麦克斯韦速率分布律
麦克斯韦速度分布律

1 2
m(v
2 x
v
2 y
vz2 )
动能,分子速度的函数。
k
dN (vx ,vy ,vz ) e kT dvxdvydvz
速度分布函数:F (v x
,vy
,vz
)
dN (vx ,vy ,vz ) Ndvxdv ydvz
C
k
e kT
常数 C 由归一化条件确定:
v3e
mv2 2kT
dv
0
4π
m 2π kT
3
2
2(m
1 2kT )2
8kT πm
8RT
π
速度平方的平均值 :
v2
0
v2
fM (v)dv
4π
m 2π kT
3
2
v
4e
mv 2 2kT
dv
0
4π
m 2π kT
3
积内的概率 分子在速度空间分布的概率密度
归一化条件 :
F (vx ,vy ,vz )dvxdvydvz 1
分子速度 vx、vy、vz 一定出现在 之间
证明:
F(vx ,vy ,vz )dvxdvydvz
dN (vx ,vy ,vz ) N 1
,vy
,vz
)
平衡态系统中分子的速率分布函数:
fM
(v)
4π
m 2π kT
3
2
v2e
mv2 2kT
大学物理麦克斯韦分子速率分布定律资料

11
例: 设有N个气体分子,其速率分布函数为
f
(
)
A
(0 0
)
0 0 0
求: (1)常数A;(2)最概然速率,平均速率和方均根;
(3)速率介于0~0/3之间的分子数;(4)速率介于0~ 0/3
之间的气体分子的平均速率。
f()
解: (1)气体分子的分布曲线如图
2 1300
N
dN
0
3 Nf ( )d
0
0 3
0
N
6
3 0
(0
)d
7N 27
13
(4)速率介于0~0/3之间的气体分子平均速率为
0~0 3
0
3 dN
0 0
0 3
0
N
6 v03
2
(
0
)d
30
7N 27
14
3 dN 0
注意:速率介于 1~ 2之间的气体分子的平均速率
的计算是
2f ( )d
1~2
1
2 f ( )d
1
而非
1 ~2
2f ( )d
1
14
作业题
设. 有N个粒子,其速率分布函数 f v 为
f
v
Av 30 v
0
v 30 v 30
求: (1)归一化常数A的值;(2)最概然速率
(3)N个粒子的平均速率 v
15
§3.4 麦克斯韦分子速率分布定律
任何一个分子,速度大小和方向都是偶然的, 不可预知。但在平衡态下,大量气体分子的速度分布 将具有稳定的规律 — 麦克斯韦速度分布律。
只考虑速度大小的分布—麦克斯韦速率分布律。
麦克斯韦速率分布律的物理意义

麦克斯韦速率分布律的物理意义
麦克斯韦速率分布律是概率论中的一个重要定律,它描述了随机变量的分布。
对于任意一个随机变量 X,它的分布律可以用麦克斯韦速率分布律来描述。
麦克斯韦速率分布律的物理意义可以从以下几个方面来理解:
1. 描述随机变量的分布:麦克斯韦速率分布律描述了随机变量 X 的取值在一个区间内出现的概率密度。
例如,如果随机变量 X 的取值为 [a, b],那么它在 [a, b] 区间内出现的概率密度就是 f(x) = dx/(b-a),其中 dx 是 X 取值[a, b] 区间内的微小区间。
2. 解释随机现象:麦克斯韦速率分布律可以用来解释随机现象。
例如,如果我们掷一枚硬币,硬币正面朝上的概率是 0.5,那么硬币正面朝上的概率密度就是 f(x) = 0.5 * dx/(1-0.5)。
我们可以用 f(x) 来描述硬币正面朝上的取值范围,从而解释掷硬币正面朝上的概率分布。
3. 计算随机变量的概率:麦克斯韦速率分布律可以用来计算随机变量的概率。
例如,如果我们想要计算随机变量 X 的取值 [a, b] 区间内的概率,我们可以用 f(x) = dx/(b-a) 来计算 X 在 [a, b] 区间内出现的概率。
麦克斯韦速率分布律是概率论中的一个重要定律,它可以用来描述随机变量的分布,解释随机现象,计算随机变量的概率。
它对于理解随机过程、随机变量的分布等方面都有重要的作用。
大学物理05_5麦克斯韦速率分布律

