决策树例题

合集下载

决策树案例及答案

决策树案例及答案

案例:假设有一工程项目,管理人员要根据天气状况决定开工方案。

如果开工后天气好,可以给国家创收30000元;如果开工后天气差,将给国家带来损失10000元;如果不开工,讲给国家带来损失1000元,。

已知开工后天气好的概率是0.6,开工后天气差的概率是0.4.请用
决策树方案进行决策。

状方、、态案天气好天气坏
0.60.4
开工30000 (期望收益=30000*0.6 )-10000 (期望收益=-10000*0.4 )爪开工-1000 (期望收益=-1000*0.6 )-1000 (期望收益=-1000*0.4 )第二步,绘制决策树
(1) 计算期望收益并标注在决策树上
开工方案下,预期收益值=30000*0.6+ (-10000) *0.4=14000
不开工方案下,预期损失值=-1000
(2) 比较两个方案并减去期望收益较小的方案枝
30000*0. 6
概率枝-10000*0-4
-1000*0.6
-1 000*0.4
概率枝▲18000 .▲-4000▲-600
A-400。

案例试题—决策树

案例试题—决策树

一、2002年案例考试试题——决策树某房地产开发公司对某一地块拟定两种开发方案。

A方案:一次性开发多层住宅45000平方米,需投入总成本费用9000万元,开发时间18个月。

B方案:将地块分两期开发,一期开发高层住宅36000平方米,需投入总成本费用8100万元,开发时间15个月。

如果一期销路好,则二期继续开发高层住宅36000平方米,投入总费用8100万元,如果一期销路差,或者暂停开发,或者开发多层住宅22000平方米,投入总费用4600万元,开发时间15个月。

两方案销路好和销路差时的售价和销量情况见下表。

根据经验,多层住宅销路好的概率为0.7,高层住宅销路好的概率为0.6,暂停开发每季损失10万元,季利率2%。

问题:1、两方案销路好和销路差时季平均销售收入各为多少万元(假定销售收入在开发时间内均摊)2、用决策树做出决策,应采用哪个方案(计算结果保留两位小数)答案:1、A方案开发多层住宅:销路好4.5×4800×100%÷6=3600(万元)销路差4.5×4300×80%÷6=2580(万元)B方案一期开发高层住宅:销路好3.6×5500×100%÷5=3960(万元)销路差3.6×5000×70%÷5=2520(万元)B方案二期开发高层住宅:3.6×5500×100%÷5=3960(万元)开发多层住宅:销路好2.2×4800×100%÷5=2112(万元)销路差2.2×4300×80%÷5=1513.6(万元)2、机会点①净现值的期望值:(3600×0.7+2580×0.3)×(P/A,2%,6)-9000=(3600×0.7+2580×0.3)×5.601-9000=9449.69(万元)等额年金:9449.69×(A/P,2%,6)=9449.69×1/5.601=1687.14(万元)机会点③净现值的期望值:3960×(P/A,2%,5)×1.0-8100=3960×4.713×1.0-8100=10563.48(万元)等额年金:10563.48×(A/P,2%,5)=10563.48×1/4.713=2241.35(万元)机会点④净现值的期望值:-10×(P/A,2%,5)=-10×4.713=-47.13(万元)等额年金:-47.13×(A/P,2%,5)=-47.13×1/4.713=-10.00(万元)机会点⑤净现值的期望值:(2112×0.7+1513.6×0.3)×(P/A,2%,5)-4600=(2112×0.7+1513.6×0.3)×4.713-4600=4507.78(万元)等额年金:4507.78×(A/P,2%,5)=4507.78×1/4.713=956.46(万元)根据计算结果判断,B方案在一期开发高层住宅销路差的情况下,二期应改为开发多层住宅。

