薄膜制备及表征
PVAUiO-66复合薄膜的制备及性能表征

行合成的 UiO ̄66ꎬ 填充制备了 PVA 复合膜ꎬ 利用红
子显微镜 ( SEM) 、 接触角、 溶胀、 拉伸强度和透光
性能等手段ꎬ 分析了这些膜的各种物性ꎮ
1 实验部分
搅拌 6 h 以保证混合均匀ꎬ 其中 PVA 的溶液浓度为
溶液倒在洁净玻璃板上ꎬ 用刮膜器均质流平ꎬ 室温风
干 24 hꎮ 此后将膜剥离ꎬ 在 160 ℃ 的马弗炉中交联
/ 雾度测定仪: WGT-Sꎬ 上海物理光学仪器厂ꎻ 红外
度测定ꎬ 先称量薄膜样品的质量 ( m1 ) ꎬ 将其放入盛
衍射仪 ( XRD) : Rigaku D / max 2500v / PCꎬ 日本理
用滤纸将样品表面的水渍擦去ꎬ 称量溶胀样品的质量
XLꎬ 荷兰 Phenom 公司ꎮ
按照公式计算出溶胀度:
to increase gradually.
Keywords: Poly ( Vinyl Alcohol) ꎻ Metal Organic Framework Material UiO ̄66ꎻ Degree of Swellingꎻ Contact Angleꎻ Tensile
Strengthꎻ Light Transmittance
和蒸馏水分别加入三口瓶中ꎬ 随后将其置入 95 ℃ 的
水浴锅中ꎮ 搅拌 1 h 后ꎬ 添加 6 g PVA 和 0 5 g 富马
DS =
m2 -m1
×100%
m1
(1)
拉伸强度测试: 根据 GB / T 1040 3—2006 方 法
进行拉伸测定ꎮ 每种薄膜裁切 10 个样品ꎬ 每个样品
上随机取点 10 处测定薄膜厚度ꎬ 然后用 25 mm / min
improved after crosslinking with fumaric acid. With the increase of UiO ̄66 loadingꎬ the degree of swellingꎬ tensile strength and light
薄膜制备实训总结

薄膜制备实训总结一、实训背景薄膜制备是一种常见的表面加工技术,通过将固态材料转化为薄膜状,可以改善材料的性质和功能。
为了更好地掌握薄膜制备技术,我参加了一次实训,通过实际操作和实验结果的分析,使我对薄膜制备有了更深入的了解。
二、实训过程本次实训主要包括了四个步骤:准备材料,薄膜制备,薄膜表征和薄膜应用。
2.1 准备材料在进行薄膜制备之前,首先需要准备好所需的原材料和实验设备。
我们选择了聚合物材料作为制备薄膜的基础材料,同时还需要一些辅助材料和化学试剂。
此外,我们还需要一些仪器设备,如电子天平、旋涂机等。
2.2 薄膜制备在薄膜制备的过程中,我们采用了旋涂法。
首先,我们将聚合物溶液滴在玻璃基板上,并利用旋涂机将溶液均匀涂布在基板表面。
然后,我们将涂布后的基板放入烘箱中进行烘烤,使溶液中的溶剂挥发掉,从而形成了薄膜。
2.3 薄膜表征制备完成的薄膜需要进行表征,以了解其性质和结构。
我们使用了透射电子显微镜(TEM)对薄膜进行形貌观察,利用X射线衍射(XRD)对薄膜的结构进行分析,同时还使用了表面粗糙度测试仪对薄膜的表面粗糙度进行测量。
2.4 薄膜应用在实训的最后一步,我们研究了薄膜的应用领域。
薄膜在各个领域都有广泛的应用,比如太阳能电池板、液晶显示屏等。
我们选择了几个比较热门的应用领域进行研究,并进行了实验验证。
三、实训收获通过这次薄膜制备的实训,我不仅了解了薄膜制备的基本原理和步骤,还学会了操作旋涂机和使用相关仪器设备。
通过实际操作和实验结果的分析,我更加深入地了解了薄膜的结构与性质的关系,对薄膜的应用也有了更深入的了解。
