带通滤波电路设计

合集下载

带通滤波电路带通滤波器

带通滤波电路带通滤波器

f<f1的信号可从低通滤波器通过
f>f2的信号可从高通滤波器通过
阻带宽度为f2 -fl
频率范围在fl<f<f2的信号被阻断
三、 带阻滤波电路
2. 常用带阻滤波器(BEF)
电路特征:输入信号经过一个由RC元件 组成的双T型选频网络,然后接至集成运 放的同相输入端。
工作原理:当输入信号的频率较高时,可 以认为电容短路,则高频信号从上面由两 个电容和一个电阻构成的T型支路通过;
Ui (s)
1 sC
M
1 sC
P
Uo(s)
UM (s) UP (s) UP (s)
1
R
sC
Ui (s) UM (s) UM (s) UO (s) UM (s) UP (s)
1
R
1
sC
sC
压控电压源二阶HPF电路பைடு நூலகம்
传递函数:
Au
(s)

1

[3

(sRC)2 Aup (s) Aup (s)]sRC (sRC)2
带阻滤波器的作用与带通滤波器相反,即在规定的频带内,信号被 阻断,而在此频带之外,信号能够顺利通过。带阻滤波器也常用于抗干 扰设备中阻止某个频带范围内的干扰及噪声信号通过。
从原理上说,将一个通带截止频率为fl的低通滤波器与一个通带截 止频率为f2的高通滤波器并联在一起,当满足条件fl<f2时,即可组成带 阻滤波器。
1 Q 3 AuP
A u
f f0
A u p 3 A u p
Q A u p
Q是f=f0时的电压放大倍数与通带放大倍数之比
一、高通有源滤波电路
对数幅频特性

LC带通滤波器的设计与仿真设计毕业设计(论文)

LC带通滤波器的设计与仿真设计毕业设计(论文)
1.3.2 国内外投入滤波器产业概况................................6
1.3.3 滤波器的前景....................................................7
1.3.4几种新型滤波器介绍..........................................8
●阻带滤波器:它的阻带限定在两个有限频率ƒ1与ƒ2之间,阻带两侧都有通带。
1.1.2 滤波器的种类
根据使用的波段和元件的不同,滤波器有很多种类,而且随着技术的发展,种类还在不断增加。总的来说,滤波器可分为两大类:无源滤波器和有源滤波器。
在无源滤波器中,所使用的是无源元件。他们在个体或组合的情况下,能够把一种形式的能量变换为另一种形式,并重新变回到原来的形式,换言之,它们必须是谐振性的。例如,在一个LC谐振电路中,在电容器的电场和电感线圈的磁场之间不断发生着能量的反复交换。因此,如果两个不同储能装置当相互偶合时,能够以很小的损耗实现能量的交换,它们就可以被利用为滤波器元件。
结束语.................................................................................43
致谢....................................................................................45
摘要
随着电子信息的发展,滤波器作为信号处理的不可缺少的部分,也得到了迅速的发展。LC滤波器作为滤波器的一个重要组成部分,它的应用相当的广泛。因此对于它的设计也受到人们的广泛关注。如何设计利用简单的方法设计出高性能的LC滤波器是人们一直研究的课题。

实验四微带线带通滤波器设计

实验四微带线带通滤波器设计

实验四微带线带通滤波器设计实验四:基于ADS软件的平⾏耦合微带线带通滤波器的设计与仿真⼀、实验原理滤波器是⽤来分离不同频率信号的⼀种器件,在微波电路系统中,滤波器的性能对电路的性能指标有很⼤的影响,微带电路具有体积⼩,重量轻、频带宽等诸多优点,在微波电路系统应⽤⼴泛,其中⽤微带做滤波器是其主要应⽤之⼀。

