2019全国中考数学真题分类汇编之29:数学文化(含答案)
2019年全国各地中考数学真题汇编:数与式、方程不等式(湖南专版)(解析卷)

2019年全国各地中考数学真题汇编(湖南专版)数与式、方程不等式参考答案与试题解析一.选择题(共8小题)1.(2019•株洲)下列各选项中因式分解正确的是()A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;B、a3﹣2a2+a=a(a﹣1)2,故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.2.(2019•衡阳)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得()A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1解:设这两年全省贫困人口的年平均下降率为x,根据题意得:9(1﹣x)2=1,故选:B.3.(2019•长沙)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是()A.B.C.D.解:由题意可得,,故选:A.4.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12B.12<x<15C.10<x<15D.11<x<14解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.5.(2019•张家界)不等式组的解集在数轴上表示为()A.B.C.D.解:解不等式2x﹣2≤0,得:x≤1,则不等式组的解集为﹣1<x≤1,故选:B.6.(2019•益阳)解分式方程+=3时,去分母化为一元一次方程,正确的是()A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)解:方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选:C.7.(2019•邵阳)某出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.津津乘坐这种出租车走了7km,付了16元;盼盼乘坐这种出租车走了13km,付了28元.设这种出租车的起步价为x元,超过2km后每千米收费y元,则下列方程正确的是()A.B.C.D.解:设这种出租车的起步价为x元,超过2km后每千米收费y元,则所列方程组为,故选:D.8.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55B.72C.83D.89解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.二.填空题(共7小题)9.(2019•怀化)计算:﹣=1.解:原式==1.故答案为:1.10.(2019•邵阳)关于x的一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,则m的最小整数值是0.解:一元二次方程x2﹣2x﹣m=0有两个不相等的实数根,∴△=4+4m>0,∴m>﹣1;故答案为0;11.(2019•株洲)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走250步才能追到速度慢的人.解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.12.(2019•岳阳)我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布尺.解:设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据题意可得:x+2x+4x+8x+16x=5,解得:x=,即该女子第一天织布尺.故答案为:.13.(2019•常德)若x2+x=1,则3x4+3x3+3x+1的值为4.解:∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4;故答案为:4.14.(2019•张家界)《田亩比类乘除捷法》是我国古代数学家杨辉的著作,其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步?根据题意得,长比宽多12步.解:设长为x步,宽为(60﹣x)步,x(60﹣x)=864,解得,x1=36,x2=24(舍去),∴当x=36时,60﹣x=24,∴长比宽多:36﹣24=12(步),故答案为:12.15.(2019•湘西州)下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为3.(用科学计算器计算或笔算).解:解:由题图可得代数式为.当x=16时,原式=÷2+1=4÷2+1=2+1=3.故答案为:3三.解答题(共15小题)16.(2019•岳阳)计算:(﹣1)0﹣2sin30°+()﹣1+(﹣1)2019解:原式=1﹣2×+3﹣1=1﹣1+3﹣1=2.17.(2019•长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?解:(1)设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=﹣2.1(舍去),x2=0.1=10%.答:增长率为10%.(2)2.42(1+0.1)=2.662(万人).答:第四批公益课受益学生将达到2.662万人次.18.(2019•常德)解方程:x2﹣3x﹣2=0.解:∵a=1,b=﹣3,c=﹣2;∴b2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==,∴x1=,x2=.19.(2019•衡阳)关于x的一元二次方程x2﹣3x+k=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)k的最大整数为2,方程x2﹣3x+k=0变形为x2﹣3x+2=0,解得x1=1,x2=2,∵一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,∴当x=1时,m﹣1+1+m﹣3=0,解得m=;当x=2时,4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,∴m的值为.20.(2019•邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.解:设平均增长率为x,根据题意列方程得30(1+x)2=36.3解得x1=0.1,x2=﹣2.1(舍)答:我国外贸进出口总值得年平均增长率为10%.21.(2019•长沙)先化简,再求值:(﹣)÷,其中a=3.解:原式=•=,当a=3时,原式==.22.(2019•岳阳)岳阳市整治农村“空心房”新模式,获评全国改革开放40年地方改革创新40案例.据了解,我市某地区对辖区内“空心房”进行整治,腾退土地1200亩用于复耕和改造,其中复耕土地面积比改造土地面积多600亩.(1)求复耕土地和改造土地面积各为多少亩?(2)该地区对需改造的土地进行合理规划,因地制宜建设若干花卉园和休闲小广场,要求休闲小广场总面积不超过花卉园总面积的,求休闲小广场总面积最多为多少亩?解:(1)设改造土地面积是x亩,则复耕土地面积是(600+x)亩,由题意,得x+(600+x)=1200解得x=300.则600+x=900.答:改造土地面积是300亩,则复耕土地面积是900亩;(2)设休闲小广场总面积是y亩,则花卉园总面积是(300﹣y)亩,由题意,得y≤(300﹣y).解得y≤75.故休闲小广场总面积最多为75亩.答:休闲小广场总面积最多为75亩.23.(2019•张家界)先化简,再求值:(﹣1)÷,然后从0,1,2三个数中选择一个恰当的数代入求值.解:原式=(﹣)÷=•=,当x=0时,原式=﹣1.24.(2019•衡阳)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?解:(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.25.(2019•怀化)解二元一次方组:解:,①+②得:2x=8,解得:x=4,则4﹣3y=1,解得:y=1,故方程组的解为:.26.(2019•益阳)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×25z﹣20×600≥80000,解得:z≥64;答:稻谷的亩产量至少会达到64千克.27.(2019•湘西州)列方程解应用题:某列车平均提速80km/h,用相同的时间,该列车提速前行驶300km,提速后比提速前多行驶200km,求该列车提速前的平均速度.解:设该列车提速前的平均速度为xkm/h,则提速后的平均速度为(x+80)km/h,依题意,得:=,解得:x=120,经检验,x=120是原方程的解,且符合题意.答:该列车提速前的平均速度为120km/h.28.(2019•张家界)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?解:(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,70x=9800,x=140,∴购买甲种树苗140棵,乙种树苗240棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;29.(2019•郴州)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?解:(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.30.(2019•张家界)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依此类推,排在第n位的数称为第n项,记为a n.所以,数列的一般形式可以写成:a1,a2,a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示.如:数列1,3,5,7,…为等差数列,其中a1=1,a2=3,公差为d=2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d为5,第5项是25.(2)如果一个数列a1,a2,a3,…,a n…,是等差数列,且公差为d,那么根据定义可得到:a2﹣a1=d,a3﹣a2=d,a4﹣a3=d,…,a n﹣a n﹣1=d,….所以a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……由此,请你填空完成等差数列的通项公式:a n=a1+(n﹣1)d.(3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?解:(1)根据题意得,d=10﹣5=5;∵a3=15,a4=a3+d=15+5=20,a5=a4+d=20+5=25,故答案为:5;25.(2)∵a2=a1+da3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d,……∴a n=a1+(n﹣1)d故答案为:n﹣1.(3)根据题意得,等差数列﹣5,﹣7,﹣9…的项的通项公式为:a n=﹣5﹣2(n﹣1),则﹣5﹣2(n﹣1)=﹣4041,解之得:n=2019∴﹣4041是等差数列﹣5,﹣7,﹣9…的项,它是此数列的第2019项.。
江西 2019年中考数学真题 (含答案)

第 2 页 共 14 页
五、解答题 15.如图,四边形 ABCD 中,AB=CD,AD=BC,对角线 AC,BD 相交于点 O,且 OA=OD. 求证:四边形 ABCD 是矩形.
16.解不等式组:
并在数轴上表示它的解集.
17.为纪念建国 70 周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,
是
;
①抛物线 y1,y2,y3 都经过点 C(0,1);
②抛物线 y2,y3 的对称轴由抛物线 y1 的对称轴依次向左平移 个单位得到;
③抛物线 y1,y2,y3 与直线 y=1 的交点中,相邻两点之间的距离相等. 形成概念 (2)把满足 yn=﹣x2﹣nx+1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用 在(2)中,如图 2. ①“系列平移抛物线”的顶点依次为 P1,P2,P3,…,Pn,用含 n 的代数式表示顶点 Pn 的坐标, 并写出该顶点纵坐标 y 与横坐标 x 之间的关系式; ②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C1,C2,C3,…,∁ n, 其横坐标分别为﹣k﹣1,﹣k﹣2,﹣k﹣3,…,﹣k﹣n(k 为正整数),判断相邻两点之间的距离 是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由. ③在②中,直线 y=1 分别交“系列平移抛物线”于点 A1,A2,A3,…,An,连接∁ nAn,Cn﹣1An﹣1, 判断∁ nAn,Cn﹣1An﹣1 是否平行?并说明理由.
据《孙子算经》的方法,则它的对角线的长是
.
3.如图,在△ABC 中,点 D 是 BC 上的点,∠BAD=∠ABC=40°,将△ABD 沿着 AD 翻折得到△AED,
则∠CDE=
°.