同时,实训过程中也暴露了我在操作技巧和数据分析方面的不足之处,这也为我今后的学习和进一步提高提供了指导。
通过与同学的合作讨论和老师的指导,我不仅加深了对薄膜制备的理解,还提高了实验操作的熟练度。
四、实训反思本次薄膜制备实训给我提供了一个很好的学习机会,但是由于实训时间较短,仅能进行简单的薄膜制备和分析,难以覆盖所有的细节。
铌酸锂薄膜制备及其性能表征调研报告

锯酸锂薄膜制备及其性能表征调研报告最近,LiNbO3薄膜表现出很大的潜力应用于光子技术等等已经开发了用于制造域控制的技术LiNbO3晶体结构特别是在薄膜。
TM已经指出单结晶的LiNbO3膜不是必需的声学和光学应用,因为它是足够的获得c取向的薄膜以创建单个d33系数。
锯酸锂具有优良的压电、电光、声光和热电等性质,成为电光装置和声表面装置的首选材料之一。
目前主要用来制造光波导、光调制器及声表面波(SAW)装置。
锯酸锂之所以是重要的铁电材料,还因为它具有一些独特的性质,诸如有很高的自发极化强度、很高的居里温度(1210C)及很大的双折射值。
由于在集成光学装置的大量需求,使得铜酸锂的研究非常活跃。
LiNbO3薄膜的制备方法很多,其中包括:电子束蒸镀法、溅射法(sputtering)、脉冲激光沉积法(PLD)、化学气相沉积(CVD)和溶胶-凝胶法(Sol-gel),Pechini法。
a.溅射法(sputtering)目前溅射法应用比较广泛,它利用高速运动的惰性气体离子反靶面上的离子轰击下来后再沉积到衬底(加热或不加热)。
为了改善薄膜层的质量和均匀性,常常采用高频等离子放电并用磁场加以控制(射频磁控溅射)。
溅射法靶材有烧结陶瓷、陶瓷粉末和复合金属(反应溅射)或多金属靶(多元靶溅射或反应共溅射)。
陶瓷靶寿命较长,薄膜的均匀性和一致性较好,但化学成分比较难调整。
粉末靶容易调整化学计量比,也能得到很好的薄膜质量。
溅射靶也可以直接采用金属元素,利用可转换的单一金属靶,轮流按时间序列进行溅射,改变各靶的溅射时间可调整薄膜的组成。
近年来正在发展且很有希望的制备技术是反应共溅射,即采用多个金属靶同时进行溅射,并分别改变各靶的溅射条件以获得较好的制膜结果。
采用金属靶制备薄膜需要在溅射时充入氧气,以生成氧化物,故称为反应溅射。
溅射法制备LiNbO3 薄膜,靶材一般用LiNbO3陶瓷或锂、银两种金属元素。
后者将两金属以一定方式分布在可旋转的圆盘上,改变各元素所占面积以调整薄膜的化学组成。
Cu2O薄膜的制备与表征

利用 J EO L J S M一 7 0 0 1 F 型 场 发 射 扫 描 电 镜 对 C u 。 O薄膜 表 面形 貌进 行分 析 ; 利 用 X’ P e r t P R O型 X 射线 电子衍 射 仪 ( P ANa l y t i c a l 公 司) 对 薄膜 的物 相 进 行分 析 , 管 电压 4 0 k V、 管 电流 4 0 mA、 扫描速度 5 。 / 3 ; 利用 T h e r mo S c i e n t i f i c 公 司的 E S C AL a b 2 5 0型 X射
财
文 章编 号 : 1 0 0 1 — 9 7 3 1 ( 2 0 1 3 ) 1 4 — 2 0 5 6 — 0 3
抖
2 0 1 3 年第1 4 期( 4 4 ) 卷
C u 2 O 薄膜 的 制备 与 表 征
宁婕 好 , 李云 白 , 刘 邦 武 , 夏 洋。 , 李超 波
( 1 .北京 交通 大学 光 电子技术 研究 所 , 发光与 光信 息技术 教育部 重点 实验 室 , 北京 1 0 0 0 4 4 ; 2 .中国科学 院微 电子研 究所 , 微 电子 器件 与集成 技术 重点 实验室 , 北京 1 0 0 0 2 9 )