决策树计算题

决策树计算题

决策树问题1.某建筑公司拟建一预制构件厂,一个方案是建大厂,需投资300万元,建成后如销路好每年可获利100万元,如销路差,每年要亏损20万元,该方案的使用期均为10年;另一个方案是建小厂,需投资170万元,建成后如销路好,每年可获利40万元,如销路差每年可获利30万元;若建小厂,则考虑在销路好的情况下三年以后再扩建,扩建投资130万元,可使用七年,每年盈利85万元。

假设前3年销路好的概率是0.7,销路差的概率是0.3,后7年的销路情况完全取决于前3年;试用决策树法选择方案。

解:这个问题可以分前3年和后7年两期考虑,属于多级决策类型,如图所示。

决策树图示考虑资金的时间价值,各点益损期望值计算如下:点①:净收益=[100×(P/A,10%,10)×0.7+(-20)×(P/A,10%,10)×0.3]-300=93.35(万元)点③:净收益=85×(P/A,10%,7)×1.0-130=283.84(万元)点④:净收益=40×(P/A,10%,7)×1.0=194.74(万元)可知决策点Ⅱ的决策结果为扩建,决策点Ⅱ的期望值为283.84+194.74=478.58(万元)点②:净收益=(283.84+194.74)×0.7+40×(P/A,10%,3)×0.7+30×(P/A,10%,10)×0.3-170=345.62(万元)由上可知,最合理的方案是先建小厂,如果销路好,再进行扩建。

在本例中,有两个决策点Ⅰ和Ⅱ,在多级决策中,期望值计算先从最小的分枝决策开始,逐级决定取舍到决策能选定为止。

2.某投资者预投资兴建一工厂,建设方案有两种:①大规模投资300万元;②小规模投资160万元。

两个方案的生产期均为10年,其每年的损益值及销售状态的规律见表15。

试用决策树法选择最优方案。

人工智能决策树例题经典案例

人工智能决策树例题经典案例

人工智能决策树例题经典案例一、经典案例:天气预测决策树在天气预测中有广泛应用,下面是一个关于是否适宜进行户外运动的示例:1. 数据收集:- 温度:高(>30℃)/中(20℃-30℃)/低(<20℃)- 降水:是/否- 风力:高/中/低- 天气状况:晴朗/多云/阴天/雨/暴雨- 应该户外运动:是/否2. 构建决策树:- 根据温度将数据分为三个分支:高温、中温、低温- 在每个分支中,继续根据降水、风力和天气状况进行划分,最终得到是否适宜户外运动的决策3. 决策树示例:温度/ / \高温中温低温/ | | \ |降水无降水风力适宜/ \ | | / \是否高中低| |不适宜适宜- 如果温度是高温且有降水,则不适宜户外运动- 如果温度是高温且无降水,则根据风力判断,如果风力是高,则不适宜户外运动,如果风力是中或低,则适宜户外运动 - 如果温度是中温,则不论降水和风力如何,都适宜户外运动- 如果温度是低温,则需要考虑风力,如果风力是高,则适宜户外运动,如果风力是中或低,则不适宜户外运动4. 参考内容:决策树的构建和应用:决策树通过对输入特征进行划分,构建了一棵树形结构,用于解决分类或回归问题。