2019年中考数学真题试题(含答案)

A CC2019年中考数学真题试题(总分120分考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.51-的倒数是()A.5- B.5 C.51- D.512.下列运算正确的是()A.()2222yxyxyx---=-- B.422aaa=+C.632aaa=⋅ D.4222yxxy=)(3.下列图形中,根据AB∥CD,能得到∠1=∠2的是()A B C D4.在平面直角坐标系中,若点P(2-m,1+m)在第二象限,则m的取值范围是()A.1-<m B.2>m C.21<<m- D.1->m5.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15B7.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB =BF .添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是( ) A. AD =BC B. CD =BF C. ∠A =∠C D. ∠F =∠CDF8.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .π+13B .23C .2432π+ D .213π+9.如图所示,已知△ABC 中,BC =12,BC 边上的高h =6,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则△DEF 的面积y 关于x 的函数图象大致为 ( )10.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC .给出下列结论:①CE BD =;②∠ABD +∠ECB =45°;③BD ⊥CE ;④2222)(2CD AB AD BE -+=.其中正确的是() A. ①②③④ B. ②④ C. ①②③第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377(第6题图) (第7题图)(第9题图) (第10题图)(第8题图)个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12. 分解因式:234xyx-= .13. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 .14.如图,B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为 .15.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于21EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=3,AC=16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.在平面直角坐标系内有两点A、B,其坐标为A),(11--,B(2,7),点M为x轴上的一个动点,若要使MAMB-的值最大,则点M的坐标为.18.如图,在平面直角坐标系中,点1A,2A,3A,…和1B,2B,3B,…分别在直线bxy+=51和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果点1A(1,1),那么点2018A的纵坐标是.19. (本题满分7分,第⑴题4分,第⑵题3分)(第15题图)(第14题图) (第16题图)(1)计算:12018o 0)21()1(3tan30)12(32---+-++-;(2)解不等式组:⎩⎨⎧≥+-+.331203x x x )(,>并判断-1,2这两个数是否为该不等式组的解.20.(本题满分8分)2018年东营市教育局在全市中小学开展了“情系疏勒 书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)求该校九年级共捐书多少本; (2)统计表中的a = ,b = ,c = ,d = ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本; (4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(本题满分8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m 和2000m ,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.22.(本题满分8分)如图,CD 是⊙O 的切线,点C 在直径AB 的延长线上.(第20题图)(1)求证:∠CAD=∠BDC;(2)若BD=32AD,AC=3,求CD的长.23.(本题满分9分)关于的方程有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sin A 的值;(2)若关于y的方程的两个根恰好是△ABC的两边长,求△ABC的周长.24.(本题满分10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°, BO:OD=1:3,求DC的长.25.(本题满分12分)如图,抛物线y=a(a0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(第24题图1) (第24题图2) (第24题图3)数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.1110147.4⨯; 12. )2)(2(y x y x x -+ ; 13.54; 14. xy 6=; 15. 15; 16. π20; 17. ),(023-; 18. 201723)(. 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分,第(1)题4分,第(2)题3分) 解:(1)原式=2-1333-13-2+⨯+ …………………3分 =32-2 ……………………………………………4分....(2) 302133x x x +⎧⎨-+≥⎩>①()②解不等式①得:x>-3,解不等式②得:x ≤1………………………………………1分所以不等式组的解集为: -3<x ≤1. …………………………………………………2分 则-1是不等式组的解,2不是不等式组的解.…………………………………………3分 20.(本题满分8分)解:(1)该校九年级共捐书:(本)500360126175=÷……………………………………1分 (2)a =0.35………………………………………………………………………………1.5分b =150…………………………………………………………………………………2分c =0.22………………………………………………………………………………2.5分d =0.13…………………………………………………………………………………3分 (3)78022.03.01500=+⨯)((本)…………………………………………………5分 (4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种.…………………………………………………………………… …………7分 所以所求的概率:3162==P ………………………………………………………8分 21.(本题满分8分)解:设小明和小刚的速度分别是3x 米/分和4 x 米/分…………………………………1分则44200031200-=xx …………………………………………………………………3分 解得 x =25………………………………………………………………………………5分 检验:当x =25时,3x ≠0,4 x ≠0所以分式方程的解为x =25……………………………………………………………6分 则3x =75 4x =100………………………………………………………………………7分 答:小明的速度是75米/分,小刚的速度是100米/分.………………………………8分 22.(本题满分8分) (1)证明:连接OD ∵OB =OD....∴∠OBD=∠ODB …………………………1分 ∵CD 是⊙O 的切线,OD 是⊙O 的半径∴∠ODB +∠BDC =90°……………………2分 ∵AB 是⊙O 的直径∴∠ADB =90°∴∠OBD +∠CAD = 90°………………………………………3分 ∴∠CAD=∠BDC ………………………………………………4分(2)解:∵∠C =∠C ,∠CAD=∠BDC∴△CDB ∽ △CAD ………………………………………………5分∴ACCD ADBD =…………………………………………………6分∵32=AD BD ∴32=ACCD …………………………………………………7分 ∵ AC =3∴ CD =2…………………………………………………8分 23. (本题满分9分) 解:(1)因为关于x 的方程有两个相等的实数根,则△=25sin 2A -16=0………………………………………1分∴sin 2A =2516, ∴sin A =54±,……………………………………………2分∵∠A 为锐角, ∴sin A =54;………………………………………………3分 (2)由题意知,方程y 2﹣10y +k 2-4k +29=0有两个实数根, 则△≥0,………………………………………………4分 ∴100﹣4(k 2-4k +29)≥0, ∴﹣(k -2)2≥0, ∴(k -2)2≤0, 又∵(k -2)2≥0,∴k =2.…………………………………………………5分 把k =2代入方程,得y 2﹣10y +25=0, 解得y 1=y 2=5,∴△ABC 是等腰三角形,且腰长为5. …………6分(第22题答案图)....分两种情况:① ∠A 是顶角时:如图,过点B 作BD ⊥AC 于点D , 在Rt △ABD 中,AB =AC =5 ∵sin A =54, ∴AD =3 ,BD =4∴DC =2, ∴BC =52. ∴△ABC 的周长为5210+. ……………………………7分 AB =5 ∵sin A =54, ② ∠A 是底角时:如图,过点B 作BD ⊥AC 于点D , 在Rt △ABD 中,∴A D =DC =3, ∴AC =6.∴△ABC 的周长为16. …………………………8分综合以上讨论可知:△ABC 的周长为或16……………9分24.(本题满分10分)(1)75,……………………………………………1分2分(2)解:过点B 作BE ∥AD 交AC 于点E ∵AC ⊥AD∴∠DAC =∠BEA =90° ∵∠AOD =∠EOB∴△AOD ∽△EOB ……………………………………………3分 ∴=BO EO BE DO AO DA = ∵BO:OD =1:3∴1=3EO BE AO DA = (4)分 ∵AO=∴∴AE =……………………………………………5分 ∵∠ABC =∠ACB =75°∴∠BAC =30°,AB=AC ……………………………………………6分 ∴AB =2BE在Rt △AEB 中,222BE AE AB +=即222)2(34BE BE =+)(,得BE =4……………………………………………7分 ∴AB =AC =8,AD =12……………………………………………8分 在Rt △CAD 中,222AC AD CD +=即2228+12CD=,得CD =10分 25.(本题满分12分)(第23题答案图1)(第23题答案图2)(第24题答案图)....解:(1)由题可知当y =0时,a =0解得:x 1=1,x 2=3则A (1,0),B (3,0)于是OA =1,OB =3∵△OCA ∽△OBC ∴OC ∶OB =OA ∶OC ∴OC 2=OA •OB =3即OC =(2)因为C 是BM 的中点 ∴OC =BC 从而点C 的横坐标为23又OC =,点C 在x 轴下方∴C),(2323-设直线BM 的解析式为y =kx +b ,因其过点B (3,0),C),(2323-, 则有⎪⎩⎪⎨⎧-=+=+.232303b k b k ,∴,33=k ∴333-=x y ……………………5分 又点C),(2323-在抛物线上,代入抛物线解析式, 解得a =332……………………6分 ∴抛物线解析式为:323383322+-=x x y ……………………7分 (3)点P 存在.……………………8分 设点P 坐标为(x ,323383322+-x x ),过点P 作PQ x 轴交直线BM 于点Q , 则Q (x ,333-x ),....11PQ =33333322-+-x x ……………………9分 当△BCP 面积最大时,四边形ABPC )()(△2321321-+-=x PQ x PQ S BCP )(23321-+-=x x PQ PQ 43= 43943923 2-+-=x x 当492=-=a b x 时,BCP S △此时点P 的坐标为)385-,49(。
2019全国各市中考真题(含解析)—福建省中考数学试卷

2019年全国各省市中考数学真题(函解析)2019年福建省中考数学试卷4A . 72 X 10 5B . 7.2X 10 - c -6C. 7.2X10 6D. 0.72X 10(4分)下列图形中,一定既是轴对称图形又是中心对称图形的是(C. 8(4分)如图是某班甲、乙、丙三位同学最近 5次数学成绩及其所在班级相应平均分的折线统方t 图,则下列判断错误的是(」丁宇成般分104-A .甲的数学成绩高于班级平均分,且成绩比较稳定 B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高、选择题(每小题4分共40分)(4分)计算22+ (-1)0的结果是(A. 5C. 3D. 22. (4分)北京故宫的占地面积约为720000m 2将720000用科学记数法表示为( 3. A.等边三角形B.直角三角形C.平行四边形D.正方形4. (4分)如图是由一个长方体和一个球组成的几何体,它的主视图是5. (4分)已知正多边形的一个外角为D.36。
,则该正多边形的边数为(D.6. A .C.70审 丙■班氢用均D.就甲、乙、丙三个人而言,乙的数学成绩最不稳10. (4 分)若二次函数 y= |a|x 2+bx+c 的图象经过 A (m,n )、B (0,y 1)、C (3-m,n )、D(N''2,y 2)、E (2,y 3),则y 1、y 2、y 3的大小关系是( )A . y 1V y 2〈y 3B . y 1V y 3〈y 2C. y 3V y 2〈y 1D. y 2V y 3〈y 1二、填空题(每小题 4分共24分)2 -11. (4分)因式分解:x -9 =.12.(4分)如图,数轴上A 、B 两点所表示的数分别是- 4和2,点C 是线段AB 的中点,则点C 所表示的数是.AC Bt I n副 〉-4213. (4分)某校征集校运会会徽 ,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统7. (4分)下列运算正确的是( A. a?a 3=a 3 B.(2a) 3= 6a 3 8. C. a 6+a 3=a 2D.(4分)《增删算法统宗》记载:“有个学生资性好 (a 2) 3- (- a3) 2=0,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧前一天的两倍,问他每天各读多少个字?已知,三天读完一部《孟子》,每天阅读的字数是 《孟子》一书共有34685个字,设他第一天读x 个字,则下面所列方程正确的是(A . x+2x+4x= 34685C. x+2x+2x= 34685B. x+2x+3x= 346859.4分)如图,PA 、PB 是。
2019全国中考数学真题分类汇编之29:数学文化(含答案)

2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( ) ()A 1,11()B 7,53 ()C 7,61 ()D 6,50【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。
2019年全国各地中考数学真题汇编含答案

详解:原式=1+4-3-3=-1.故答案为:-1.
