合情推理演绎推理(带答案)
高中数学 2.1《合情推理与演绎推理》测试(1) 新人教B版选修2-2

合情推理与演绎推理一、归纳推理 例1.(1)观察圆周上n 个点之间所连的弦,发现两个点可以连一条弦,3个点可以连3条弦,4个点可以连6条弦,5个点可以连10条弦,你由此可以归纳出什么规律?变式1.设平面内有n 条直线)3(≥n ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用)(n f 表示这n 条直线交点的个数,则)4(f =____________;当4>n 时,=)(n f .(用n 表示)变式2.在圆内画一条线段,将圆分成两部分;画两条线段,彼此最多分割成4条线段,同时将圆分割成4部分;画三条线段,彼此最多分割成9条线段,同时将圆分割成7部分.那么 (1)在圆内画四条线段,彼此最多分割成 条线段?同时将圆分割成 部分?(2)猜想:圆内两两相交的n (n ≥2)条线段,彼此最多分割成 条线段?同时将圆分割成 部分?强化训练1.某同学在电脑上打下了一串黑白圆,如图所示,○○○●●○○○●●○○○…,按这种规律往下排,那么第36个圆的颜色应是 .2.由107>85,119>108,2513>219,…若a >b >0,m >0,则m a m b ++与a b 之间的大小关系为 .3.下列推理是归纳推理的是 (填序号).①A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,得P 的轨迹为椭圆 ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式 ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆2222b y a x +=1的面积S =πab④科学家利用鱼的沉浮原理制造潜艇4.已知整数的数对列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是 .二、类比推理(一)数列中的类比例1.在等差数列{}n a 中,若010=a ,则有等式n a a a +⋅⋅⋅++21),19(1921+-∈<+⋅⋅⋅++=N n n a a a n 成立,类比上述性质,相应地:在等比数列{}n b 中,若19=b ,则有等式 成立.强化练习1.定义“等和数列”,在一个数列中,如果每一项与它的后一项的和都为同一常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
【赢在微点】高三数学(文)一轮复习练习:6-5合情推理与演绎推理(含答案解析)

配餐作业(三十七) 合情推理与演绎推理一、选择题1.下列推理中属于归纳推理且结论正确的是( )A .设数列{a n }的前n 项和为S n 。
由a n =2n -1,求出S 1=12,S 2=22,S 3=32,…,推断:S n =n 2B .由f(x)=xcosx 满足f(-x)=-f(x)对∀ x ∈R 恒成立,推断:f(x)=xcosx 为奇函数C .由圆x 2+y 2=r 2的面积S =πr 2,推断:椭圆x 2a 2+y 2b2=1(a >b >0)的面积S =πabD .由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n ∈N *,(n +1)2>2n 解析:选项A 由一些特殊事例得出一般性结论,且注意到数列{a n }是等差数列,其前n 项和等于S n =+2n -2=n 2,选项D 中的推理属于归纳推理,但结论不正确。
因此选A 。
答案:A2.(2016·宜昌模拟)下面几种推理过程是演绎推理的是( )A .两条直线平行,同旁内角互补,如果∠A 与∠B 是两条平行直线的同旁内角,则∠A +∠B =180°B .某校高三(1)班有55人,(2)班有54人,(3)班有52人,由此得高三所有班人数均超过50人C .由平面三角形的性质,推测空间四面体的性质D .在数列{a n }中,a 1=1,a n =12⎝⎛⎭⎫a n -1+1a n -1(n ∈N *,n≥2),由此归纳出{a n }的通项公式解析:A 项中两条直线平行,同旁内角互补(大前提),∠A 与∠B 是两条平行直线的同旁内角(小前提),∠A +∠B =180°(结论),是从一般到特殊的推理,是演绎推理,而B ,D 是归纳推理,C 是类比推理。
答案:A3.(2016·滁州模拟)若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( )A .大前提B .小前提C .推理过程D .没有出错解析:要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和推理形式是否都正确,只有这几个方面都正确,才能得到这个演绎推理正确。
高三数学合情推理与演绎推理试题

高三数学合情推理与演绎推理试题1.(已知集合,且下列三个关系:•‚ƒ有且只有一个正确,则.【答案】【解析】由已知,若正确,则或,即或或或均与“三个关系有且只有一个正确”矛盾;若正确,则正确,不符合题意;所以,正确,,故.【考点】推理与证明.2.观察分析下表中的数据:面数()顶点数()棱数()5 6 9猜想一般凸多面体中,所满足的等式是_________.【答案】【解析】①三棱锥:,得;②五棱锥:,得;③立方体:,得;所以归纳猜想一般凸多面体中,所满足的等式是:,故答案为【考点】归纳推理.3.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0⇒a=b”,类比推出“若a,b∈C,则a-b=0⇒a=b”;②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”,类比推出,“若a,b,c,d∈Q,则a+b=c+d⇒a=c,b=d”;③“若a,b∈R,则a-b>0⇒a>b”,类比推出“若a,b∈C,则a-b>0⇒a>b”;④“若x∈R,则|x|<1⇒-1<x<1”,类比推出“若z∈C,则|z|<1⇒-1<z<1”.