摘 要 : 以透 明 导 电玻 璃 I TO 和 铜 片 为 _ T - 作 电极 ,
3 . 1 p H 值 的 影 响
低 温条 件下 Cu 0 的制 备 , 具有工艺简单 、 成本低、 纯 度 高等 优势 l 1 , 且此 方 法可 以通过 调 节参 数 实 现薄 膜 的可控 性制 备 , 沉积 速 率 高 , 对 反 应设 备 要 求 不 高 , 制
备的C u 0薄 膜 较 为 稳定 , 是 一 种较 为理 想 的实 验 方 法 。本 文采 用两 电极 电沉 积 的方 法 , 通 过控 制 电位 参 数, 制 备 了纯净 C u 。 0 薄膜, 并用 S E M 观察 了不 同沉 积 电位 下生 长 的 C u 。 0 薄 膜 的表 面 形 貌 , 对 薄 膜 的形 貌和沉 积 过程进 行 了讨 论 。
光学实验技术中的薄膜制备与表征指南

光学实验技术中的薄膜制备与表征指南在现代光学实验中,薄膜是一种广泛应用的材料,它具有许多独特的光学性质。
为了实现特定的光学设计要求,科学家们需要制备和表征各种薄膜。
本文将为您介绍光学实验技术中的薄膜制备与表征指南,帮助您更好地理解和应用薄膜技术。
一、薄膜制备技术1. 真空蒸发法真空蒸发法是一种常见的薄膜制备技术,它通常用于金属或有机材料的蒸发。
蒸发源材料通过加热,使其蒸发并沉积在基底表面上,形成薄膜。
真空蒸发法具有简单、灵活的优点,但由于材料的有机蒸发率不同,容易导致薄膜的成分非均匀性。
2. 磁控溅射法磁控溅射法是一种通过离子碰撞使靶材溅射,并沉积在基底上的技术。
这种方法可以获得高质量和均匀性的薄膜。
磁控溅射法通常用于金属、氧化物和氮化物等无机薄膜的制备。
3. 原子层沉积法原子层沉积法(ALD)是一种逐层生长薄膜的方法,通过交替地注入不同的前驱体分子,使其在基底表面上化学反应并沉积。
这种方法可以实现非常精确的厚度控制和成分均一性。
4. 溶胶凝胶法溶胶凝胶法是一种基于溶胶和凝胶的化学反应制备薄膜的方法。
通过溶胶中的物质分子在凝胶中发生凝胶化反应,形成薄膜。
这种方法适用于复杂的薄膜材料。
二、薄膜表征技术1. 厚度测量薄膜的精确厚度对于光学性能至关重要。
常用的测量方法包括激光干涉法、原位椭圆偏振法和扫描电子显微镜等。
激光干涉法通过测量反射光的相位差来确定薄膜厚度,原位椭圆偏振法则通过测量反射光的椭圆偏振状态来推断厚度。
2. 光学性能表征光学性能包括反射率、透过率、吸收率等。
常用的表征方法有紫外可见近红外分光光度计和激光光谱仪。
通过测量样品在不同波长下的吸收或透过光强度,可以得到其光学性能。
3. 表面形貌观察表面形貌对薄膜的光学性能和功能具有重要影响。
扫描电子显微镜和原子力显微镜是常用的表面形貌观察工具。
扫描电子显微镜可以获得样品表面的高分辨率图像,原子力显微镜则可以实现纳米级表面形貌的观察。
4. 结构分析薄膜的结构分析是了解其晶体结构和晶格形貌的重要手段。
薄膜材料的表征方法

6.2 薄膜形貌的表征方法 电子束与固体样品作用时产生的信号
6.2 薄膜形貌的表征方法
➢ 二次电子:外层价电子激发SEM ➢ 背散射电子:被反弹回来的一部分入射电子 S
EM ➢ 透射电子TEM
➢ 俄歇电子:内层电子激发AES,表面层成分分析
6.2 薄膜形貌的表征方法
6.3 薄膜结构的表征方法
6.3.1 X射线衍射法 -- 物相定性分析
材料的成份和组织结构是决定其性能的基本因素,化学分析能给 出材料的成份,金相分析能揭示材料的显微形貌,而X射线衍射分 析可得出材料中物相的结构及元素的存在状态.因此,三种方法不 可互相取代.
物相分析不仅能分析化学组成,更重要的是能给出元素间化学结 合状态和物质聚集态结构.
质量的方法,甚至可以将薄膜厚度的测量精度提高至低于一个 原子层的高水平.