点睛:此题主要考查了实数运算,正确化简各数是解题关键.
13.已知一个正数的平方根是 和
,则这个数是__________.
【来源】四川省凉山州 2018 年中考数学试题
2019 年全国各地中考数学真题汇编含答案
【答案】 【解析】分析:由于一个非负数的平方根有 2 个,它们互为相反数.依此列出方程求解即可. 详解:根据题意可知:3x-2+5x+6=0,解得 x=- ,所以 3x-2=- ,5x+6= ,
【来源】山东省淄博市 2018 年中考数学试题
【答案】B
【解析】分析:由题意可知 36 与 37 最接近,即 与 最接近,从而得出答案.
详解:∵36<37<49,
∴ < < ,即 6< <7,
∵37 与 36 最接近,
∴与 最接近的是 6.
故选:B.
点睛:此题主要考查了无理数的估算能力,关键是整数与 最接近,所以 =6 最接近.
2019 年全国各地中考数学真题汇编含答案
【详解】
=
,=
,
而
,4< <5,所以 2<
<3,
所以估计
的值应在 2 和 3 之间,故选 B.
【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题 的关键.
11.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品 不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一 枚图钉(例如,用 9 枚图钉将 4 张作品钉在墙上,如图),若有 34 枚图钉可供选用,则最多可以展示绘画作 品( )
2019全国中考数学真题分类含答案解析-知识点48 几何最值2019

一、选择题12.(2019·长沙)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+5 BD的最小值是【】A.25B.45C.53D.10【答案】B二、填空题16.(2019·黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8.点M为AB的中点.若∠CMD=120°,则CD的最大值是.【答案】14【解析】将△CAM沿CM翻折到△CA′M,将△DBM沿DM翻折至△DB′M,则A′M=B′M,∠AMC=∠A′MC,∠DMB=∠DMB′,∵∠CMD=120°,∴∠AMC+∠DMB=∠A′MC+∠DMB′=60°,∴∠A′MB′=180°-(∠AMC+∠DMB+∠A′MC+∠DMB′)=60°,∴△A′MB′是等边三角形,又∵AC=2,BD=8,AB=8.点M为AB的中点,∴A′B′=A′M=B′M=AM=12AB=4,CA′=AC=2,DB′=DB=8,又CD≤CA′+A′B′+DB′=2+4+8=14.三、解答题24.(2019山东威海,24,12分)如图,在正方形ABCD中,AB=10cm,E为对角线BD上一动点,连接AE,CE,过E点作EF⊥AE,交直线BC于点F.E点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止,设△BEF的面积为ycm2,E点的运动时间为x秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值. 【解题过程】(1)证明:过E 作MN ∥AB ,交AD 于M ,交BC 于N , ∵四边形ABCD 是正方形,∴AD ∥BC ,AB ⊥AD , ∴MN ⊥AD ,MN ⊥BC , ∴∠AME =∠FNE =90°=∠NFE +∠FEN , ∵AE ⊥EF ,∴∠AEF =∠AEM +∠FEN =90°, ∴∠AEM =∠NFE , ∵∠DBC =45°,∠BNE =90°, ∴BN =EN =AM .∴△AEM ≌△EFN (AAS ). ∴AE =EF .∵四边形ABCD 是正方形, ∴AD =CD ,∠ADE =∠CDE , ∵DE =DE ,∴△ADE ≌△CDE (SAS ), ∴AE =CE =EF .(2)在Rt △BCD 中,由勾股定理得:BD=,∴0≤x ≤. 由题意,得BE =2x ,∴BN =EN x.由(1)知:△AEM ≌△EFN , ∴ME =FN ,∵AB =MN =10,∴ME =FN =10x ,如图(1),当0≤x ≤2时, ∴BF =FN -BN =10x x =10-x . ∴y =12BF ·EN =1(102-=-2x 2+(0≤x ≤2); 如图(2)x ≤∴BF =BN -FNx -(10x)=-10, ∴y =12BF ·EN=12-=2x 2-(2≤x≤.∴222(0);22(2x x y x x ⎧-+≤≤⎪⎪=⎨⎪-<≤⎪⎩(1) (2) (3)y =-2x 2+5x =-2(x-524)2+254,∵-2<0, ∴当x =524时,y 有最大值是;即△BEF 面积的最大值是;<x ≤ y =2x 2-=22()4x --254, 此时2>0,开口向上,对称轴为直线x =4, ∵对称轴右侧,y 随x 的增大而增大, ∴当x =y 最大值=50.∴当x =BEF 面积的最大值是50.【知识点】四边形综合运用,二次函数的解析式,二次函数的最值问题,三角形全等的判定. 25.(2019山东省威海市,题号25,分值12) (1)方法选择如图①,四边形ABCD 是OO 的内接四边形,连接AC ,BD .AB =BC =AC . 求证:BD =AD +CD .小颖认为可用截长法证明:在DB 上截取DM =AD ,连接AM ..…… 小军认为可用补短法证明:延长CD 至点N ,使得DN =AD …… 请你选择一种方法证明.(2)类比探究【探究1】如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .BC 是⊙O 的直径,AB =AC .试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论. 【探究2】如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,∠ABC =30°,则线段AD ,BD ,CD 之间的等量关系式是. (3)拓展猜想如图④,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是O 0的直径,BC :AC :AB =a :b :c ,则线段AD ,BD ,CD 之间的等量关系式是.【思路分析】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,由旋转全等得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,由旋转全等得BN =CD ,∴BD =ND +BNAD +CD 【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形, 由旋转相似得BP,∴BD =PD +BP =2ADCD (3)拓展猜想数量关系为:BD =a bAD +cb CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,由旋转相似得=BQ AB c CD AC b =,=DQ BC aAD AC b=, 图①图②B图③BC 图④BC∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +c b CD【解题过程】(1)选小颖的截长法,如图①,在DB 上截取DM =AD ,连接AM ,可得△AMD 为等边三角形,可证△BAM ≌△CAD (SAS )得BM =CD ,∴BD =MD +BM =AD +CD(2)【探究1】数量关系为:BDAD +CD如图②,在DB 上截取AD =AN ,连接AN ,可得△AND 为等腰直角三角形,∴NDAD ,∠BAN =∠CAD ,可证△BAN ≌△CAD (SAS )得BN =CD ,∴BD =ND +BNAD +CD【探究2】数量关系为:BD =2AD如图③,在DB 上截取2AD =PD ,连接AP ,可得△APD 为30°的直角三角形,∴=tan 30AP ABAD AC=︒∠BAP =∠CAD ,可证△BAP ∽△CAD 得BP,∴BD =PD +BP =2ADCD答案图①答案图②B(3)拓展猜想数量关系为:BD =a bAD +c b CD如图④,过A 作AQ ⊥AD 交BD 于Q ,连接AQ ,可得∠BAQ =∠CAD ,∠ABQ =∠ACD ,∠ADQ =∠ACB ,∠BAC =∠QAD ∴△BAP ∽△CAD ,△ADQ ∽△ACB ∴=BQ AB c CD AC b =,=DQ BC aAD AC b=, ∴BQ =c b CD ,BQ =a b AD ,∴BD =PD +BP =a bAD +cb CD26.(2019·益阳)如图,在半面直角坐标系xOy 中,矩形ABCD 的边AB=4,BC=6.若不改变矩形ABCD 的形状和大小,当形顶点A 在x 轴的正半轴上左右移动时,矩形的另一个顶点D 始终在y 轴的正半上随之上下移动. (1)当∠OAD=30°时,求点C 的坐标;(2)设AD 的中点为M ,连接OM 、MC ,当四边形 OMCD 的面积为221时,求OA 的长; (3)当点A 移动到某一位置时,点C 到点O 的距离有最大值,请直接写出最大值,并求此时cos ∠OAD 的值.第26题图 第26题备用图【解题过程】(1)如图1,过点C 作CE ⊥y 轴,垂足为E.答案图③B答案图④BC第26题答图1∵矩形ABCD 中,CD ⊥AD , ∴∠CDE+∠ADO=90°, 又∵∠OAD+∠ADO=90°, ∴∠CDE=∠OAD=30°. 在Rt △CED 中,CE=21CD=2, ∴DE=32242222=-=-CE CD ; 在Rt △OAD 中,∠OAD=30°, ∴OD=21AD=3. ∴点C 的坐标为(2,323+). (2)∵M 为AD 的中点, ∴DM=3,6=DCM S △. 又∵221=OMCD S 四边形, ∴29=ODM S △, ∴9=OAD S △. 设OA=x ,OD=y ,则⎪⎩⎪⎨⎧==+9213622xy y x , ∴xy y x 222=+, 即0)(2=-y x , ∴x=y.将x=y 代入3622=+y x 得182=x , 解得23=x (23-不合题意,舍去), ∴OA 的长为23.(3)OC 的最大值为8.理由如下: 如图2,第26题答图2 ∵M 为AD 的中点,∴OM=3,522=+=DM CD CM .∴OC ≤OM+CM=8,当O 、M 、C 三点在同一直线时,OC 有最大值8.连接OC ,则此时OC 与AD 的交点为M ,过点O 作ON ⊥AD ,垂足为N. ∵∠CDM=∠ONM=90°,∠CMD=∠OMN , ∴△CMD ∽△OMN , ∴OM CMMN DM ON CD ==, 即3534==MN ON , 解得59=MN ,512=ON , ∴56=-=MN AM AN . 在Rt △OAN 中,∵55622=+=AN ON OA , ∴55cos ==∠OA AN OAD . 26.(2019·衡阳)如图,在等边△ABC 中,AB =6cm ,动点P 从点A 出发以cm/s 的速度沿AB 匀速运动.动点Q 同时从点C 出发以同样的速度沿BC 延长线方向匀速运动.当点P 到达点B 时,点P 、Q 同时停止运动.设运动时间为t(s).过点P作PE⊥AC于E,连接PQ交AC边于D.以CQ、CE为边作平行四边形CQFE.(1)当t为何值时,△BPQ为直角三角形;(2)是否存在某一时刻t,使点F在∠ABC的平分线上?若存在,求出t的值,若不存在,请说明理由;(3)求DE的长;(4)取线段BC的中点M,连接PM,将△BPM沿直线PM翻折,得△B′PM,连接AB′,当t为何值时,AB′的值最小?并求出最小值.解:(1)∵△ABC为等边三角形,∴∠B=60°,∵BP⊥PQ,∴2BP=BQ即2(6-t)=6+t,解得t=2.∴当t为2时,△BPQ为直角三角形;(2)存在.作射线BF,∵PE⊥AC,∴AE=0.5t.∵四边形CQFE是平行四边形,∴FQ=EC=6-0.5t,∵BF 平分∠ABC,∴∠FBQ+∠BQF=90°.∵BQ=2FQ,BQ=6+t,∴6+t=2(6-0.5t),解得t=3.(3)过点P作PG∥CQ交AC于点G,则△APG是等边三角形.