其中类比正确的为()A.①②B.①④C.①②③D.②③④【答案】A【解析】对于③,“若a,b∈C,则a-b>0⇒a>b”是错误的,如a=2+i,b=1+i,则a-b=1>0,但2+i>1+i不正确;对于④,“若z∈C,则|z|<1⇒-1<z<1”是错误的,如y=+i,|y|=<1,但-1<+i<1是不成立的.故选A.4. 1955年,印度数学家卡普耶卡(D.R.Kaprekar)研究了对四位自然数的一种交换:任给出四位数,用的四个数字由大到小重新排列成一个四位数m,再减去它的反序数n(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行k次上述变换,就会出现变换前后相同的四位数t(这个数称为Kaprekar变换的核).通过研究10进制四位数2014可得Kaprekar变换的核为 .【答案】6174【解析】把5 298代入计算,用5 298的四个数字由大到小重新排列成一个四位数9852.则9852-2589=7263,用7263的四个数字由大到小重新排列成一个四位数7632.则7632-2367=5265,用5265的四个数字由大到小重新排列成一个四位数6552.则6552-2556=3996,用3996的四个数字由大到小重新排列成一个四位数9963.则9963-3699=6264,用6264的四个数字由大到小重新排列成一个四位数6642.则6642-2466=4176,用4176的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174,用6174的四个数字由大到小重新排列成一个四位数7641.则7641-1467=6174…可知7次变换之后,四位数最后都会停在一个确定的数6174上.同样地,把4 852代入计算,可知7次变换之后,四位数最后都会停在一个确定的数6174上.故答案为:7,6174【考点】合情推理.5.若等差数列的首项为公差为,前项的和为,则数列为等差数列,且通项为.类似地,请完成下列命题:若各项均为正数的等比数列的首项为,公比为,前项的积为,则.【答案】数列为等比数列,且通项为.【解析】根据等差数列与等比数列类似原理,等差数列和的算术均值对应等比数列积的几何均值,即数列为等比数列,且通项为.【考点】类比6.若等差数列的首项为公差为,前项的和为,则数列为等差数列,且通项为.类似地,请完成下列命题:若各项均为正数的等比数列的首项为,公比为,前项的积为,则.【答案】数列为等比数列,且通项为【解析】根据等差数列与等比数列类似原理,等差数列和的算术均值对应等比数列积的几何均值,即数列为等比数列,且通项为.【考点】类比7.有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是().A.26B.31C.32D.36【答案】B【解析】有菱形纹的正六边形个数如下表:由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.故选B.8.观察下列各式:72=49,73=343,74=2401,…,则72011的末两位数字为()A.01B.43C.07D.49【答案】B【解析】根据题意,72=49,73=343,74=2401,则75的末两位数字为07,进而可得76的末两位数字为49,77的末两位数字为43,78的末两位数字为01,79的末两位数字为07,…分析可得规律:n从2开始,4个一组,7n的末两位数字依次为49、43、01、07,则72011的与73对应,其末两位数字43;故选B.9.将正偶数、、、、按表的方式进行排列,记表示第行和第列的数,若,则的值为()第列第列第列第列第列第行第行第行第行第行A. B. C. D.【答案】C【解析】由表所反映的信息来看,第行的最大偶数为,则,由于,解得;另一方面奇数行的最大数位于第列,偶数行最大数位于第列,第行最大数为,此数位于第行第列,因此位于第行第列,所以,,故,选C.【考点】推理10.观察下列等式:;;;……则当且时, .(最后结果用表示)【答案】【解析】等式规律为:项数为所以【考点】数列归纳11.将1,2,3,,9这9个正整数分别写在三张卡片上,要求每一张卡片上的任意两数之差都不在这张卡片上.现在第一张卡片上已经写有1和5,第二张卡片上写有2,第三张卡片上写有3,则6应该写在第张卡片上;第三张卡片上的所有数组成的集合是.【答案】二;【解析】由题意,不能写在第一张卡片上,因为,不能写在第二张卡片上,因为,故只能写在第三张卡片上;不能写在第一张卡片上,因为,不能写在第三张卡片上,因为,故只能写在第二张卡片上;不能写在第二张卡片上,因为,不能写在第三张卡片上,因为,故只能写在第一张卡片上;剩余只能放到第二,三张卡片上,不能写在第三张卡片上,因为,故只能写在第二张卡片上,剩余只能放到第三张卡片上,故6应该写在第二张卡片上;第三张卡片上的所有数组成的集合是.【考点】逻辑推理.12.在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=(用数值作答).【答案】(1)3,1,6(2)79【解析】(1)四边形DEFG可看作由3个边长为1的正方形构成,故S=3,内部有一个格点,N=1,边界上有6个格点,即L=6.(2)取题图中的三角形ABC,四边形DEFG,再取一个边长为2的格点正方形,可得解得当N=71,L=18时,S=71+×18-1=79.13.已知=2,=3,=4,…,若=7,(a,t均为正实数),则类比以上等式,可推测a、t的值,a+t=.