构建决策树主要包括数据预处理、特征选择、划分策略和停止条件等步骤。

特征选择可以使用信息增益、基尼指数等算法,划分策略可以使用二叉划分或多叉划分,停止条件可以是叶子节点纯度达到一定阈值或达到预定的树深度。

决策树的应用包括数据分类、特征选择和预测等任务。

天气预测案例中的决策树:将天气预测问题转化为分类问题,通过构建决策树,可以得到识别是否适宜户外运动的规则。

决策树的决策路径可以用流程图或树状图表示,帮助理解和解释决策过程。

决策树的节点表示特征值,分支表示判断条件,叶子节点表示分类结果。

决策树的生成算法可以基于启发式规则或数学模型,如ID3、C4.5、CART等。

决策树的优缺点:决策树具有可解释性强、易于理解和实现、能处理非线性关系等优点。

决策树练习题-多级决策树

决策树练习题-多级决策树
3
E(5)=1.0×(-30)×7= -210 (万元)
4
前三年的期望收入=0.7×100×3+0.3×(-30)×3=183(万元)
5
E(1)=183+0.7×609+0.3×(-210)-300=246.3 (万元)
6
02
03
对于节点2即改建车间
E(6)=0.9×40×7+0.1×10×7=259 (万元)
Hale Waihona Puke 01通过比较各期望收益,选择方案。
03
方案3为最佳方案。
02
E(3)=302.3> E(1)246.3 > E(2)155.3
销路好0.7
销路好0.7
销路差0.3
销 路差0.3
销路差0.3
销路差1.0
销路差0.1
销路差0.1
销路差1.0
销路差0.1
销路差0.1
销路差1.0
销路好0.9
销路好0.9
销路好0.9
销路好0.9
100
-30
-30
40
10
10
10
10
100
-30
40
前三年
后七年
扩 建
不 扩 建
E(4)=0.9×100×7+0.1×(-30)×7=609
E(5)=1.0×(-30)×7= -210
前三年的期望收入= 0.7×100×3+0.3×(-30)×3=183
E(1)=183+0.7×609+0.3×(-210)-300=246.3
决策树计算题
某工厂为生产一种新产品,制定三个基建方案。一是新建车间生产;二是改建原有车间进行生产;三是先改建,生产3年后当产品销路好时再进行扩建。新建和改建车间所需投资分别是300万元和140万元,若要在改建的基础上扩建车间,还需要追加投资140万元,产品生产期定为10年。

决策树例题分析及解答

决策树例题分析及解答

各点效益值计算过程是:
点2:13.5×0.8×3+172.9×0.8+25.5×0.2×3+206.5×0.2-25(投资)=202.3万元
点3:15×0.8×3+105×0.8+15×0.2×3+105×0.2-10(投资)=140万元
点4:21.5×0.6×7年+29.5×0.4×7年=172.9万元
例: 某农业企业有耕地面积33.333公顷,可供灌水量6300立方米,在生产忙季可供工作日2800个,用于种植玉米、棉花和花生三种作物。预计三种作物每公顷在用水忙季用工日数、灌水量和利润见表,在完成16.5万公斤玉米生产任务的前提下,如何安排三种作物的种植面积,以获得最大的利润。
作物类别
忙季需工作日数
建设大工厂需要投资600万元,可使用10年。销路好每年赢利200万元,销路不好则亏损40万元。
建设小工厂投资280万元,如销路好,3年后扩建,扩建需要投资400万元,可使用7年,每年赢利190万元。不扩建则每年赢利80万元。如销路不好则每年赢利60万元。
试用决策树法选出合理的决策方案。 经过市场调查,市场销路好的概率为0.7,销路不好的概率为0.3。




需求量较高 需求量一般 需求量较低 需求量很低
600 400 -150 -350
800 350 -350 -700
350 220 50 -100
40求量一般
需求量较低
需求量很低
max