平⾏耦合微带线带通滤波器在微波集成电路中是被⼴为应⽤的带通滤波器。

1、滤波器的介绍滤波波器可以分为四种:低通滤波器和⾼通滤波器、带通滤波器和带阻滤波器。

射频滤波器⼜可以分为以下波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。

滤波的性能指标:频率围:滤波器通过或截断信号的频率界限通带衰减:滤波器残存的反射以及滤波器元件的损耗引起阻带衰减:取通带外与截⽌频率为⼀定⽐值的某频率的衰减值寄⽣通带:有分布参数的频率周期性引起,在通带外⼜产⽣新的通带2、平⾏耦合微带线滤波器的理论当频率达到或接近GHz时,滤波器通常由分布参数元件构成,平⾏耦合微带传输线由两个⽆屏蔽的平⾏微带传输线紧靠在⼀起构成,由于两个传输线之间电磁场的相互作⽤,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。

平⾏耦合微带线可以构成带通滤波器,这种滤波器是由四分之⼀波长耦合线段构成,她是⼀种常⽤的分布参数带通滤波器。

当两个⽆屏蔽的传输线紧靠⼀起时,由于传输线之间电磁场的相互作⽤,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。

根据传输线理论,每条单独的微带线都等价为⼩段串联电感和⼩段并联电容。

每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。

单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。

如果将多个单元级联,级联后的⽹络可以具有良好的滤波特性。

⼆、耦合微带线滤波器的设计的流程1、确定滤波器指标2、计算查表确定滤波器级数N3、确定标准滤波器参数4、计算传输线奇偶模特性阻抗5、计算微带线尺⼨6、仿真7、优化再仿真得到波形图设计参数要求:(1)中⼼频率:2.4GHz;(2)相对带宽:9%;(3)带波纹:<0.5dB;(4)在频率1.9GHz和2.9GHz处,衰减>20dB;(5)输⼊输出阻抗:50Ω。

二阶有源带通滤波器设计及参数计算

二阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。

滤波器分为无源滤波器与有源滤波器两种:①无源滤波器:由电感L、电容C及电阻R等无源元件组成②有源滤波器:一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。

利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。

从功能来上有源滤波器分为:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)、带阻滤波器(BEF)、全通滤波器(APF)。

其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。

当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。

在实用电子电路中,还可能同时采用几种不同型式的滤波电路。

滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。

带通滤波器(BPF)(a)电路图(b)幅频特性图1 压控电压源二阶带通滤波器工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。

典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。

如图1(a)所示。

电路性能参数通带增益中心频率通带宽度选择性此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。

例.要求设计一个有源二阶带通滤波器,指标要求为:通带中心频率通带中心频率处的电压放大倍数:带宽:设计步骤:1)选用图2电路。

2)该电路的传输函数:品质因数:通带的中心角频率:通带中心角频率处的电压放大倍数:取,则:图2 无限增益多路负反馈有源二阶带通滤波器电路。

耦合谐振器带通滤波器的设计方法

耦合谐振器带通滤波器的设计方法

耦合谐振器带通滤波器的设计方法电容耦合谐振时滤波器的一般形式如图所示。

n 阶滤波器需要n 个并联谐振电路并包含n 各节点。

后面的表中列出了全极点滤波器的q 参数和k 参数。

利用这些参数可以得到图中所示形式的滤波器元件值。

对于每一个网络,q 1和q N 对应于第一个和最后一个谐振电路。

参数以k 12、k 23等表示,他们与图中所示的耦合电容相关联。

设计步骤如下:1 计算所需要的滤波器通带Q 值(Q B )dBB BW f Q 30=(1)其中 f 0 为滤波器的中心频率BW 3dB 为滤波器的3dB 带宽2 从所选滤波器类型和阶数n 所对应的表中确定q 和k 。

对这些参数去归一化:11q Q Q B ×= (2) n B n q Q Q ×= (3) Bxy xy Q k K =(4)3 选择合适的电感L 后,信号内组和负载电阻刻有下列公式求出: 10LQ R S ω= (5) n L LQ R 0ω= (6)4 总的节点电容由下式确定: LC j 201ω=(7)于是,可由下式算出耦合电容:j xy xy C K C = (8)5 连接到每个节点的总电容应等于C j ,因此,并联谐振电路的并联电容等于总的节点电容减去连接该节点的耦合电容。