【答案】55【解析】类比所给等式可知a=7,且7t+a=72·a,即7t+7=73,∴t=48.∴a+t=55.14.如图,三角形数阵满足:(1)第n行首尾两数均为n;(2)表中的递推关系类似杨辉三角4则第n行(n≥2)第2个数是____.【答案】【解析】因为由三角形数阵知,第三行的第二个数可以表示为;第四行的第二个数可表示为;第五行的第二个数可表示为.….由此可合情推理,根据图形第n行的第二个数为.故填.【考点】1.合情推理的思想.2.关键是找到规律.15.已知f(x+1)=,f(1)=1(x∈N*),猜想f(x)的表达式为()A.f(x)=B.f(x)=C.f(x)=D.f(x)=【答案】B【解析】∵f(1)=1,∴f(2)==,f(3)===,f(4)==,…,由此可猜想f(x)=.16.推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是() A.①B.②C.③D.以上均错【答案】B【解析】①是大前提,③是结论,②是小前提.17.设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,故fn(x)=.【答案】【解析】根据题意知,分子都是x,分母中的常数项依次是2,4,8,16,…可知fn(x)的分母中常数项为2n,分母中x的系数为2n-1,故fn(x)=.18.已知P(x0,y)是抛物线y2=2px(p>0)上的一点,过P点的切线方程的斜率可通过如下方式求得:在y2=2px两边同时求导,得:2yy'=2p,则y'=,所以过P的切线的斜率:k=.试用上述方法求出双曲线x2-=1在P(,)处的切线方程为.【答案】2x-y-=0【解析】用类比的方法对=x2-1两边同时求导得,yy'=2x,∴y'=,∴y'===2,∴切线方程为y-=2(x-),∴2x-y-=0.19.设等差数列{an }的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列,类比以上结论有:设等比数列{bn }的前n项积为Tn,则T4,,,成等比数列.【答案】【解析】根据等比数列的性质知,b1·b2·b3·b4,b5·b6·b7·b8,b9·b10·b11·b12,b13·b14·b15·b16成等比数列,∴T4,,,成等比数列.20.已知下列等式:观察上式的规律,写出第个等式________________________________________.【答案】【解析】.【考点】归纳推理.21.已知,则在下列的一段推理过程中,错误的推理步骤有.(填上所有错误步骤的序号)【答案】③【解析】,在不等式的两边同时乘以,不等号方向发生变化,即,则有.【考点】不等式的性质、演绎推理22.(文科)给出下列等式:,,,……请从中归纳出第个等式:.【答案】;【解析】根据,,,易得第个等式:【考点】本题考查了归纳推理的运用点评:熟练运用归纳推理观察式子特点是解决此类问题的关键,属基础题23.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且法向量为=(1,-2)的直线(点法式)方程为:1×(x +3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比以上方法,在空间直角坐标系o-xyz中,经过点A(1,2,3)且法向量为=(-1,-2,1)的平面的方程为____________ .(化简后用关于x,y,z的一般式方程表示)【答案】x+2y-z-2=0【解析】根据法向量的定义,若为平面α的法向量,则⊥α,任取平面α内一点P(x,y,z),则⊥,∵=(1-x,2-y,3-z),=(-1,-2,1),∴(x-1)+2(y-2)+(3-z)=0,即x+2y-z-2=0,故答案为x+2y-z-2=0。
2.1合情推理与演绎推理同步练习含答案详解

2.1 合情推理与演绎推理一、选择题(每小题5分,共20分) 1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA|+|PB|=2a>|AB|,则P 点的轨迹为椭圆B .由a1=1,an =3n -1,求出S1,S2,S3,猜想出数列的前n 项和Sn 的表达式C .由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇2.设n 为正整数,f(n)=1+12+13+…+1n ,经计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,观察上述结果,可推测出一般结论( )A .f(2n)>2n +12B .f(n2)≥n +22C .f(2n)≥n +22D .以上都不对3. 有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b ∥平面α,直线a ⊂平面α,则直线b ∥直线a”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误4. 若点P 是正四面体A -BCD 的面BCD 上一点,且P 到另三个面的距离分别为h1,h2,h3,正四面体A -BCD 的高为h ,则( )A .h>h1+h2+h3B .h =h1+h2+h3C .h<h 1+h2+h3D .h1,h2,h3与h 的关系不定二、填空题(每小题5分,共10分)5.把正有理数排序:11,21,12,31,22,13,41,32,23,14,…,则数19891949所在的位置序号是________.6.观察下列等式:13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,根据上述规律,第四个等式为________.三、解答题(共70分)7.(15分)通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。