∵BP⊥PQ,∴EG=12AG.∵PG∥CQ,∴∠PGD=∠QCD,∵∠PDG=∠QDC,PG=PA=CG=t,∴△PGD≌△QCD.∴GD=12GC.∴DE=12AC=3.(4)连接AM,∵△ABC为等边三角形,点M是BC的中点,∴BM=3.由勾股定理,得AM=.由折叠,得BM′=3.当A 、B′、M在同一直线上时,AB′的值最小,此时AB′=3.过点B′作B′H⊥AP于点H,则cos30°=AHAB',t,解得t=9-∴t为9-AB′的值最小,最小值为3.MMM QB C1.(2019·重庆A 卷)如图,在平面在角坐标系中,抛物线y =x 2-2x -3与x 轴交与点A ,B (点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E .(1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF +FP +13PC 的最小值;(2)在(1)中,当MN 取得最大值,HF +FP +13PC 取得小值时,把点P 向上平移个2单位得到点Q ,连结AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A OQ '',其中边A Q ''交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得OG Q Q ''∠=∠?若存在,请直接写出所有满足条件的点Q '的坐标;若不存在,请说明理由.解:(1)由题意得A (-1,0),B (3,0),C (0,-3),D (1,-4),直线BD :y =2x -6. 如答图1,连接DN 、BN ,则S △BDN =12BD •MN ,而BD 为定值,故当MN 最大时,S △BDN 取最大值.此时由S △BDN =S △DFN +S △BFN =12EH •FN +12BH •FN =12BE •FN =FN ,从而S △BDN 取最大值时,即为FN 有最大值.令N (m ,m 2-2m -3),则F (m ,2m -6),从而FN =(2m -6)-(m 2-2m -3)=-m 2+4m -3=-(m -2)2+1,此时,当且仅当m =2,FN 有最大值为1,于是N (2,-3),F (2,-2),H (2,0). 在直角三角形中,设最小的直角边为a ,斜边为3a ,较长直角边为3,即可求出a =324,于是在x 轴上取点H B'M FD E QA BP yxOEDCBA第26题备用图第26题图K (-324,0),连接KC ,易求直线KC :y =-22x -3.如答图1,过点F 作FR ⊥CK 于点R ,交OC 于点P ,作FT ⊥OC ,交CK 于点T ,则∠OCK =∠TFR ,于是,由△PCR ∽△ACO ∽△TFR ,得133PR OK a PC KC a ===,从而PR =13PC ,因此由FH 为定值,再由定点F 到直线的垂直线最短,可知MN 取得最大值时,HF +FP+13PC 最小值=HF +FR .在y =-22x -3中,当y =-2,x =-24,于是FT =2+24.在Rt △FTR 中,由223FR FT =,得FR =223FT =223(2+24)=14233+,故HF +FP +13PC 最小值=2+14233+=7423+.(2)4525(,)55--,2545(,)55-,4525(,)55,2545(,)55-. 第26题答图4第26题答图5第26题答图1 T KR QP HF NMyxO ED CBA第26题答图2第26题答图32.(2019·重庆B 卷)在平面直角坐标系中,抛物线2y =++与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q .(1)如图1,连接AC ,BC .若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G .点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK .当△PEF 的周长最大时,求PH +HKKG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记作D ’,N 为直线DQ 上一点,连接点D ’,C ,N ,△D ’CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.解:(1)∵2y x =+与x 轴交于A ,B 两点, ∴当y=0时,即20=+,∴122,4x x =-=,即A (-2,0),B (4,0), 设直线BC 的解析式为y =kx +b ,∵C (0,,B (4,0),∴40b k b ⎧=⎪⎨+=⎪⎩,∴b k ⎧=⎪⎨=⎪⎩,∴直线BC的解析式为y =+设点2(,4),P m m +<< ∵PE ∥y 轴且点E 在直线BC上,∴(,E m +∠PEF =∠OCE ,∴2(04),PE m =<< ∵PF ⊥BC ,∴∠PFE =∠COB =90°,∴△PEF ∽△BCO ,设△PEF 的周长为1l ,△BCO 的周长为2l , 则12l PEl BC=,∵B (4,0),C (0,,∴BC=24l =+∴21)(04),l m =<< 备用图图1图2∴当m=2时,1l此时点P 的坐标为(2,, ∵A (-2,0),C (0,,∴∠ACO =30°,∠CAO =60°, ∵BG ∥AC ,∴.∠BGD =30°,∠OBG =60°,∴G (0,-, 直线BG解析式为y -PM解析式为y =,过点G 作GN ⊥BG ,过点P 作PM ⊥GN 于点M ,如图1,此时,点H 为PM 与对称轴的交点,K 为PM 与y 轴的交点,点K 与点O 重合, 则KM=OMKG ,PH +HKKG 的最小值为线段PM 的长.(此问题是胡不归问题).解法一:(作一线三直角利用相似求解)如图2,过点P 作PQ ∥x 轴交对称轴于点T , 过点M 作MQ ⊥y 轴交PT 于点Q ,过点G 作GJ ⊥MQ 交MQ 于点J.设点Q (n,,∴J (n,-,∴PQ =2-n ,2-n ), ∵GJ =-n ,∴MJ=,∴MQ +MJ =CG=(-=2-n )+()=n =-3,∴Q (-3,),∴PQ =5, ∴PM =2PQ =10,∴PH +HKKG 的最小值为10, ∵∠OGM =60°,∠PHT=30°,∠HPT=60°,∴PT =1,∴HTH (1.图1N解法二:由上面的解法可知MG ⊥BG ,直线MG的解析式为:y =- 如图3,过点P 作PR ⊥x 轴交MG 于点R ,∴R (2,, 由第一种解法可知∠PRG =60°,∴PMP R()=10, ∴PH +HKKG 的最小值为10,同理可求H (1.(2)这样的N 点存在.当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .【提示】由(1)可知∠ACO=30°,∠OAC=60°,又∵221)y x =++=-D (1, ∵抛物线按射线AC的方向平移,设平移后顶点'(D a +,平移后的抛物线解析式为21)y x a =--++该抛物线经过原点,则201)a =--+图2NN∴2280a a --=,∴a =4或a =-2(舍去),即D .设点N (1,b )'CDCN ='ND 如图4,当△'CD N 为等腰三角形时,分三种情况: ①当'CD CN ==,可得1N,2N ; ②当''CD D N ==3N,4N ,③当'CN D N =可得5N , ∴当△'CD N 为等腰三角形时,这样的N有:1N,2N,3N,4N,5N .3.(2019·天津)已知抛物线y=x 2-bx+c(b,c 为常数,b>0)经过点A (-1,0),点M(m,0)是x 轴正半轴上的动点,(1)当b=2时,求抛物线的顶点坐标;(2)点D(b,y D )在抛物线上,当AM=AD,m=5时,求b 的值; (3)点Q(1b ,2+y Q )2QM +时,求b 的值. 解:(1)∵抛物线y=x 2-bx+c 经过点A (-1,0), ∴1+b+c=0,∴c=-1-b 当b=2时,c=-3,∴抛物线的解析式为y=x 2-2x-3, ∴顶点坐标为(1,-4) (2)由(1)知,c=-1-b , ∵点D(b,y D )在抛物线上, ∴y D =-b-1,∵b>0,∴b 02b >>,-b-1<0,∴D(b,-b-1)在第四象限,且在抛物线对称轴2bx =的右侧.如图,过点D 作DE ⊥x 轴于E ,则E (b ,0),∴AE=b+1=DE,所以1)b +, ∵m=5,∴AM=5-(-1)=6, ∴1)b +∴b=(3)∵点Q(1b ,2+y Q )在抛物线上, ∴yQ=2113)()12224b b b b b +-+--=--(, ∴点Q (1b ,2+3-24b -)在第四象限,且在直线x=b 的右侧,2QM +的最小值为4,A(-1,0) ∴取点N(0,1),如图,过点Q 作QH ⊥x 轴于H ,作QG ⊥AN 于G,QG 与x 轴交于点M ,则H (1b ,2+0),∠GAM=45°,∴GM=2AM ,∵M (m,0),∴AM=m+1,MH=1b 2m +-,QH=324b +, ∵MH=QH,∴1b 2m +-=324b +, ∴m=1-24b ,∴AM=13-12424b b +=+,3)24b =+(2QM +33)))24244b b +++=(,∴b=4. 4.(2019·自贡)如图,已知直线AB 与抛物线:y =ax 2+2x +c 相交于点A (-1,0)和点B (2,3)两点. (1)求抛物线C 函数解析式;(2)若点M 是位于直线AB 上方抛物线上的一动点,以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,求此时平行四边形MANB 的面积S 及点M 的坐标; (3)在抛物线C 的对称轴上是否存在顶点F ,使抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离,若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)将A (-1,0)和B (2,3)代入抛物线解析式得{a −2+c =04a +4+c =3解得,{a =−1c =3∴抛物线解析式为y =-x 2+2x +3.(2)过M 作MH ∥y 轴,交AB 于H ,设直线AB 为y =kx +b ,将A ,B 坐标代入得,{−k +b =02k +b =3解得,{k =1b =1.∴直线AB 的解析式为y =x +1.设M 为(m ,-m 2+2m +3),则H (m ,m +1) ∴MH =y M -Y H =(-m 2+2m +3)-( m +1)=-m 2+m +2. ∴S △ABM =S △AMH +S △BMH =12·MH ·(x B -x A ) =12·(-m 2+m +2)·(2+1)=-32(m 2-m )+3 =-32(m -12)2+278.∵四边形MANB 是以MA 、MB 为相邻的两边的平行四边形, ∴△ABM ≌△BAN .∴S 四边形MANB =2 S △ABM =-3(m -12)2+274,∵a =-3<0且开口向下,∴当m =12时,S 四边形MANB 的最大值为274. 此时,M 坐标为(12,154). (3)存在,理由如下:过P 作直线y =174的垂线,垂足为T ,∵抛物线为y =-x 2+2x +3=-(x -1)2+4.∴抛物线的对称轴为直线x =1,顶点坐标为(1,4). 当P 为顶点,即P (1.4)时, 设F 点坐标为(1,t ), 此时PF =4-t ,PT =174-4=14.∵P 到F 的距离等于到直线y =174的距离,∴4-t =14,即t =154.∴F 为(1,154)设P 点为(a ,-a 2+2a +3),由勾股定理,PF 2=(a -1)2+(-a 2+2a +3-154)2=a 4-4a 3+132a 2-5a +2516.又∵PT 2=[174-(-a 2+2a +3)]2= a 4-4a 3+132a 2-5a +2516. ∴PF 2=PT 2,即PF =PT .∴当F 为(1,154)时,抛物线C 上任意一点P 到F 的距离等于到直线y =174的距离 .27.