例如;121C C C j −= (9) 23122C C C C j −−= (10) 78677C C C C j −−= (11)将相邻节点短路到地,使连接与该节点的耦合电容能与调谐电路并联,从而使每个节点均可以调谐到f 0。

用这种方法计算出的滤波器在一般情况下它的输入、输出阻抗与其选择的滤波器类型和初始确定的电感值有关。

而在实际应用中我们希望滤波器的输入、输出阻抗能满足50Ω射频电路的需求。

在这种情况下,我们有两种方法可以解决上述问题。

 第一种方法,改变谐振器的电感值使其接近我们所需要的输入输出阻抗值。

但这种方法存在着不可避免的缺陷。

带通滤波器课程设计

带通滤波器课程设计

目录前言第一章二阶带通滤波器的设计要求 (4)1.1简介 (4)1.2设计任务及要求 (4)第二章系统组成及工作原理 (4)2.1 二阶有源低通滤波器 (4)2.2二阶有源高通滤波器 (7)2.3设计方案 (8)2.3 元件参数选取 (9)2.4二阶带通滤波器设计元件清单 (10)第三章二阶带通滤波器的仿真 (10)3.1 二阶有源带通滤波器仿真电路图 (10)3.2仿真结果及分析 (11)3.3设计总结及心得 (13)参考文献前言近几年,随着冶金、化工、纺织机构等工业使用的各种非线性用电设备,而产生的大量的高次谐波,已导致电网上网正常波形发生严重畸变,影响到供电系统的电能质量和用户用电设备的安全经济运行。

随着生产技术方式的变化,生产力确实得到较大提高,可同时也受到方方面面的限制。

如当人们做出了具体的制度设计需要付诸实践进行试验,试验过程中不可避免地会受到一些偶然随即因素的干扰,为评价新方案的效果,需排除这些随即因素的影响,即,需要一个滤波器。