高考数学命题热点名师解密:专题(19)演绎推理与合情推理(理)(含答案)

专题19 演绎推理与合情推理解题技巧【知识要点】1.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,统称为合情推理.当前提为真时,结论可能为真的推理叫合情推理.数学中常见的合情推理有:归纳和类比推理.(1)根据某类事物的部分对象具有的某些特征推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理 (简称类比).简言之,类比推理是由特殊到特殊的推理.2.演绎推理(1)定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程,简言之,演绎推理是由一般到特殊的推理.(2)演绎推理的一般模式——“三段论”①大前提——已知的一般性的原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.1.合情推理主要包括归纳推理和类比推理在数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论.证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想3.演绎推理演绎推理是从一般性的原理出发,推出某个特殊情况的结论的推理方法.是由一般到特殊的推理,常用的一般模式是三段论.数学问题的证明主要通过演绎推理来进行.4.注意归纳和类比的结论的可靠性有待于证明.1.直接证明(1)从原命题的条件逐步推得命题成立的证明称为直接证明.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方法.(2)从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法常称为综合法.推证过程如下:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q(3)从要证明的结论出发,追溯导致结论成立的充分条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.推论过程如下:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.P—表示条件,Q—表示要证的结论.2.间接证明——反证法(1)假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.(2)反证法的特点:先假设原命题不成立,再在正确的推理下得出矛盾,所得矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.推论过程如下:Q⇐P1→P1⇐P2→P2⇐P3→…→得到一个明显成立的条件.P—表示条件,Q—表示要证的结论.2.间接证明——反证法(1)假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做_________.(2)反证法的特点:先假设原命题__________成立,再在正确的推理下得出矛盾,所得矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.2.关于反证法使用反证法证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、公式、事实矛盾等.反证法的步骤:(1)反设;(2)推出矛盾;(3)下结论.矛盾的主要类型:(1)与假设矛盾;(2)与数学公式、法则、公理、定理、定义或已被证明了的结论矛盾;(3)与公认的简单事实矛盾;(4)自相矛盾.1.数学归纳法是专门证明与正整数集有关的命题的一种方法.它是一种完全归纳法,是对不完全归纳法的完善.2.证明代数恒等式的关键是第二步,将式子转化成与归纳假设的结构相同的形式——凑假设,然后利用归纳假设,经过恒等变形,得到结论所需要的形式——凑结论.3.用数学归纳法证明不等式的关键是第二步,利用证明不等式的方法(如放缩)把式子化为n =k +1成立时的式子.4.用数学归纳法证明几何问题时,要注意结合几何图形的性质,在求由“n =k 到n =k +1”增加的元素个数时,可以先用不完全归纳法找其变化规律.5.由有限个特殊事例进行归纳、猜想,而得出一般性结论,然后加以证明是科学研究的重要思想方法,研究与正整数有关的数学问题,此方法尤为重要,如猜想数列的通项a n 或前n 项和S n ,解决与自然数有关的探索性、开放性问题等.这里猜想必须准确,证明必须正确.既用到合情推理,又用到演绎推理.猜想的准确与否可用证明来检验,否则不妨再分析,再猜想,再证明,猜想是证明的前提,证明可论证猜想的可靠性,二者相辅相成.题型典例分析1.归纳法例1已知数列{}{},n n a b 满足,,则2017b =( )A. 20172018B. 20182017C. 20152016D. 20162015【答案】A 【解析】数列{}{},n n a b 满足,,,,由此猜想,故选A.【规律方法总结】本题通过观察数列的前几项,归纳出数列通项来考察归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.练习1.将正整数排成下表:12 3 45 6 7 8 910 11 12 13 14 15 16……………则在表中数字2017出现在()A. 第44行第80列B. 第45行第80列C. 第44行第81列D. 第45行第81列【答案】D练习2. 《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术. 