气体分子速率可以取从0到∞之间
的一切数值。速率很大和速率很
小的分子数所占的比率都很小,
f(0)=f(∞)=0 , 而 具 有 中 等 速 率 的
分子数所占的比率却很大。
上页 下页 返回 退出
例题5-5 从速率分布函数推算分子的三个统计速率
(1)算术平均速率
v
vf (v)dv
v4π(
m
)
3
2
O
v exp
mv2 2kT
共同作用的结果。
上页 下页 返回 退出
麦克斯韦(James Clerk Maxwell 1831—1879)
•他提出了有旋电场和位移电流概念,建 立了经典电磁理论(麦克斯韦方程组), 预言了以光速传播的电磁波的存在。
•1873年,他的《电磁学通论》问世,这 是一本划时代巨著,它与牛顿的《自然哲 学的数学原理》并驾齐驱,它是人类探索 19世纪伟大的英国 电磁规律的一个里程碑。 物理学家、数学家。 经典电磁理论的奠 •在气体动理论方面,他还提出气体分子 基人,气体动理论 按速率(速度)分布的统计规律。 的创始人之一。
当 v 0时,v dv ;N dN; 2. 速率分布函数 f(v) 的定义 f(v)
f (v) lim N dN v0 vN Ndv
注意:
在平衡态下,f(v)仅是v的函数。 O
v v+Δv
v
上页 下页 返回 退出
3. 速率分布函数 f(v) 的意义:概率密度函数
※分布在速率 v 附近单位速率间隔内的分子数占总 分子数的百分比(比率);
m不变,T vp
2kT m
曲线的峰值右移,由于曲线下 面积为1不变,所以峰值降低。O
T2 T1
推导麦克斯韦速度分布律、速率分布律的简单方法

推导麦克斯韦速度分布律、速率分布律的简单方法麦克斯韦速度分布律是量子力学中重要的一部分。
1860年,麦克斯韦发现在粒子系统中,粒子运动的速度都遵循一定的分布关系,即概率密度函数与速度成反比,这就是麦克斯韦速度分布律。
那么,如何推导出麦克斯韦速度分布律和速率分布律?
首先,考虑一个温度为T的系统,采用能量有限的情况下可以把粒子的运动视为马尔可夫链的形式。
由于能量有限,可以认为处在同一状态的粒子的总体数量就构成了该状态的热平衡状态。
由此可推出粒子的速度分布概率:
P(v) = e^(-mv^2/2kT)
其中,m为粒子的质量,T为温度,k为Boltzmann常数。
将此式作为粒子的速度分布函数,即可推出其速率分布函数。
即:
f(v) = e^(-mv^2/2kT) * Usqrt(m/2πkT)
此式也叫麦克斯韦分布,概率密度与粒子速率成反比,即概率密度随着粒子速率的增加而减少。
通过此式,可以推导出麦克斯韦速度分布律和速率分布律。
以上便是推导麦克斯韦速度分布律以及速率分布律的简单方法。
虽然在实际应用中,还有许多根据环境情况改变相关参数的变体,但基础思想是一致的:概率密度随着粒子运动速度的增加而减少。
麦克斯韦速率分布定律

(4) 平均速率和方均根速率.
f ( )
解:(1)求 C :
C (0 ) (0 0 ) 0 ( 0 )
0
f ( )d 1 C
6
3 0
(2) N 0 ~ 0 / 4 N
0 / 4
0
5 f ( ) d N 32
0 df ( ) (3)最可几速率 0 p d p 2
6.5 麦克斯韦速率分布定律
气体中个别分子的速度大小和方向完全是偶然的 , 但 平衡态下,气体分子的速度分布遵从一定的统计规律 — — 麦克斯韦速度分布定律. 若不考虑分子速度的方向, 这个规律就成为麦克斯韦速率分布定律.
1859年, 麦克斯韦用概率论导出了气体分子速率分布 定律,后由玻尔兹曼使用经典统计力学理论导出. 1920年史特恩用分子束实验, 获得分子有着确定的速 度分布的信息, 但未能给出定量的结果. 1934年我国留学 生葛正权在伯克利首次获得此定律的精确实验验证. 此 成功经报界报道, 当时闻名欧美, 在很大程度上改变了外 国人眼中“中国留学生只会读书不能动手, 我们不欢迎” 的形象, 对当时欧美中国留学生有极大的影响和鼓舞.
f (v )
av , (0 v v 0 ) 0 , (v v 0 )
2
f (v )
v0 v 求: (1)常量 a 和υ0 的关系 0 (2)平均速率 v v0 (3)速率在 0 之间分子的平均速率 v 2
解: (1)由归一化条件
0
2 0
0
f ( )d 1
3 得 a 3 v0
f ( v)
T1 300K T2 1200K
f ( v)
麦克斯韦速率分布律.pptx

麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度,
说明下式的物理意义:
(1)nf (v)dv
f (v) dN , n N
Ndv
V
nf (v)dv
dN V
表示单位体积内分布在速率区间 v 内v的 dv
分子数。
第4页/共20页
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度, 说明下式的物理意义:
(2)Nf (v)dv
f (v) dN Ndv
Nf (v)dv dN
表示分布在速率区间 v v 内的dv分子数。
第5页/共20页
麦克斯韦速率分布律
f (v)为速率分布函数,n为分子数密度,
说明下式的物理意义:
(3)n v2 f (v)dv
v1
f (v)
dN
,n
N
Ndv
V
n v2 f (v)dv N N N
把这些量值代入,即得
W v= 1 v p 50
N=
N
4
99 100
2
e
99 100
2
1 50
1.66%
第19页/共20页
f (v ) p3
T1
T2
T1 T2 T3
温度越高,速率 大的分子数越多
T3
v v v O
p1 p 2 p3
v
第15页/共20页
气体的三种统计速率
同一温度下不同种气体速率分布比较
f (v)
m1
m1 m2 m3
m2
分子质量越小,速
率大的分子数越多
。
m3
O
v
第16页/共20页
麦克斯韦速率分布律

理气
d(m )F (器 dt壁)
真实气体 d (m ) (F 器 壁 f 内 部 )d t 分 子
pi
β
a
修正为
RT
Pb Pi
由于分子之间存在引力 而造成对器壁压强减少 内压强 P i
基本完成了第二 步的修正
内压强 1) 与碰壁的分子数成正比 2) 与对碰壁分子有吸引力作用的分子数成正比
解: 已知 T27 K,3 p1.0at m 1.01 1350 P,a d3.51 0 1m 0
kT 2d 2 p
1 .4 1 3 .1 1 . 3 4 (3 .5 8 1 1 2 0 3 1 0 2 )0 1 7 .0 3 150 6 .9 1 8 0 m
空气摩尔质量为2910-3kg/mol
讨论
麦克斯韦速率分布中最概然速率 v p 的概念
下面哪种表述正确?
v (A) p 是气体分子中大部分分子所具有的速率. v (B) p 是速率最大的速度值. v (C) p 是麦克斯韦速率分布函数的最大值.
(D) 速率大小与最概然速率相近的气体分子的比
率最大.
例 计算在 27C时,氢气和氧气分子的方均
§7-5 麦克斯韦分子速率分布定律
平衡态下,理想气体分子速度分布是有规律的, 这个规律叫麦克斯韦速度分布律。若不考虑分子速 度的方向,则叫麦克斯韦速率分布律。
麦克斯韦速率分布律: 1、速率分布率的实验测量 2、 分布函数及其意义 3、 麦克斯韦速率分布函数 4、 速率分布函数的应用
1.测定气体分子速率分布的实验
m ( H 2 ) m ( O 2 )
o
2000 v/ms1 vp(H 2)vp(O 2)
vp(H2) vp(O2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子数的比率。 这些比率便是分子速率分布的情况。
空气分子在273K时的分布情况
速率区间 分子数的百分比
100以下
1.4
100~200
8.4
200~300
16.2
300~400
21.5
400~500
20.5
500~600
15.1
600~700
9.2
7-6 麦克斯韦速率分布律
抛硬币:
·抛一次,出现正面或 反面是偶然的 ·抛大量次数,出现正 面或反面的次数各占1/2, 呈规律性
伽尔顿板实验
·每个小球落入哪个槽 是偶然的
·少量小球按槽分布有 明显偶然性
............ ........... ............ ........... ............ ........... ............
f (v) 4 (
) v e 3/ 2
2
v2 2kT
2 kT
k R 1.381023 J/K NA
玻耳兹曼常量
对麦克斯韦速率分布律的分析说明
(1) 麦克斯韦速率分布函数 f (v)与气体的绝对温
度T 和分子的质量 有关。 f (v)
(2) 当v=0和v→∞时,
f(v)=0,这说明分子速率
v1
N
f (v)dv N 1
0
N
f (v)dv 1 速率分布函数的归一化条件 0
曲线下的总面积 即曲线下的总面积等于1
f (v)
o
vp
v
温度较低时,速率分布曲线窄而高
温度较高时,速率分布曲线宽而平
f (v)的极大值对应的速率称为最概然速率vp
700以上
7.7
v dv,N dN
dN 表示分子速率 N 在 v~v+dv 区间的 分子数占总分子数 的比率。
dN f (v) dv N
速率分布函数
f (v) dN Ndv
➢ 速率分布函数的物理意义 分布在速率v附近的单位速率区间内的分子数占总 分子数的比率。
二、理想气体分子的麦克斯韦速率分布律
·大量小球按狭槽分布 呈现规律性
统计规律: 大量偶然事件整体所
遵从的规律
............ ........... ............ ........... ............ ........... ............
一、速率分布和分布函数
设有一定量的气体,共有N个分子,速率在v~v+ v 区间的分子数为N,则
速率分布曲线
为零或速率趋于∞的概率
为零。
(3) 速率分布曲线
o
v
f (v)
dS
o v vdv
速率分布曲线
v1
v2
v
f (v)dv = dN N
曲线下窄条的面积表示在 速率v 附近v ~ v+dv的区间内子数占总分子数的比率
v2 f (v)dv N