(2019·淮安)如图①,在△ABC 中,AB=AC=3,∠BAC=100°,D 是BC 的中点.小明对图①进行了如下探究:在线段AD 上任取一点P ,连接PB.将线段PB 绕点P 按逆时针方向旋转80°,点B 的对应点是点E ,连接BE ,得到△BPE.小明发现,随着点P 在线段AD 上位置的变化,点E 的位置也在变化,点E 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧. 请你帮助小明继续探究,并解答下列问题: (1)当点E 在直线AD 上时,如图②所示. ①∠BEP=°;②连接CE ,直线CE 与直线AB 的位置关系是.(2)请在图③中画出△BPE ,使点E 在直线AD 的右侧,连接CE.试判断直线CE 与直线AB 的位置关系,并说明理由.(3)当点P 在线段AD 上运动时,求AE 的最小值.【解题过程】(1)①由题意得,PE=PB ,∠BPE=80°,∴∠BEP=︒=︒-︒50280180; ②如图所示,∵AB=AC ,D 是BC 的中点,∠BAC=100°, ∴∠ABC=︒=︒-︒402100180,∵∠BEP=50°,∴∠BCE=∠CBE=40°, ∴∠ABC=∠BCE , ∴CE ∥AB.答案:①50°;②平行(2)在DA 延长线上取点F ,使∠BFA=∠CFA=40°,总有△BPE ∽△BFC. 又∵△BPF ∽△BEC , ∴∠BCE=∠BFP=40°, ∴∠BCE=∠ABC=40°, ∴CE ∥AB.(3)当点P 在线段AD 上运动时,由题意得PB=PE=PC ,∴点B 、E 、C 在以P 为圆心、PB 为半径的圆上, 如图所示:∴AE 的最小值为AC=3.5.(2019·凉山州)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△P AC 的周长最小,若存在,请求出点 P 的坐标及△P AC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △P AM =S △P AC ,若存在,请求出点M 的坐标;若不存在,请说明理由.解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△P AC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴P A =PB ,∴△P AC 的周长=AC +PC +P A = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△P AC 的周长为10+32;(3)存在.由题知AB =4,∴S △P AC =S △ABC -S △P AB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1. ①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4);②设抛物线对称轴交x 轴于点E (1,0),则S △P AC =21×2×2=2=S △P AC .过点E 作AP 的平行线交x轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).27.(2019·苏州,26,10)已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着A →B →C 的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),△APM 的面积为S (cm 2),S 与t 的函数关系如图②所示. (1)直接写出动点M 的运动速度为 cm/s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N 从点D 出发,在矩形边上沿着D →C →B 的方向匀速运动,设动点N 的运动速度为v (cm/s ).已知两动点M ,N 经过时间x (s )在线段BC 上相遇(不包含点C ),动点M ,N 相遇后立即同时停止运动,记此时△APM 与△DPN 的面积分别为S 1(cm 2),S 2(cm 2) ①求动点N 运动速度v (cm/s )的取值范围;②试探究S 1•S 2是否存在最大值,若存在,求出S 1•S 2的最大值并确定运动时间x 的值;若不存在,请说明理由.图① 图② 图③(第27题)【解题过程】解:(1)∵t =2.5s 时,函数图象发生改变,∴t =2.5s 时,M 运动到点B 处,∴动点M 的运动速度为52.5=2cm/s ,∵t =7.5s 时,S =0,∴t =7.5s 时,M 运动到点C 处,∴BC =(7.5﹣2.5)×2=10(cm ), 故答案为2,10;(2)①∵两动点M ,N 在线段BC 上相遇(不包含点C ),∴当在点C 相遇时,v 527.53==(cm/s ),当在点B 相遇时,v 5102.5+==6(cm/s ),∴动点N 运动速度v (cm/s )的取值范围为23cm/s <v ≤6cm/s ; ②过P 作EF ⊥AB 于F ,交CD 于E ,如图所示:则EF ∥BC ,EF =BC =10,∴AF APAB AC=,∵AC==∴5AF =,解得AF =2,∴DE =AF =2,CE =BF =3,PF ==4, ∴EP =EF ﹣PF =6,∴S 1=S △APM =S △APF +S 梯形PFBM ﹣S △ABM 12=⨯4×212+(4+2x ﹣5)×312-⨯5×(2x ﹣5)=﹣2x +15,S 2=S △DPM =S △DEP +S 梯形EPMC ﹣S △DCM 12=⨯2×612+(6+15﹣2x )×312-⨯5×(15﹣2x )=2x , ∴S 1•S 2=(﹣2x +15)×2x =﹣4x 2+30x =﹣4(x 154-)22254+,∵2.5154<<7.5,在BC 边上可取,∴当x 154=时,S 1•S 2的最大值为2254.第27题答图6.(2019·巴中)如图,抛物线y =ax 2+bx -5(a ≠0)经过x 轴上的点A(1,0)和点B 及y 轴上的点C,经过B,C 两点的直线为y =x+n.①求抛物线的解析式;②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 描,求t 为何值时,△PBE 的面积最大,并求出最大值.③过点A 作AM ⊥BC 与点M,过抛物线上一动点N(不与点B,C 重合)作直线AM 的平行线交直线BC 于点Q,若点A,M,N,Q 为顶点的四边形是平行四边形.求点N 的横坐标.第26题图分析:①由点A 和直线y =x+n 可得方程组,解出系数,求得二次函数的解析式;②根据题意表示出三角形面积,利用二次函数最值进行求解;③分析得到AM 平行且等于NQ,设出坐标,利用坐标关系列方程进行求解,并检验. 解:①因为点B,C 在y =x+n 上,所以B(-n,0),C(0,n),因为点A(1,0)在抛物线上,所以250505a b an bn n ,解得,a =-1,b =6,所以抛物线的解析式为:y =-x 2+6x -5. ②由题意得:PB =4-t,,BE =2t ,由①可知:∠OBC =45°,点P 到BC 上的高h =BPsin45(4-t), 所以S △PBE =12BE h =22222t ,当t =2时,S 取得最大值为③因为l BC :y =x -5,所以B(5,0), 因为A(1,0),所以AB =4,在Rt △ABM 中,∠ABM =45°,AMAB =M(3,-3), 过点N 作x 轴的垂线交直线BC 于点P 交x 轴于点H, 设N(m,-m 2+6m -5),则H(m,0),P(m,m -5),易证△PQN 为等腰直角三角形,即NQ=PQ=所以PN =4.当NH+HP =4时,即-m 2+6m -5-(m -5)=4, 解之得,m 1=1,m 2=4.当m 1=1时,点N 与点A 重合,故舍去;当NH+HP =4时,即m -5-(-m 2+6m -5)=4, 解得,m 1541,m 2541,因为m>5,所以m =5412; 当NH -HP =4,即-(-m 2+6m -5)-[-(m -5)]=4, 解得,m 1541,m 2541,因为m<0,所以m =5412.综上所述,要使点A,M,N,Q 为顶点的四边形是平行四边形,点N 的横坐标为:4541或541.第26题答图7.(2019·淄博)如图,顶点为M 的抛物线y =ax 2+bx +3与x 轴交于A (3,0),B (-1,0)两点,与y 轴交于点C .(1)求这条抛物线对应的函数表达式;(2)问在y 轴上是否存在点P ,使得△P AM 为直角三角形?若存在,求出点P 的坐标;若不存在,说明理由. (3)若在第一象限的抛物线下方有一动点D ,满足DA =OA ,过D 作DG ⊥x 轴于点G ,设△ADG 的内心为I ,试求CI 的最小值.解:(1)将A 、B 两点坐标代入抛物线表达式,得933030a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=⎩.∴y =-x 2+2x +3.(2)假设存在点P ,使△P AM 是直角三角形.当点M 为直角顶点,过M 作CD ⊥y 轴,过A 作AD ⊥x 轴,交CD 于D ,CD 交y 轴于C ,∵∠AMP =90°,图∴∠CMP +∠AMD =90,∴∠CMP =∠MAD ,又∵∠DM =∠PCM ,∴△CPM ∽△DMA ,∴CM AD =PCMD, ∴14=2PC ,∴PC =12,∴P 1(0,72); 当点A 为直角顶点,过A 作CD ⊥x 轴,过M 作MD ⊥y 轴交AD 于D ,过P 作PC ⊥y 轴交CD 于C ,同上△CP A∽△DAM ,∴PC AD =AC MD ,∴34=2AC ,∴AC =32,∴P 2(0,-32); 当点P 为直角顶点,过M 作CM ⊥y 轴于C ,∴△CPM ∽△OAP ,∴PC AO =CM PO ,∴3PC =14-PC,∴PC =1或3,∴P 3(0,3),P 4(0,1).综上所述,使△P AM 是直角三角形的点P 的是P 1(0,72),P 2(0,-32),P 3(0,3),P 4(0,1).(3)(方法1)由(1)得DA =OA =3,设D (x ,y ),△ADG 的内切圆半径为r ,则△ADG 的内心I 为(x +r ,r ), ∴DG =y ,AG =3-x由两点距离公式可得()2222339DA x y =-+==①由等面积法得r =()33+22y x DG AG DA +---==2y x-②∴()()2223CI x r r =++-③由①②③得(2229123124CI x y -⎡⎤⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,2CI在312x y =最小,此时CI 也最小,min 32CI =(方法2)简解:如图,由内心易知:∠DIA =135°,∠DAI =∠OAI ,△DAI ≌△OAI (SAS ),∴∠DIA =∠OIA =135°,则I 在圆周角∠OIA =135°⊙T 的圆周上运动,且半径R T 为(32,32),∴CI在△CIA 中,CI ≥CT-IT=32,当C 、I、T三点一线时,min 3=2CI .(2)答图18.(2019·枣庄)已知抛物线y =ax 2+32x+4的对称轴是直线x =3,与x 轴相交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C.(1)求抛物线的解析式和A 、B 两点的坐标;(2)如图1,若点P 是抛物线上B 、C 两点之间的一个动点(不与B 、C 重合),是否存在点P ,使四边形PBOC 的面积最大?若存在,求点P 的坐标及四边形PBOC 面积的最大值;若不存在,请说明理由.(3)如图2,若点M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N ,当MN =3时,求点M 的坐标.