得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,,则按照以上规律,若具有 “穿墙术”,则n=A. 35B. 48C. 63D. 80【答案】C【解析】根据规律得,所以,选C.练习3.图一是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到.图二是第1代“勾股树”,重复图二的作法,得到图三为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的面积的和为( )A. nB. 2nC. 1n -D. 1n +【答案】D【解析】最大的正方形面积为1,当n=1时,由勾股定理知正方形面积的和为2,依次类推,可得所有正方形面积的和为1n +,选D. 练习4.九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如: 2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则7S 为( )A. 1089B. 680C. 840D. 2520【答案】A【解析】当7n =时,序列如图:故练习5. 如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.【答案】194【解析】 由题意得,前19行共有个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n项和公式求解,体现了用方程的思想解决问题.练习6.(导学号:05856327)观察下列等式:1=12+13+16;1=12+14+16+112;1=12+15+16+112+120;…,以此类推,1=12+16+17++120+130+142,其中n∈N*.则n=________.【答案】12【解析】1=12+(12-13)+13,1=12+(12-13)+(13-14)+14,1=12+(12-13)+(13-14)+(14-15)+15,…,以此类推,故1=12+(12-13)+(13-14)+(14-15)+(15-16)+(16-17)+1 7=12+16+17+112+120+130+142,故n=12.故答案为:12【规律方法总结】:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.练习7. 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.【答案】(1)(2)见解析【解析】(1).(2)三角恒等式:.证明如下:左边2.类比法例2. 二维空间中,圆的一维测度(周长)2l r π=,二维测度(面积)2S r π=,三维空间中,球的二维测度(表面积)24S r π=,三维测度(体积)343V r π=,应用合情推理,若四维空间中,“超球”的三维测度38V r π=,则其思维测度W=( )A. 42r πB. 43r πC. 44r πD. 46r π【答案】A【解析】由题意得,二维空间中,二维测度的导数为一维测度;三维空间中,三维测度的导数为二维测度.由此归纳,在四维空间中,四维测度的导数为三维测度,故42W r π=.选A .练习1. 如图所示,由曲线y =x 2,直线x =a ,x =a +1(a >0)及x 轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即.运用类比推理,若对∀n ∈N *,恒成立,则实数A=________.【答案】ln2练习2.我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a,b,c为直角三角形的三边,其中c为斜边,则a2+b2=c2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,∠AOB=∠BOC=∠COA=90°,S为顶点O所对面的面积,S1,S2,S3分别为侧面△OAB,△OAC,△OBC 的面积,则下列选项中对于S,S1,S2,S3满足的关系描述正确的为( )A. S2=S+S+SB.C. S=S1+S2+S3D.【答案】A【解析】如图,作OD⊥BC于点D,连接AD,由立体几何知识知,AD⊥BC,从而S2=(12BC·AD)2=14BC2·AD2=14BC2·(OA2+OD2)=14(OB2+OC2)·OA2+14BC2·OD2=(12OB·OA)2+(12OC·OA)2+(12BC·OD)2=.练习3. 对于问题“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).思考上述解法,若关于x的不等式的解集为,则关于x的不等式的解集为( )A. (-3,-1)∪(1,2)B. (1,2)C. (-1,2)D. (-3,2)【答案】A【解析】由关于x的不等式的解集为,得的解集为(-3,-1)∪(1,2),即关于x的不等式的解集为(-3,-1)∪(1,2).练习4 .已知数列{a n}为等差数列,若a m=a,a n=b(n-m≥1,m,n∈N*),则.类比上述结论,对于等比数列{b n}(b n>0,n∈N*),若b m=c,b n=d(n-m≥2,m,n∈N*),则可以得到b m+n等于( )A.mn mndc- B.mm nndc-C.nn mmdc- D.nm nmdc-【答案】C【解析】观察{a n }的性质:,则联想nb -ma 对应等比数列{b n }中的nm d c,而{a n }中除以(n -m )对应等比数列中开(n -m )次方,故b m +n =n n m md c -. 练习5. 中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算.算筹的摆放形式有纵横两种形式.如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是,则1227用算筹表示为( )A. B.C. D.【答案】B【解析】根据题意得到个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,分别在所给的横式和纵式中选择1227中每个数字对应的图,可选答案为B 。