6.1.2 薄膜厚度的机械测量方法
6.1.2.2 石英晶体振荡器法 基于适应晶体片的固有振动频率随其质量的变化而变化的物
理现象. 使用石英晶体振荡器测量薄膜厚度需要注意两个问题:
一,石英晶体的温度变化会造成其固有频率的漂移; 二,应采用实验的方法事先对实际的沉积速度进行标定. 在大多数的情况下,这种方法主要是被用来测量沉积速度. 将其与电子技术相结合,不仅可实现沉积速度、厚度的检测,还 可反过来控制物质蒸发或溅射的速率,从而实现对于薄膜沉积 过程的自动控制.
垂直入射的单色光的反射率随着薄膜的光学厚度n1h的变化而发 生振荡.
当n1> n2n2=1.5,相当于玻璃时,反射极大的位置: h = 2m+1λ/4n1
对于n1< n2,反射极大的条件变为: h = m+1λ/2n1
氧化铝薄膜的制备与表征

氧化铝薄膜的制备与表征氧化铝(Al2O3)是一种重要的无机氧化物材料,它不仅在工业生产中有广泛应用,而且在科学研究领域也发挥着重要作用。
在各种氧化物中,氧化铝薄膜由于其机械强度高、绝缘性能优异、化学稳定性好等特点而备受关注。
因此,探索高质量氧化铝薄膜的制备方法和表征技术具有重要意义。
氧化铝薄膜的制备方法目前,制备氧化铝薄膜的方法主要包括物理气相沉积(PVD)、化学气相沉积(CVD)、溶胶-凝胶法(sol-gel)、电化学沉积(ECD)等。
PVD方法是将金属铝用激光、电子束等方式加热,使其蒸发并沉积在固体基底表面上后,用氧气等高能粒子轰击其表面,使其形成氧化物。
该方法获得氧化铝晶体薄膜具有良好的结晶性和致密性,但需要高成本的设备和高真空环境。
CVD方法是将有机铝化合物挥发加热,使其与空气中的氧气反应,然后在基底表面上反应成固态氧化铝。
该方法具有较高的化学成分均匀性和较高的纯度,但需要较高的反应温度,反应物有毒性,容易导致膜的致密性和结晶性不足。
溶胶-凝胶法是将金属铝盐或有机铝化合物与有机醇等混合物制备成溶胶,然后沉积在固体基底上,在高温下热处理而成。
该方法具有较低的成本、易于控制薄膜厚度和形状,但需要较长时间的热处理和加热过程,且存在较多的溶胶聚合现象。
ECD方法是将铝基底电极置于含有氧化铝材料的电解质溶液中,使其在电位差的作用下,通过氧化还原反应形成薄膜。
该方法成本低、易于操作、反应条件温和,但膜厚较小,需多次电化学循环来增加膜厚度。
因此,制备氧化铝薄膜的方法各有优缺点,需要根据实际应用需求和条件选择适合的方法。
氧化铝薄膜的表征技术对于氧化铝薄膜的表征技术,目前主要有X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)、紫外-可见吸收光谱(UV-Vis)等技术。
XRD技术可以用于确定氧化铝薄膜中晶体结构和晶粒尺寸大小,同时还可以用来分析杂质和缺陷等。
SEM技术可以用于分析氧化铝薄膜的表面形貌、粒度和分布等信息。
氧化锌薄膜的合成与表征

氧化锌薄膜的合成与表征氧化锌薄膜是一种具有重要应用价值的材料,在光电子、传感器等领域具有广泛的应用。
如何高效地制备氧化锌薄膜并准确地表征其结构和性质,一直是当前研究重点之一。
本文将介绍氧化锌薄膜的制备方法和表征技术,以期更好地理解并应用该材料。
一、氧化锌薄膜的合成方法1. 真空蒸发法真空蒸发法是一种通过高温下蒸发金属来制备薄膜的方法。
通常,锌金属片被置于真空漏斗内加热,在漏斗的上部有一块玻璃基板直接对接。
锌金属加热后开始蒸发,氧性的基板表面吸收这些蒸发物后,化学反应形成氧化锌薄膜。
这种方法制备所得氧化锌薄膜的厚度通常为几十纳米,对于一些特定应用而言,薄膜的厚度并不能完全满足需求;同时,真空蒸发法的操作条件相对苛刻,同时背景气压的影响也需要特别注意。
2. 溅射法溅射法是在真空环境中利用阴极等离子体产生的离子将靶材上的原子或原子团射向基板表面,最终形成薄膜的制备方法。