解:(1)抛物线y =ax 2+32x+4的对称轴为:x =332224b a a a -=-=-=3,∴a =14-,∴抛物线的解析式为:y =14-x 2+32x+4,令y =0,得14-x 2+32x+4=0,解之,得,x 1=-2,x 2=8,∵点B 在点A 的右侧,∴A(-2,0),B(8,0);(2)连接BC,在抛物线y =14-x 2+32x+4中,令x =0,得y =4,∴C(0,4),∴OC =4,OB =8,∴S △OBC =16,∵B(8,0),C(0,4),设l BC :y =kx+b ,得0=8k+b ,4=b ,∴k =12-,b =4,l BC :y =12-x+4,∴过点P 作PD ∥y 轴交BC 于点D,过点C作CE 垂直PD 于点E,过点B 作BF ⊥PD 于点F,则S △PBC =S △PCD +S △PBD =12PD ×CE+12PD ×BF =12PD ×(CE+BF)=12PD ×(x B -x C )=12PD ×8=4PD,∵点P 在抛物线上,设点P(x,14-x 2+32x+4),∵PD ∥y 轴,点D 在直线BC 上,∴D(x,12-x+4),∵点P 在B,C 间的抛物线上运动,∴PD =y P -y D =14-x 2+32x+4-(12-x+4)=14-x 2+2x,S △PBC =4PD =4(14-x 2+2x)=-x 2+8x =-(x -4)2+16,∴当x =4时,S △PBC 取最大值16,∴此时S 四边形OBPC =S △OBC +S △PBC =32;Iy 12第25题答图(3)∵MN∥y轴,∴设M,N的横坐标为m,∵点M在抛物线上,设点M(m,n),其中n=14-m2+32m+4,点N在直线BC上,∴N(m,12-m+4),∵点M是抛物线上任意一点,∴点M和点N的上下位置关系不确定,∴MN=|14-m2+32m+4-(12-m+4)|=|14-x2+2x|,∵MN=3,∴|14-x2+2x|=3,即14-x2+2x=3或14-x2+2x=-3,解这两个方程,得m1=2,m2=6, m3=4+4=4-∴n1=6, n2=4, n31, n41,∴M1(2,6), M2(6,4), M3(4+-1), M4(4-1).9.(2019·聊城)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(-2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O点和B点),且分别交抛物线,线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积的最大值.第25题图解:(1)由已知,将C(0,8)代入y=ax2+bx+c,∴c=8,将点A(-2,0)和B(4,0)代人y=ax2+bx+8,得4280 16480a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的表达式为y=-x2+2x+8;(2)∵A(-2,0),C(0,8),∴OA=2,OC=8,∵l⊥x轴,∠PEA=∠AOC=90°,∵∠PAE≠∠CAO,只有当∠PAE=∠ACO 时,△PEA ∽△AOC.此时AE PECO AO=,∴AE =4PE.设点P 的纵坐标为k,则PE =k,AE =4k,∴OE =4k -2,P 点的坐标为(4k -2,k),将P(4k -2,k)代入y =-x 2+2x+8,得-(4k -2)2+2(4k -2)+8=k,解得k 1=0(舍去),k 2=2316,当k =2316时,4k -2=154,∴P 点的坐标为(154,2316). (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠OCB,∴Rt △PFD ∽Rt △BOC,∴2PFD=S PD S BC ⎛⎫ ⎪⎝⎭△△BOC,∴S △PFD =2PD S BC ⎛⎫⋅ ⎪⎝⎭△BOC ,由B(4,0)知OB =4,又∵OC =8,∴BC 又S △BOC =12OB OC ⋅=16,∴S △PFD =215PD ,∴当PD 最大时,S △PFD 最大.由B(4,0),C(0,8)可解得BC 所在直线的表达式为y =-2x+8,设P(m,-m 2+2m+8),则D(m,-2m+8),∴PD =-(m -2)2+4,当m =2时,PD 取得最大值4,∴当PD =4时,S △PFD =165,为最大值.10.(2019·济宁)如图1,在矩形ABCD 中,AB =8,AD =10,E 是CD 边上一点,连接AE ,将矩形ABCD 沿AE 折叠,顶点D 恰好落在BC 边上点F 处,延长AE 交BC 的延长线于点G . (1)求线段CE 的长;(2)如图2,M ,N 分别是线段AG ,DG 上的动点(与端点不重合),且∠DMN =∠DAM ,设AM =x ,DN =y . ①写出y 关于x 的函数解析式,并求出y 的最小值;②是否存在这样的点M ,使△DMN 是等腰三角形?若存在,请求出x 的值;若不存在,请说明理由.解:(1)由折叠可得AF =AD =10,EF =ED ,矩形ABCD 中,∠B =90°,∴AB 2+BF 2=AF 2,∴6,BF ===∴CF =BC -BF =AD -BF =10-6=4.设CE =x ,则EF =DE =CD -CE =AB -CE =8-x ,∵EF 2=CE 2+CF 2.∴(8-x )2=x 2+42.∴x =3,∴CE =3. (2)①∵矩形ABCD 中,AD ∥BC ,∴∠DAG =∠AGF , ∵∠DAG =∠F AG , ∠DAG =∠AGF , ∴∠F AG =∠AGF ,∴AF =FG =10, ∴BG =BF +FG =6+10=16. ∵矩形ABCD 中∠B =90°, ∴AB 2+BG 2=AG 2,∴AG ===∵AD =FG ,AD ∥FG ,∴四边形AFGE是平行四边形,又∵AD=AF,∴平行四边形AFGE是菱形,∴DG=DA=10,∴∠DAG=∠DGA,∵∠DMG=∠DMN+∠NAG=∠DAM+∠ADM, ∠DMN=∠DAM,∴∠NMG=∠ADM.在△ADM和△MNG中,∠ADM=∠NMG, ∠DAG=∠DGA,∴△ADM∽△GMN.∴AD AMMG NG=10xy=-,∴211010y x x=-+,∵110>0,∴当51210x=-=⨯时,y有最小值为214101021410⎛⨯⨯-⎝⎭=⨯.∴y关于x的函数解析式是:211010y x x=-+,当x=y有最小值为2.②在△DMN和△DMG中,∠DMN=∠DGM,∠MDG=∠MDG,∴△DMN和△DMG是相似三角形.当△DMG是等腰三角形时,△DMN也是等腰三角形.∵M不与A重合,∴DM≠DG,∴△DMG是等腰三角形只有GM=GD或DM=GM两种情况:(1)如图3,当△DMG中GM=GD=10时,△DMN也是等腰三角形,即x=AG-MG=10;(2)如图4,当△DMG中DM=GM时,△DMN也是等腰三角形,∴∠MDG=∠DGM,∴∠DAG=∠MDG=∠MDG,∴△ADG∽△DMG,∴AD AGMG DG=,=,∴x综上:当x的值为2△DMN是等腰三角形.11.(2019·滨州)如图①,抛物线y=-x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A 逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠P AD的值.解:(1)当x=0时,y=4,则点A的坐标为(0,4),………………………………………1分当y=0时,0=-x2+x+4,解得x1=-4,x2=8,则点B的坐标为(-4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°.∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0).………………………………………………………………………2分设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=-x+4.……………………………………………………………4分(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,-t2+t+4),则点N的坐标为(t,-t+4),∴PN=(-t2+t+4)-(-t+4)=-t2+t,………………………………………………6分∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°.作PH⊥AD于点H,则∠PHN=90°,∴PH==(-t2+t)=t=-(t-6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),………………………………8分即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是.………………9分②当点P到直线AD的距离为时,如右图②所示,则t=,解得t1=2,t2=10,………………………………………………………………………10分则P1的坐标为(2,),P2的坐标为(10,-).当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;…………………………………………………………12分当P2的坐标为(10,-),则P2A==,∴sin∠P2AD==;由上可得,sin∠P AD的值是或.……………………………………………14分二、填空题16.(2019·南充)如图,矩形硬纸片ABCD的顶点A在y轴的正半轴及原点上滑动,顶点B在x轴的正半轴及BC=.给出下列结论:①点A从点O出发,到点B运动至点O为原点上滑动,点E为AB的中点,24AB=,5∆的面积最大值为144;③当OD最大时,点D的坐标为,止,点E经过的路径长为12π;②OAB.其中正确的结论是.(填写序号)【答案】②③ 【解析】点E 为AB 的中点,24AB =,1122OE AB ∴==, AB ∴的中点E 的运动轨迹是以点O 为圆心,12为半径的一段圆弧, 90AOB ∠=︒,∴点E 经过的路径长为90126180ππ⨯⨯=,故①错误; 当OAB ∆的面积最大时,因为24AB =,所以OAB ∆为等腰直角三角形,即OA OB =, E 为AB 的中点,OE AB ∴⊥,1122OE AB ==, ∴124121442AOB S ∆=⨯⨯=,故②正确; 如图,当O 、E 、D 三点共线时,OD 最大,过点D 作DF y ⊥轴于点F , 5AD BC ==,1122AE AB ==,∴13DE ==,131225OD DE OE ∴=+=+=, 设DF x =,∴OF =四边形ABCD 是矩形,90DAB ∴∠=︒,DFA AOB ∴∠=∠,DAF ABO ∴∠=∠, DFA AOB ∴∆∆∽∴DF DA OA AB =,∴524x OA =,∴245x OA =, E 为AB 的中点,90AOB ∠=︒,AE OE ∴=,AOE OAE ∴∠=∠,DFO BOA ∴∆∆∽,∴OD OF AB OA=,∴25245=,解得x,x =舍去,∴OF ,∴D .故③正确. 故答案为:②③.【知识点】直角形的性质;矩形的性质;相似三角形的判定和性质三、解答题17. (2019 · 镇江)如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD (2,0)E -为BC 的中点,点P 在菱形ABCD 的边上运动.当点(0,6)F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于( )A .103BC .163D .3【答案】A【解析】如图1中,当点P 是AB 的中点时,作FG PE ⊥于G ,连接EF .(2,0)E -,(0,6)F ,2OE ∴=,6OF =,EF ∴=90FGE ∠=︒,FG EF ∴,∴当点G 与E 重合时,FG 的值最大. 如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设2BC a =.PA PB =,BE EC a ==, //PE AC ∴,BJ JH =, 四边形ABCD 是菱形,AC BD ∴⊥,BH DH ==BJ =, PE BD ∴⊥,90BJE EOF PEF ∠=∠=∠=︒, EBJ FEO ∴∠=∠, BJE EOF ∴∆∆∽, ∴BE BJ EF EO=,∴62=, 53a ∴=, 1023BC a ∴==, 故选:A .【知识点】菱形的性质;平面直角坐标系;相似三角形的判定和性质;垂线段最短。