推理与证明 合情推理与演绎推理(解析版)

2019年高考数学(文)高频考点名师揭秘与仿真测试84 推理与证明合情推理与演绎推理【考点讲解】一、具本目标:了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运“三段论”进行一些简单的演绎推理.二、知识概述:一)合情推理主要包括归纳推理和类比推理。
1.归纳推理:(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)特征:由部分到整体,由个别到一般的推理.2.类比推理:(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.(2)特征:由特殊到特殊的推理.3.归纳推理与类比推理有何区别与联系区别:归纳推理是由特殊到一般的推理;而类比推理是由个别到个别的推理或是由特殊到特殊的推理.联系:在前提为真时,归纳推理与类比推理的结论都可真可假.4.合情推理(1)定义:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.通俗地说,合情推理就是合乎情理的推理.(2)推理的过程从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想【温馨提示】(1)已知等式或不等式进行归纳推理的方法①要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律;②要特别注意所给几个等式(或不等式)中结构形成的特征;③提炼出等式(或不等式)的综合特点;④运用归纳推理得出一般结论.(2)数列中的归纳推理:在数列问题中,常常用到归纳推理猜测数列的通项公式或前n项和.①通过已知条件求出数列的前几项或前n项和;②根据数列中的前几项或前n项和与对应序号之间的关系求解;③运用归纳推理写出数列的通项公式或前n项和公式.【规律与方法】1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想二)演绎推理三段论的基本模式演绎推理的概念理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系.有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.【规律与方法】1.应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略.2.合情推理是由部分到整体,由个别到一般的推理或是由特殊到特殊的推理;演绎推理是由一般到特殊的推理.3.合情推理与演绎推理是相辅相成的,数学结论、证明思路等的发现主要靠合情推理;数学结论、猜想的正确性必须通过演绎推理来证明.【真题分析】1.【2017新课标Ⅱ】甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我 还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的结果则知道 自己的结果,丁看到甲的结果则知道自己的结果,故选D . 【答案】D2.【2018浙江】已知1a ,2a ,3a ,4a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >【解析】解法一 因为ln 1x x -≤(0x >),所以1234123ln()a a a a a a a +++=++1231a a a ++-≤,所以41a -≤,又11a >,所以等比数列的公比0q <. 若1q -≤,则212341(1)(10a a a a a q q+++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++>,与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .解法二 因为1xe x +≥,1234123ln()a a a a a a a +++=++,所以123412312341a a a a ea a a a a a a +++=++++++≥,则41a -≤,又11a >,所以等比数列的公比0q <.若1q -≤,则212341(1)(10a a a a a q q +++=++)≤,而12311a a a a ++>≥,所以123ln()0a a a ++> 与1231234ln()0a a a a a a a ++=+++≤矛盾,所以10q -<<,所以2131(1)0a a a q -=->,2241(1)0a a a q q -=-<,所以13a a >,24a a <,故选B .【答案】B3.【2016·北京卷】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A .乙盒中黑球不多于丙盒中黑球B .乙盒中红球与丙盒中黑球一样多C .乙盒中红球不多于丙盒中红球D .乙盒中黑球与丙盒中红球一样多【解析】解法1:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B.解法2:设袋中共有2n 个球,最终放入甲盒中k 个红球,放入乙盒中s 个红球.