600
400
-150
-350
600

800
350
-350
-700
800
*
1
4
2
3
6
5

决策树实例计算

决策树实例计算

决策树实例计算计算题⼀ 1.为⽣产甲产品,⼩⾏星公司设计了两个基本⽅案:⼀是建⼤⼯⼚,⼆是建⼩⼯⼚。

如果销路好,3年以后考虑扩建。

建⼤⼯⼚需投资300万元,建⼩⼯⼚需投资160万元,3年后扩建另需投资140万元。

扩建后可使⽤7年,其年度损益值与⼤⼯⼚相同。

每种⾃然状态的预测概率及年度损益值如下表:前 3 年后 7 年根据上述资料试⽤决策树法做出决策。

四、计算题(15分)答:建⼤⼚收益=581-300=281建⼩⼚收益=447-160=287所以应选择建⼩⼚⽅案。

⼆⼭姆公司的⽣产设备已经落后,需要马上更新。

公司有⼈认为,⽬前产品销路增长,应在更新设备的同时扩⼤再⽣产的规模。

但也有⼈认为,市场形势尚难判断,不如先更新设备,3年后再根据形势变化考虑扩⼤再⽣产的规模问题。

这样,该公司就⾯临着两个决策⽅案。

决策分析的有关资料如下:A、现在更新设备,需投资35万元, 3年后扩⼤⽣产规模,另需投资40万元。

B、现在更新设备的同时扩⼤再⽣产的规模,需投资60万元。

C、现在只更新设备,在销售情况良好时,每年可获利6万元;在销售情况不好时,每年可获利4、5万元。

D、如果现在更新与扩产同时进⾏,若销售情况好,前3年每年可获利12万元;后7年每年可获利15万元;若销售情况不好,每年只获利3万元。

E、每种⾃然状态的预测概率如下表前 3 年后 7 年根据上述资料试⽤决策树法做出决策。

答案:结点7收益值=0、85×7 × 15+0、15 ×7 ×3=92、4(万元)结点8收益值=0、85×7 ×6+0、15 ×7 ×4、5=40、4(万元)结点9收益值=0、1×7 × 15+0、9 ×7 ×3=29、4(万元)结点10收益值=0、1×7 × 6+0、9 ×7 ×4、5=32、6(万元)结点1收益值=0、7×[52、4+(3 × 6)]+0、3 ×[32、6+(3 × 4、5)]=63、1(万元)结点2收益值=0、7×[92、4+(3 × 12)]+0、3 ×[29、4+(3 × 3)]=101、4(万元)答:⽤决策树法进⾏决策应选择更新扩产⽅案,可获得收益41、4万元。

决策树算法例题经典

决策树算法例题经典

决策树算法例题经典
案例1:购物产品推荐。

假设当前我们需要进行购物产品推荐工作,用户可以选择若干项属性,例如品牌、价格、颜色、是否有折扣等等,在已知一些样本的基础上,构
建一棵决策树,帮助用户快速得到最佳购买推荐。