经滤波以后,对新方案的效果进行检验。

说到滤波器,可分为两种:有源和无源。

有源滤波自身就是谐波源。

其依靠电力电子装置,在检测到系统谐波的同时产生一组和系统幅值相等,相位相反的谐波向量,这样可以抵消掉系统谐波,使其成为正弦波形。

有源滤波除了滤除谐波外,同时还可以动态补偿无功功率。

一般无源滤波指通过电感和电容的匹配对某次谐波并联低阻(调谐滤波)状态,给某次谐波电流构成一个低阻态通路。

这样谐波电流就不会流入系统。

无源滤波的优点为运行稳定,技术相对成熟,容量大。

缺点为谐波滤除率一般只有80%,对基波的无功补偿也是一定的。

我们通过自身的所学知识设计了这个二阶低通滤波器,并尽可能的调试,希望能得到较好的滤波效果。

第一章二阶带通滤波器的设计要求1.1简介带通滤波器是指能通过某一频率范围的频率分量、但将其他范围的频率分量衰减到极低水平的滤波器,与带阻滤波器的概念相对。

一个模拟带通滤波器的例子是电阻-电感-电容电路。

(整理)带通滤波器的设计步骤0001

(整理)带通滤波器的设计步骤0001

带通滤波器设计流程滤波器是具有频率选择性的双端口器件。

由于谐振器的频率选择性,所以规定的频率信号能够通过器件,而规定频率信号以外的能量被反射, 从而实现频率选择的功能。

滤波器从物理结构上,就是由一些不同的单个谐振器按相应的耦合系 数组合而成,最后达到规定频率的信号从输出端通过的目的。

1. 滤波器技术指标1.1 工作频率范围: 1060MH ± 100MHz1.2插入损耗: 0.5dB max1.3 驻波比:1.2 max1.4 带外抑制:>20dB@f ± 200MHz >35dB@f ± 300MHz >60dB@f ± 500MHz1.5 寄生通带: f > 3500MHz 以上,对衰减不作要1.6 工作温度:-55 ° Cto+85°C1.7 最大输入脉冲功率:400W最大输入平均功率:20W2. 滤波器设计原理3. 滤波器结构选择3.1物理结构选择根据以上技术指标选择 腔体交指型带通滤波器,主要的原因是因为它 有着良好的带通滤波特性,而且它结构紧凑、结实;且容易制造;谐振杆端口 2图1滤波器原理图的长度近似约为入/ 4(波长)°,故第二通带在3倍fo上,其间不会有寄生响应。

它用较粗谐振杆作自行支撑而不用介质,谐振杆做成圆杆,还可用集总电容加载的方法来减小体积和增加电场强度,而且它适用于各种带宽和各种精度的设计。

3.2电路结构的选择根据以上技术指标选择交指点接触形式,主要的原因是它的谐振杆的一端是开路,一端是短路(即和接地板接连在一起),长约入/ 4 °,载TE M (电磁波)模,杆1到杆n都用作谐振器,同时杆1和杆n也起着阻抗变换作用。

4. 电路仿真设计如图2模型选择。

采用An soft公司的Serenade设计,根据具体的技术指标、体积要求和功率容量的考虑,此滤波器采用腔体交指滤波器类型,使用切比雪夫原型来设计,用圆杆结构的物理方式来实现。

二阶有源带通滤波器设计及参数计算

二阶有源带通滤波器设计及参数计算

之阳早格格创做滤波器是一种只传输指定频段旗号,压造其余频段旗号的电路.滤波器分为无源滤波器与有源滤波器二种:①无源滤波器:由电感L、电容C及电阻R等无源元件组成②有源滤波器:普遍由集成运搁与RC搜集形成,它具备体积小、本能宁静等便宜,共时,由于集成运搁的删益战输进阻抗皆很下,输出阻抗很矮,故有源滤波器还兼有搁大与慢冲效率. 利用有源滤波器不妨超过有用频次的旗号,衰减无用频次的旗号,压造搞扰战噪声,以达到普及疑噪比或者选频的手段,果而有源滤波器被广大应用于通疑、丈量及统造技能中的小旗号处理.从功能去上有源滤波器分为:矮通滤波器(LPF)、下通滤波器(HPF)、戴通滤波器(BPF)、戴阻滤波器(BEF)、齐通滤波器(APF).其中前四种滤波器间互有通联,LPF与HPF间互为对于奇闭系.当LPF的通戴截行频次下于HPF的通戴截行频次时,将LPF与HPF相串联,便形成了BPF,而LPF与HPF并联,便形成BEF.正在真用电子电路中,还大概共时采与几种分歧型式的滤波电路.滤波电路的主要本能指标有通戴电压搁大倍数AVP、通戴截行频次fP及阻僧系数Q等.戴通滤波器(BPF)(a)电路图(b)幅频个性图1 压控电压源二阶戴通滤波器处事本理:那种滤波器的效率是只允许正在某一个通频戴范畴内的旗号通过,而比通频戴下限频次矮战比上限频次下的旗号均加以衰减或者压造.典型的戴通滤波器不妨从二阶矮通滤波器中将其中一级改成下通而成.如图1(a)所示. 电路本能参数通戴删益核心频次通戴宽度采用性此电路的便宜是改变Rf战R4的比率便可改变频宽而没有效率核心频次.例.央供安排一个有源二阶戴通滤波器,指标央供为:通戴核心频次通戴核心频次处的电压搁大倍数:戴宽:安排步调:1)采用图2电路.2)该电路的传输函数:本量果数:通戴的核心角频次:通戴核心角频次处的电压搁大倍数:与,则:图2 无限删益多路背反馈有源二阶戴通滤波器电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带通滤波电路设计一.设计要求
(1)信号通过频率范围 f 在100 Hz至10 kHz之间;
(2)滤波电路在 1 kHz 电路的幅频衰减应当在
的幅频响应必须在±
1 kHz 时值的± 3 dB
1 dB 范围内,而在
范围内;
100 Hz至10 kHz滤波
(3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。