依题意知,甲盒中有(n -k )个黑球,乙盒中共有k 个球,其中红球有s 个,黑球有(k -s )个,丙盒中共有(n -k )个球,其中红球有(n -k -s )个,黑球有(n -k )-(n -k -s )=s 个.所以乙盒中红球与丙盒中黑球一样多.故选B. 【答案】B4.【2017浙江】如图,已知正四面体D ABC -(所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP PB =,2BQ CRQC RA==,分别记二面角D PR Q --,D PQ R --,D QR P --的平面角 为α,β,γ,则( )R QPABC DA .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【解析】设O 为三角形ABC 中心,底面如图2,过O 作OE RP ⊥,OF PQ ⊥,OG RQ ⊥,由题意可知tan DO OE α=,tan OD OF β=,tan ODOGγ=,GF EO DC BAPQR图1 图2由图2所示,以P 为原点建立直角坐标系,不妨设2AB =,则(1,0)A -,(1,0)B,C,(0,3O ,∵AP PB =,2BQ CRQC RA==,∴1(3Q,2(3R -,则直线RP的方程为y =,直线PQ的方程为y =,直线RQ的方程为y x =+,根据点到直线的距离公式,知21OE =,OF =,13OG =,∴OF OG OE <<,tan tan tan αγβ<<, 因为α,β,γ为锐角,所以αγβ<<.选B 【答案】B5.【2016·新课标全国卷Ⅱ】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相 同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.【解析】丙的卡片上的数字之和不是5,则丙有两种情况:①丙的卡片上的数字为1和2,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和3,满足题意;②丙的卡片上的数字为1和3,此时乙的卡片上的数字为2和3,甲的卡片上的数字为1和2,这时甲与乙的卡片上有相同的数字2,与已知矛盾,故情况②不符合,所以甲的卡片上的数字为1和3. 【答案】1和36.【2016山东】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;…… 照此规律,2222π2π3π2π(sin)(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_______. 【解析】根据已知,归纳可得结果为43n (n+1).7.(2015陕西)观察下列等式:1-1122= 1-1111123434+-=+1-1111111123456456+-+-=++……据此规律,第n 个等式可为______________________.【解析】观察等式知:第n 个等式的左边有2n 个数相加减,奇数项为正,偶数项为负,且分子为1,分母是1到2n 的连续正整数,等式的右边是111122n n n++⋅⋅⋅+++. 【答案】111111111234212122n n n n n-+-+⋅⋅⋅+-=++⋅⋅⋅+-++ 8.【2015山东】观察下列各式:0014C =;011334C C +=; 01225554C C C ++= 0123377774C C C C +++=……照此规律,当*N n ∈时,012121212121n n n n n C C C C -----+++⋅⋅⋅+= .【解析】 具体证明过程可以是:0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121211[()()()()]2n n n n nn n n n n n n n C C C C C C C C ------------=++++++++ 01212121121212121212111()2422n n n n n n n n n n n C C CC C C ----------=+++++++=⋅=. 【答案】14n -9.【2014安徽】如图,在等腰直角三角形ABC 中,斜边BC =A 作BC 的垂线,垂足为1A ; 过点1A 作AC 的垂线,垂足为2A ;过点2A 作1A C 的垂线,垂足为3A ;…,依此类推,设1BA a =,12AA a =,123A A a =, (567)A a =,则7a =.13【解析】解法一 直接递推归纳;等腰直角三角形ABC中,斜边BC =1122,AB AC a AA a ====,1231A A a==,⋅⋅⋅,65671124A A a a ==⨯=. 解法二求通项:等腰直角三角形ABC 中,斜边BC =所以1122,AB AC a AA a ====⋅⋅⋅,11sin2()422n n n n n n A A a a a π-+==⋅==⨯,故672()2a =⨯=14【答案】1410.【2014陕西】观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________ 【解析】三棱柱中5 +6-9 =2;五棱锥中6+6 -10 =2;立方体中6+8 -12 =2,由此归纳可得2F V E +-=.【答案】2F V E +-=【模拟考场】1. 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”三种.