(全国通用)中考数学难点攻克:数学文化题型分类解析及18道针对练习题

中考数学重难考点突破——数学文化题型分类解析数学文化指数学的思想、精神、方法、观点、语言,以及它们的形成和发展。
数学作为一种文化现象,早已是人们的常识。
在近几年的中考中,以数学文化为载体的数学题越来越多,只要我们平时注意积累和了解这方面的常识,解题时注意审题,实现载体与考点的有效转化,透过现象看本质,问题便可迎刃而解.考点1以数学名著为题材例1《九章算术》中,将两底面是直角三角形的棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,主视图中的虚线平分矩形的面积,则该“堑堵”的侧面积为()A.2 B.4+2 2C.4+4 2 D.6+4 2例题分层分析(1)通过阅读,你知道“堑堵”是什么样的图形吗?(2)根据“堑堵”的定义,你能推断出该几何体的底面是什么图形?侧面又是什么图形?【解答】C[解析]依题意得,该几何体为三棱柱,且底面为等腰直角三角形,两直角边长均为2,高为2,所以其侧面积为S=2×2+2 2×2=4+4 2,故选C.[赏析] 该题以我国古代数学名著《九章算术》中所描述的特殊几何体“堑堵”为背景,是一道新概念信息的信息迁移题.试题以三视图为依托,在考查空间想象能力的同时传播数学文化.|针对训练|1.《九章算术》是人类科学史上应用数学的最早巅峰,在研究比率方面的应用十分丰富,其中有“米谷粒分”问题:粮仓开仓收粮,粮农送来1534石,验其米内杂谷,随机取米一把,数得254粒内夹谷28粒,则这批米内夹谷约()A.134石B.169石C.268石D.338石2.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A.x2-6=(10-x)2B.x2-62=(10-x)2C.x2+6=(10-x)2D.x2+62=(10-x)23.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸.问井深几何?”这是我国古代数学著作《九章算术》中的“井深几何”问题,它的题意可以由图,则井深为()A .1.25尺B .57.5尺C .6.25尺D .56.5尺4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国目前已知最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V≈136L2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h 相当于将圆锥体积公式中的π近似取为( )A.227B.258C.15750D.3551135. 我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x 、y 人,则可以列方程组为________.6. 明代数学家程大位的《算法统宗》中有这样一个问题(如图Z11-11),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有________两.(注:明代时1斤=16两,故有“半斤八两”这个成语)7. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC -(S △ANF +S △FGC),S 矩形EBMF =S △ABC -(________+________).易知,S △ADC =S △ABC ,________=________,________=________.可得S 矩形NFGD =S 矩形EBMF.8.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 的值为________.9. 阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: ⎩⎪⎨⎪⎧a =12()m2-n2,b =mn ,c =12()m2+n2.其中m>n>0,m ,n 是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.10.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.考点2以科技或数学时事为题材例2“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图1,图Z2中四边形是为体现其直观性所作的辅助线.其实际直观图中四边形不存在,当其主视图和左视图完全相同时,它的主视图和俯视图分别可能是()图1图2A.a,b B.a,c C.c,b D.b,d例题分层分析(1)根据题目所给的直观图,你发现“牟合方盖”有哪些特征?(2)“牟合方盖”的主视图和俯视图分别是什么?【解答】A[解析]当主视图和左视图完全相同时,“牟合方盖”相对的两个曲面正对前方,主视图为一个圆,俯视图为一个正方形,且对角线为两条实线.故选A.[赏析]“牟合方盖”是我国古代利用立体几何模型和数学思想方法解决数学问题的代表之一.本题取材于“牟合方盖”,通过添加解释和提供直观图的方式降低了理解题意的难度.试题从识“图”到想“图”,再到构“图”,要经历分析、判断的逻辑过程.另外,我国古代数学中的其他著名几何体,如“阳马”、“鳖臑”和“堑堵”等的三视图问题都有可能在中考中考查,值得我们注意.|针对训练|11.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图3所示的七巧板拼成的,则不是小明拼成的那幅图是()图3图412.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图5).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cosθ的值等于________.图5 图613.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图Z11-6,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为________.14. 阅读理解:如图7①,⊙O 与直线a ,b 都相切.不论⊙O 如何转动,直线a ,b 之间的距离始终保持不变(等于⊙O 的直径).我们把具有这一特性的图形称为“等宽曲线”.图②是利用圆的这一特性的例子.将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进.据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.图7拓展应用:如图8①所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图②,夹在平行线c ,d 间的莱洛三角形无论怎么滚动,平行线间的距离始终不变.若直线c ,d 之间的距离等于2 cm ,则莱洛三角形的周长为________cm.图8考点3 以数学名人为题材例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n.记第n 个k 边形数为N(n ,k )(k≥3), 以下列出了部分k 边形数中第n 个数的表达式.三角形数 N(n ,3)=12n 2+12n ,正方形数 N(n ,4)=n 2,五边形数 N(n ,5)=32n 2-12n ,六边形数 N(n ,6)=2n 2-n ,……可以推测,N(n ,k)的表达式,由此计算N(10,24)=________.【解答】1000[解析] 由N(n ,4)=n 2,N(n ,6)=2n 2-n ,…,可以推测:当k 为偶数时,N(n ,k)=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k 2-2n , 于是N(n ,24)=11n 2-10n ,故N(10,24)=11×102-10×10=1000.|针对训练|15. 我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用图中的三角形解释二项和(a +b)n 的展开式的各项系数,此三角形称为“杨辉三角”.(a +b)0…………… ①(a +b)1……………① ①(a +b)2…………① ② ①(a +b)3………① ③ ③ ①(a +b)4……① ④ ⑥ ④ ①(a +b)5…① ⑤ ⑩ ⑩ ⑤ ①…… ……根据“杨辉三角”请计算(a +b)20的展开式中第三项的系数为( )A .2017B .2016C .191D .19016. 正如我们小学学过的圆锥体积公式V =13πr 2h(π表示圆周率,r 表示圆锥的底面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9 3π,则这个圆锥的高等于()A.5 3πB.5 3 C.3 3πD.3 317.如图,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)由法国数学家和数学教育家克洛尔(A.L.Crelle 1780-1855)于1816年首次发现,但他的发现并未被当时的人们所注意.1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845-1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°.若Q为△DEF的布洛卡点,DQ=1,则EQ+FQ的值为()A.5 B.4 C.3+ 2 D.2+ 218.庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图①,按此图分割的方法,可得到一个等式(符号语言):1=12+122+123+…+12n+….图②也是一种无限分割:在△ABC中,∠ACB=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将△ABC分成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn-2Cn-1Cn、….假设AC =2,这些三角形的面积和可以得到一个等式是__________.针对训练答案解析1.【答案】B[解析] 设这批米内夹谷约为x石,根据随机抽样事件的概率得x1534=28254,解得x≈169.故选B.2.【答案】D[解析]如图,折断处离地面的高度为x尺,则AB=10-x,BC=6, 在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.3.【答案】B[解析]如图,由题意,得BC∥DE,从而△ABF∽△ADE,因此BFDE=ABAD,即0.45=55+BD,解得BD=57.5,所以井深为57.5尺.4.【答案】B[解析] 由题意知275L2h≈13πr2h,∴275L2≈13πr2,而L≈2πr,代入得π≈258.5.【答案】⎩⎪⎨⎪⎧x+y=100,3x+y3=100[解析] 根据“大、小和尚共有100人”可得x +y =100;由“大和尚一人分3个”可知x 个大和尚共分得3x 个馒头,由“小和尚3人分一个”可知y 个小和尚共分得y3个馒头,根据“大、小和尚分100个馒头”可得3x +y3=100,故可列方程组为⎩⎪⎨⎪⎧x +y =100,3x +y3=100. 6.【答案】46[解析] 设这群人人数为x ,根据题意得7x +4=9x -8,解得x =6,银子的数量为46两. 7.【答案】S △AEF ;S △CFM ;S △ANF ;S △AEF ;S △FGC ;S △CFM 8. 【答案】1.6[解析] 由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x)×3×1+π·⎝ ⎛⎭⎪⎫122x =12.6.解得x =1.6.9. 解:当n =1时,a =12(m 2-1)①,b =m②,c =12(m 2+1)③, 因为直角三角形有一边长为5,分情况如下:情况1:当a =5时,即12(m 2-1)=5,解得m =±11(舍去);情况2:当b =5时,即m =5,再将它分别代入①③得a =12×(52-1)=12,c =12×(52+1)=13;情况3:当c =5时,即12(m 2+1)=5,m =±3,因m>0,所以m =3,把m =3分别代入①②得a =12×(32-1)=4,b =3.