案为86.14.解:5+3+4+2=14(个)2014÷14=143…12,所以第2014颗珠子是第144周期的第12个,是黄颜色;答:第2014颗珠子的颜色是黄色.故答案为:黄.15.解:(10+2)÷(12﹣10)=6(个)12×6=72(只)答:买来的一筐桔子共有72只.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学三年级奥数之难点:逻辑推理问题
李正堂—2008—12—12
逻辑推理问题犹如侦探破案一样,掌握一定的方法就可以“线索”层层拨开进行破解。
【铺垫】三只小猴子聪聪、淘淘、皮皮见到一个水果,他们分别判断这是什么水果:聪聪判断:不是苹果,也不是梨
淘淘判断:不是苹果,而是桃子
皮皮判断:不是桃子,而是苹果
老猴子判断他们:有一只小猴子的判断完全正确,有一只小猴子说对了一半,而另外一只猴子完全说错了,你知道三只小猴子中谁是对的,谁是错的,谁是只对了一半吗?
【分析】拿到这道题目关键是找线索,不妨看淘淘和皮皮的话,
淘淘判断:不是苹果,而是桃子
皮皮判断:不是桃子,而是苹果
两个人说得话完全对立,那么可以判断当中必然有一个是完全正确,有一个是完全错误,必然可以判断聪聪是说对了一半的人。
接下来利用聪聪的话作为标准进行假设判断淘淘和皮皮的话,
(1)首先我们假设淘淘全说真话,那么淘淘判断:不是苹果,而是桃子,每一句话都和聪聪判断:不是苹果,也不是梨都符合,那么说明在这个假设下聪聪淘淘都说得完全正确,那么就出现矛盾了(聪聪是说对了一半的人),说明淘淘就应该说得全部不正确
最后结果:聪聪是说对一半的人,淘淘是全部不正确的人,皮皮是全部正确的人
【点拨】在解答这类题型的时候,找对立面进行判断,然后利用假设法进行破解。
【拓展】数学竞赛后,小明、小华和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌。
老师猜测:“小明得金牌,小华不得金牌,小强不得铜牌”,结果老师只猜对了一个,那么谁得金牌,谁得银牌,谁的铜牌?
【分析】同样的道理利用老师只猜对了一个进行假设,那么
(1)假设小明得金牌是对的,在这个假设下那么“小华不得金牌”这句话是错误的,也就是小华应该得金牌,就和假设发生矛盾,所以假设不成立。
(2)假设小华不得金牌是对的,说明小华得银牌和铜牌,而在这个假设下那么“小明得金牌”是错误的,即小明也不得金牌,只能够是铜牌和银牌,接下来一句话“小强不得铜牌”也是错误的,那么小强就应该得铜牌,这样就可以知道这三个人都没有人得金牌,假设又错误。
(3)假设小强不得铜牌是正确的,那么小强就是得金牌和银牌,“小华不得金牌”
是错误的,那么小华得金牌,这样小强就是银牌,而另外一句话“小明得金牌”就是错误的,所以就剩下小明得铜牌,没有矛盾则成立!
即:小华得金牌,小强得银牌,小明得铜牌
【提高】甲、乙、丙三人,一个总说谎,一个从不说谎,一个有时说谎,有一次谈到他们的职业
甲说:“我是油漆匠,乙是钢琴师,丙是建筑师”
乙说:“我是医生,丙是警察,你如果问甲,甲会说他是油漆匠”
丙说“乙是钢琴师,甲是建筑师,我是警察”
你知道谁说谎吗?
【分析】利用一个总说谎来进行讲解
(1)假设甲总说谎:“我是油漆匠,乙是钢琴师,丙是建筑师”
按照假设那么甲不是油漆匠,乙不是钢琴师,丙不是建筑师
在这个假设下丙说乙是钢琴师,甲是建筑师,丙说自己是警察
那么他们两个人的话:“甲说的话判定乙不是钢琴师、丙说乙是钢琴师”说明丙也说假话了,那么就可以暂定乙说的都是真话,那么我们再来判定乙是否真的都说得是真话,乙说:“我是医生,丙是警察,你如果问甲,甲会说他是油漆匠”,那么乙
是医生和甲的结果相一致即乙不是钢琴师,丙是警察和甲的结果相一致即丙不是建筑师,最后你如果问甲,甲会说他是油漆匠果然甲说:“我是油漆匠,所以都成立了,假设成功!即:甲总说谎、乙总不说谎、丙有时说谎。
(2)假设乙总说谎:“我是医生,丙是警察,你如果问甲,甲会说他是油漆匠”
按照假设那么乙不是医生,丙不是警察,你如果问甲,甲会说他不是油漆匠
在这个假设下丙说乙是钢琴师,甲是建筑师,丙说自己是警察,丙说自己是警察和假设不相符,那么我们暂且判断丙是有时说谎,接下来只是剩下甲从不说谎了那么我们要做的工作就是判断甲是否真的从不说谎,
甲说:“我是油漆匠,乙是钢琴师,丙是建筑师”他和假设乙总说谎:“你如果问甲,甲会说他不是油漆匠”矛盾则假设不成立
(3)假设丙总说谎“乙是钢琴师,甲是建筑师,我是警察”
按照假设那么乙不是钢琴师、甲不是建筑师、丙不是警察
丙说“乙是钢琴师,甲是建筑师,我是警察”,丙说自己是警察说明丙说谎了,那么我们可以在这个假设下假定丙是有时说谎的人
那么剩下甲是总不说谎的人,甲说:“我是油漆匠,乙是钢琴师,丙是建筑师”
其中一句话和假设的结果乙不是钢琴师矛盾,所以假设不成立!。