如果用户选择的品牌为A,则直接推荐产品P3;如果选择品牌为B,
则继续考虑价格,如果价格低于100,则推荐产品P1,否则推荐产品P2。

如果用户选择的品牌为C,则直接推荐产品P4。

当然,这只是一个简单的例子,实际应用场景中可能会有更多的属性
和样本。

因此,在构建决策树时需要考虑选取最优特征,避免过度拟合等
问题。

案例2:疾病预测。

假设有一组医学数据,其中包括患者的年龄、性别、身高、体重、血
压等指标以及是否患有糖尿病的标签信息。

我们希望构建一个决策树来帮
助医生快速判断患者是否可能患有糖尿病。

如果患者年龄大于45岁,则进一步考虑体重,如果体重高于120kg,则判断为高风险群体;否则判断为低风险群体。

如果患者年龄不超过45岁,则直接判断为低风险群体。

当然,这只是一个简单的例子,实际应用场景中可能会有更多的指标
和样本。

因此,在构建决策树时需要考虑选取最优特征,避免过度拟合等
问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例题9】
• 某承包商拥有的资源有限,只能在A和B两个 工程中选A或B进行投标,或者对这两项工程 都不参加投标。
• 但根据过去该承包商投标经验资料,他对A或 B投标又有两种策略:一种是投高标,中标的机 会是0.3;另一种是投低标,中标的机会是0.5。 这样共有A高、A低、不投、B高和B低五种方 案。
益期望值分别为125、0、620和1100。 • 至此,承包商可做出决策,如投A工程,
宜投高标,如投B工程,宜投低标。而且从损 益期望值角度看,选定B工程投低标更为有利。
【例10 】
• 某市拟建预制构件厂,现有三个方案可供选择:一次投资建 大厂,需投资300万元;一次投资建小厂,需投资160万元; 先建小厂,三年后如果产品销路好,则再扩建,需投资140万 元。工厂的使用年限按10年计算。三个方案在前三年和后七 年销路好、销路差的概率和损益值如下:
开气好0.3
-1000
C
天气坏0.7
-1000
【例题8】
• 第三步:计算期望值 • 一般按反向的时间程序逐步计算,将各方案的
几种可能结果的数值和它们各自的概率相乘, 并汇总所得之和,其和就是该方案的期望值。 • 第四步:确定决策方案:在比较方案考虑的是 收益值时,则取最大期望值;若考虑的是损失 时,则取最小期望值。 • 根据计算出的期望值分析,本题采取开工方案 较好。
概率
0.3 0.5 0.2 0.2 0.6 0.2 0.3 0.5 0.2 0.3 0.6 0.1
【例题9】
【例题9】
• 今以方案A高为例,说明损益期望值的计算, 概率分叉点7的损益期望值为:
• 5000×0.3+1000×0.5-3000×0.2=1400 万 元
• 概率分叉点2的损益期望值为: • 1400×0.3-50×0.7=385万元 • 同理,可得概率分叉点3、4、5、6各方案的损
【例题8】
【解】第一步:将题意表格化
自然状态
概率
天气好
0.3
天气坏
0.7
行动方案
开工
不开工
40000
-1000
-10000
-1000
【例题8】
❖ 第二步:画决策树图形,根据第一步所列的 表格,再绘制决策树,如下图;
开工
5000 B
开气好0.3 天气坏0.7
40000 -10000
A
不开工
-1000
• 试做出决策。
风险型决策
• 最大概率法、收益期望值法、决策树法★
决策树法 • 将损益期望值法中的各个方案的情况用一个概率树
来表示,就形成了决策树。它是模拟树木生长的过 程,从出发点开始不断分枝来表示 所分析问题的各 种发展可能性,并以各分枝的损益期望值中的最大 者作为选择的依据。 • 决策树的画法、 决策树的例子 • 例题8、例题9、例题10
• 前三年销路好的概率为0.7,销路差的概率为0.3
• 若销路好时,建大厂的损益值为100万元,建小厂的损益值为 40万元;
• 若销路差时,建大厂的损益值为-20万元,建小厂的损益值为 10万元;
• 若前三年销路好,则后七年销路好的概率为0.9,销路差的概率 为0.1;
• 若前三年销路差,则后七年的销路一定差。
决策树的画法
• A、先画一个方框作为出发点,又称决策节点; • B、从出发点向右引出若干条直线,这些直线叫
做方案枝; • C、在每个方案枝的末端画一个圆圈,这个圆圈
称为概率分叉点,或自然状态点; • D、从自然状态点引出代表各自然状态的分枝,
称为概率分枝; • E、如果问题只需要一级决策,则概率分枝末端
• 该承包商过去也承包过与A、B类似的工程, 根据统计资料,每种方案的利润和出现的概率 如下表所示。投标不中时,则对A损失50万元, 对B损失100万元。根据上述情况,试画出决 策树
【例题9】
方案 A高 A低 B高 B低
效果
优 一般 赔 优 一般 赔 优 一般 赔 优 一般 赔
可能的利润(万元)
5000 1000 -3000 4000 500 -4000 7000 2000 -3000 6000 1000 -1000
画三角形,表示终点 。
1
决策 结点
概率分叉点
(自然状态点) 概率枝
方案分枝 2
ቤተ መጻሕፍቲ ባይዱ
概率枝
方案分枝
概率枝
3
概率枝
概率分叉点
(自然状态点)
图4-1 决策树
损益值 损益值 损益值 损益值
【例题8】
• 假设有一项工程,施工管理人员需要决定 下月是否开工。如果开工后天气好,则可 为国家创收4万元,若开工后天气坏,将给 国家造成损失1万元,不开工则损失1000元。 根据过去的统计资料,下月天气好的概率 是0.3,天气坏的概率是0.7。请做出决策。 现采用决策树方法进行决策
相关文档
最新文档