综上所述,直角三角形的另两边长为12,13或3,4.10.解:设鸡有x 只,兔有y 只. 依题意,得⎩⎨⎧x +y =35,2x +4y =94,解得⎩⎨⎧x =23,y =12.答:鸡有23只,兔有12只. 11.【答案】C 12.【答案】45 [解析] 如图,∵大正方形的面积为25,小正方形的面积为1,∴大正方形边长AD =5,小正方形的边长EF =1.设DE =AF =x ,在Rt △ADE 中,由勾股定理,得AE 2+DE 2=AD 2,∴(x +1)2+x 2=52,解得x 1=-4(舍去),x 2=3,即DE =3,AE =3+1=4,∴cos θ=cos ∠DAE =AE AD =45. 13.【答案】-3[解析] 根据题意可知正放表示正数,斜放表示负数,组合在一起表示相加,由正放2根,斜放5根组合在一起表示(+2)+(―5)=-3. 14.【答案】2π[解析] 由题意知,莱洛三角形周长是半径为2,圆心角是60°的三段弧长的和,60π×2180×3=2π.15.【答案】D[解析] 观察可得(a +b)n 的展开式中第三项的系数为n (n -1)2,因此,可得(a +b)20的展开式中第三项的系数为190.16.【答案】D[解析] 如图,∵圆锥的侧面展开图是个半圆,∴设这个半圆的半径为R ,则AC =R ,∴这个半圆的弧长为πR ,设圆锥底面圆的半径为r ,则2πr =πR ,得:R =2r ,∴AC =2r.由圆锥的母线AC =2r ,OC =r 得在Rt △AOC 中,h =AO =3r ,∵圆锥的体积等于9 3π,∴13πr2·3r =93π,∴r =3,h =AO =3r =33.17.【答案】D[解析] 因为Q 是△EDF 的布洛卡点,所以∠QDF =∠QFE =∠QED ,又因为∠QFD =45°-∠QFE ,∠QEF =45°-∠QED ,所以∠QFD =∠QEF ,所以△QDF ∽△QFE ,所以QF ∶EQ =DQ ∶QF =DF ∶EF =1∶2(△EDF 是等腰直角三角形),所以DQ ∶QF =1∶2,其中DQ =1, 所以QF =2,且QF ∶EQ =1∶2,所以EQ =2,所以EQ +FQ =2+ 2.故选D. 18.【答案】23=32[1+34+(34)2+(34)3+…+(34)n +…][解析] 根据三角形的面积来列出等式.由∠ACB =90°,∠B =30°,AC =2,可得三角形的面积为12×AC ×BC =12×2×2 3=23.又因为三角形的面积可表示为n 个三角形的面积和,则可得到12×1×3+12×32×32+12×34×3 34+…+12×⎝ ⎛⎭⎪⎫12n ×3×⎝ ⎛⎭⎪⎫32n+…=32⎣⎢⎡⎦⎥⎤1+34+⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫343+…+⎝ ⎛⎭⎪⎫34n+….所以根据面积相等得2 3=32⎣⎢⎡⎦⎥⎤1+34+⎝ ⎛⎭⎪⎫342+⎝ ⎛⎭⎪⎫343+…+⎝ ⎛⎭⎪⎫34n+…。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年全国中考数学真题分类汇编:数学文化一、选择题1. (2019年乐山市)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是( )()A 1,11 ()B 7,53 ()C 7,61 ()D 6,50 【考点】二元一次方程组的解法与应用 【解答】解:设人数人,物价y 钱.⎩⎨⎧=+=-y x yx 4738解得:⎩⎨⎧==537y x ,故选B.2.(2019年重庆市)《九章算术》中有这样一个题:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?其意思为:今有甲乙二人,不如其钱包里有多少钱,若乙把其一半的钱给甲,则甲的数为50;而甲把其的钱给乙,则乙的钱数也为50,问甲、乙各有多少钱?设甲的钱数为,乙的钱数为y ,则可建立方程组为( )A .B .C .D .【考点】二元一次方程组的解法与应用 【解答】解:设甲的钱数为,乙的钱数为y ,依题意,得:.故选:A .3. (2019年山东省德州市)《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长尺,木长y尺,则可列二元一次方程组为()A. B. C D【考点二元一次方程组的解法与应用、数学文化【解答】解:设绳长尺,长木为y尺,依题意得,故选:B.4.(2019年湖北省襄阳市)《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为人,所列方程正确的是()A.5﹣45=7﹣3 B.5+45=7+3 C.=D.=【考点】一元一次方程的应用【解答】解:设合伙人数为人,依题意,得:5+45=7+3.故选:B.5. (2019年湖北省宜昌市)古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a,b,c,记p=,那么三角形的面积为S=.如图,在△ABC 中,∠A,∠B,∠C所对的边分别记为a,b,c,若a=5,b=6,c=7,则△ABC的面积为()A.6B.6C.18D.【考点】二次根式的应用【解答】解:∵a=7,b=5,c=6.∴p==9,∴△ABC的面积S==6;故选:A.6.(2019年福建省)《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,设他第一天读个字,则下面所列方程正确的是( ) A .+2+4=34685 B .+2+3=34685C .+2+2=34685D .+12+14=34685【考点】由实际问题抽象出一元一次方程【解答】解:设他第一天读个字,根据题意可得:+2+4=34685, 故选:A .7.(2019年吉林省长春市)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为y ,可列方程组为( ) A . B .C D .【考】由实际问题抽象出二元一次方程组【解答】解:设人数为,买鸡的钱数为y ,可列方程组为: . 故:D .8.(2019年甘肃兰州)《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为斤,一只燕的重量为y 斤,则可列方程组为( ) A . B .CD .【考由际问抽出二元一次方程组 【解答】解:由题意可得, , 故:C .9.(019年湖南省长沙市)《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为尺,绳子长为y 尺,则所列方程组正确的是()A.B.C.D.考点由实际问题抽象出二元一次方程组【解答】解:由题意可得,,故选A.10.(2019年浙江省舟山市)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹两,牛每头y两,根据题意可列方程组为()A.B.C.D【考】二元一次方程组的应用【解答】解:设马每匹两,牛每头y两,根据题意可列方程组为:.故:D.11.(2019年浙江省宁波市)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【考点】勾股定理【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a , 由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ), 较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a , 则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积, 故选:C . 二、填空题1. (2019年上海市)《九章算术》中有一道题的条件是:“今有大器五小器一容三斛,大器一小器五容二斛.”大致意思是:有大小两种盛米的桶,5大桶加1小桶共盛3斛米,1大桶加5小桶共盛2斛米,依据该条件,1大桶加1小桶共盛 . 斛米.(注:斛是古代一种容量单位) 【考点】二元一次方程组的解法【解答】解:设1个大桶可以盛米斛,1个小桶可以盛米y 斛, 则,故++y +5y =5, 则+y =56.答:1大桶加1小桶共盛56斛米.故答案为:56.2. (2019年辽宁省大连市)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu ,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为 . 【考点】二元一次方程组的应用【解答】解:设1个大桶可以盛酒斛,1个小桶可以盛酒y 斛, 根据题意得:, 故案为.3(2019年江苏省南通市)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:共有几个人?”设共有个人共同出钱买鸡,根据题意,可列一元一次方程为.【解答】一元一次方程的应用【考点】解:设有个人共同买鸡,根据题意得:9﹣11=6+16.故答案为:9﹣11=6+16.4.(2019年湖南省株洲市)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.【解答】一元一次方程的应用【考点】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.5.(2019年湖北省咸宁市)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长y尺,可列方程组为.【解答】二元一次方程组的应用【考点】解:设木条长尺,绳子长y尺,依题意,得:.答案为:..(2019年江苏省泰安市)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重两,每枚白银重y两,根据题意可列方程组为____.【解答】由实际问题抽象出二元一次方程组【考点】解:设每枚黄金重两,每枚白银重y两,由题意得:,故案为:.7(201年宁夏自治)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程2+5﹣14=0即(+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(++5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程2﹣4﹣12=0的正确构图是.(只填序号)【解答】一元二次方程的应用【考点】解:∵2﹣4﹣12=0即(﹣4)=12,∴构造如图②中大正方形的面积是(+﹣4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得=6.故答案为:②.8.(2019年甘肃白银)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】利用频率估计概率【考点】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.三、解答题1.(2019年甘肃省)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车?【考点】一元一次方程的解法及应用【解答】解:设共有人,根据题意得:+2=,去分母得:2+12=3﹣27,解得:=39,∴=15,则共有39人,15辆车.2.(2019年湖北省黄石市)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?【解答】一元一次方程的应用【考点】解:(1)设当走路慢的人再走600步时,走路快的人的走步,由题意得:600=100:60∴=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+60y100∴y=500答:走路快的人走500步才能追上走路慢的人.。