通常,气体靶在真空腔中被激光离子激发产生等离子体,产生的等离子体会扫面过整个靶材表面,将原子射到基板表面形成薄膜。
相对于真空蒸发法而言,溅射法所制备氧化锌薄膜的厚度范围更加广泛,可从几纳米到数百纳米,制备比较方便,同时膜的质量也相对较高。
3. 气相沉积法气相沉积法是利用高温气相反应使气体中的原子通过活性自由基中间体沉积到基板表面,最终形成薄膜的方法。
常见的有热CVD法、PECVD法、晶粒增大法等。
其中,热CVD法通常是在真空中通过高温热解锌源和氧源来制备氧化锌薄膜的方法,制备过程中需要精确控制反应条件,如锌源和氧源的速率、反应时间和反应温度等。
而PECVD法则是利用激发的等离子体化学反应制备氧化锌薄膜,制备过程相对比较复杂,但制备的氧化锌薄膜结构密度高、耐久性好。
四、氧化锌薄膜的表征技术1. X射线衍射(XRD)XRD是一种常见的固体材料结构分析技术,它通过对材料的衍射效应进行定量分析,来确定一个样品的晶体结构、晶格参数、非晶态和有序材料的结构等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.薄膜制备技术代表性的制备方法
物理气相沉积法(PVD)(粒子束溅射沉积、磁控溅射沉积、真空蒸镀):表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。
化学气相沉积法(CVD):气相沉积过程中沉积粒子来源于化合物的气相分解反应,因此称为化学气相沉积法
2.薄膜的表征技术
2.1 薄膜厚度:几何厚度、光学厚度、质量厚度
几何厚度:等厚干涉条纹法、等色干涉条纹法
2.2 结构表征
(1)薄膜的宏观形貌,包括薄膜尺寸、形状、厚度、均匀性等;
(2)薄膜的微观形貌,如晶粒及物相的尺寸大小和分布、孔洞和裂纹、界面扩散层及薄膜织构等;
(3)薄膜的显微组织,包括晶粒内的缺陷、晶界及外延界面的完整性、位错组态等。
扫描电子显微镜Scanning Electronic Microscope (SEM):
透射电子显微镜Transmission Electronic Microscope
X射线衍射方法
低能电子衍射(LEED)和反射式高能电子衍射(RHEED)
扫描隧道显微镜(Scanning Tunneling Microscope-STM)
原子力显微镜(AFM)
2.3 成分表征
原子内的电子激发及相应的能量过程
X射线能量色散谱(EDX)
俄歇电子能谱(AES)
X射线光电子能谱(XPS)
卢瑟福背散射技术(RBS)
二次离子质谱(SIMS)
3. 各种特种薄膜的应用
金刚石薄膜:高硬度、高耐磨性使得金刚石薄膜成为极佳的工具材料;金刚石具有极高的热导率,这使得金刚石成为极好的高功率光电子元件的散热器件材料;金刚石在从紫外到远红外的很宽的波长范围内具有很高的光谱透过性能以及极高的硬度、强度、热导率以及极低的线膨胀系数和良好的化学稳定性,这些优异性质的综合使得金刚石薄膜成为可以在恶劣环境中使用的极好的光学窗口材料。
硬质涂层:按其材料类别被细分为陶瓷以及金属间化合物两类
热防护涂层:热防护涂层通常是由一层金属涂层和一层氧化物热防护层组成的复合涂层防腐涂层:陶瓷材料涂层、高分子材料涂层、阳极防护性涂层
集成电路:薄膜集成电路是将整个电路的晶体管、二极管、电阻、电容和电感等元件以及它们之间的互连引线,全部用厚度在1微米以下的金属、半导体、金属氧化物、多种金属混合相、合金或绝缘介质薄膜,并通过真空蒸发、溅射和电镀等工艺制成的集成电路存储:复合磁头和薄膜磁头磁记录介质薄膜
有机电致发光薄膜OLED:平板显示
氧化物半导体敏感薄膜SnO2, TiO2, Fe3O4:高灵敏度气体传感器
力敏、磁敏金属薄膜FeSiB:微压力、震动、力矩、速度、加速度传感器。