二.电路组成原理
由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较,
不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。

V I V O
低通高通
图( 1)
1
W H低通截止角频率
R1C1
1
W L高通截止角频率
R2C2
必须满足W L<W H
│A│
O │A│
O │A│
O 低通
W w
H
高通
W w
L
带通
W W w
L H
图( 2)
三.电路方案的选择
参照教材 10.3.3 有源带通滤波电路的设计。

这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。

根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。

在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。

因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。

由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

C 1
R 6
R 1
R 3
1000uF
C 3
18K Ω
4
+
C
35.7K Ω
14K Ω
+
-
0.1uF
0.1uF
+
-
R 8
+
R 2
C 2
4
V O
48K Ω
R
V I
23.2K Ω
1000uF
39.8K Ω
R 7
R 9


R 5
18K Ω
82K Ω
68K Ω
图( 3)
三.元件参数的选择和计算
在选用元件时, 应当考虑元件参数误差对传递函数带来的影响。

现规定选择电阻值的容差为 1%,电容值的容差为 5%。

由于每一电路包含若干电阻器和两个电容器,预计实际截止频率可能存在较大的误差(也许是 +10%)。

为确保在 100Hz
和 10kHz 处的衰减不大于 3dB. 现以额定截止频率 90Hz 和 1kHz 进行设计。

前已指出,在运放电路中的电阻不宜选择过大或较小。

一般为几千欧至几十千欧较合适。

因此,选择低通级电路的电容值为 1000pF ,高通级电路的电容值为 0.1 μ F ,然后由式 W C
1
可计算出精确的电阻值。

RC
1
对于低通级由于已知 c=1000pF 和 fh=11kHz, 由式 W
算得
Ω 先
C
RC
选择标准电阻值 R3=14.0k Ω. 对于高通级可做同样的计算。

由于已知 C=0.1μF
和 fL=90Hz ,可求出 R7=R8≈18k Ω
考虑到已知 Avf1=1.586 ,同时尽量要使运放同相输入端和反相输入端对地的直流电阻基本
相等,现选择 R5=68k ,R10=82k, 由此可算出 R4=(Avf1-1)R5 ≈ 39.8k,R9=(Avf1-1)R10 ≈ 48k ,
其容差为 1%。

设计完成的电路如图所示。

信号源 vI 通过 R1 和 R2 进行衰减,它的戴维宁电阻是 R1 和 R2
R R
2
1
的并联值,这个电阻应当等于低通级电阻R3(=14k) 。

因此,有
R 3 14K
R 1 R 2
由于整个滤波电路通带增益是电压分压器比值和滤波器部分增益的乘积,且应等于单位增
益,故有
R 2 R 2 R 1 ( A vf 1)
2.515 1
R 2
R 1 R 2
联解式 和 ,并选择容差为
1%的额定电阻值,得
R1=35.7 k Ω 和 R2=23.2 k Ω。

四.电路仿真分析
1. 设计好电路后,根据电路图进行仿真。

仿真图如图(
4)
图( 4)
2.仿真电路调试及测试结果(红线为输入,黄线为输出)
图( 5)仿真图(1)输入 100HZ , Vpp=5v 正弦波
图( 6)(2)输入 300HZ , Vpp=5v 正弦波
图( 7)
(3)输入 1000HZ , Vpp=5v 正弦波
图( 8)
(4)输入 3KHZ ,Vpp=5v 正弦波
图( 9)(5)输入 30KHZ , Vpp=5v 正弦波
图( 10)
波特图
图( 11)
1、通频带内满足增益要求
2、转折频率点(上下限频率处)衰减在要求范围内
3、上下限频率点十倍频幅频衰减符合要求。

相关文档
最新文档