若学生甲的语文、 数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”,如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两个学生,那么这组学生最多有( )A .2人B .3人C .4人D .5人【解析】学生甲比学生乙成绩好,即学生甲两门成绩中一门高过学生乙,另一门不低于学生乙,一组学生 中没有哪位学生比另一位学生成绩好,并且没有相同的成绩,则存在的情况是,最多有3人,其中一个语 文最好,数学最差;另一个语文最差,数学最好;第三个人成绩均为中等.故选B . 【答案】B2.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行;②垂直于同一个平面的两条直线互相平行; ③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行. 则其中正确的结论是( ) A .①② B .②③ C .③④D .①④【解析】是类比推理的应用.根据立体几何中线面之间的位置关系及有关定理知,②③是正确的结论. 【答案】B3.设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知:四面体A -BCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体A -BCD 的体积为V ,则R 等于( ) A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 4【解析】本题是平面几何与立体几何之间的类比 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为V =13(S 1+S 2+S 3+S 4)R ,∴R =3VS 1+S 2+S 3+S 4.【答案】 C4.指数函数y =a x (a >1)是R 上的增函数,y =2|x |是指数函数,所以y =2|x |是R 上的增函数.以上推理( )A .大前提错误B .小前提错误C .推理形式错误D .正确【解析】本题是演绎推理中三段论的具体应用.此推理形式正确,但是,函数y =2|x |不是指数函数,所以小前提错误,故选B. 【答案】 B5.正整数按下表的规律排列,则上起第2 017行,左起第2 018列的数应为( )A .2 016×2 017B .2 017×2 018C .2 018×2 019D .2 019×2 020【解析】本题是归纳推理的具本应用.由给出的排列规律可知,第一列的每个数为所在行数的平方,而第一行的数则满足列数减1的平方再加1,根据题意,左起第2 018列的第一个数为2 0172+1,由连线规律可知,上起第2 017行,左起第2 018列的数应为2 0172+2 017=2 017×2 018. 【答案】B6.如图,将边长分别为1,2,3的正八边形叠放在一起,同一边上相邻珠子之间的距离为1,若以此方式再放置边长为4,5,6,…,10的正八边形,则这10个正八边形镶嵌的珠子总数是_______________ _________________________________________________________.【解析】边长为1,2,3,…,10的正八边形叠放在一起,则各个正八边形上的珠子数分别为8,2×8,3×8,…,10×8,其中,有3个珠子被重复计算了10次,有2个珠子被重复计算了9次,有2个珠子被重复计算了8次,有2个珠子被重复计算了7次,有2个珠子被重复计算了6次,…,有2个珠子被重复计算了1次,故不同的珠子总数为(8+2×8+3×8+…+10×8)-(3×9+2×8+2×7+2×6+…+2×1)=440-(27+2×8×92)=341,故所求总数为341. 【答案】3417.如图,D ,E ,F 分别是BC ,CA ,AB 上的点,∠BFD =∠A ,DE ∥BA ,求证:ED =AF ,写出三段论形式的演绎推理.证明 因为同位角相等,两直线平行, 大前提 ∠BFD 与∠A 是同位角,且∠BFD =∠A , 小前提 所以FD ∥AE .结论因为两组对边分别平行的四边形是平行四边形, 大前提 DE ∥BA ,且FD ∥AE ,小前提 所以四边形AFDE 为平行四边形. 结论 因为平行四边形的对边相等,大前提 ED 和AF 为平行四边形AFDE 的对边, 小前提 所以ED =AF .结论8.已知函数f (x )=a x +x -2x +1(a >1),证明:函数f (x )在(-1,+∞)上为增函数.证明 方法一 (定义法) :任取x 1,x 2∈(-1,+∞),且x 1<x 2, f (x 2)-f (x 1)=2x a +x 2-2x 2+1-1x a -x 1-2x 1+1=2x a -1xa +x 2-2x 2+1-x 1-2x 1+1=1xa (21x x a--1)+(x 1+1)(x 2-2)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=1x a (21x xa --1)+3(x 2-x 1)(x 2+1)(x 1+1).因为x 2-x 1>0,且a >1,所以21x x a->1,而-1<x 1<x 2,所以x 1+1>0,x 2+1>0,所以f (x 2)-f (x 1)>0,所以f (x )在(-1,+∞)上为增函数. 方法二 (导数法):f (x )=a x +x +1-3x +1=a x +1-3x +1.所以f ′(x )=a x ln a +3(x +1)2.因为x >-1,所以(x +1)2>0,所以3(x +1)2>0.又因为a >1,所以ln a >0,a x>0, 所以a x ln a >0,所以f ′(x )>0.所以f (x )=a x +x -2x +1在(-1,+∞)上是增函数.9.设m 为实数,利用三段论证明方程x 2-2mx +m -1=0有两个相异实根.证明 因为如果一元二次方程ax 2+bx +c =0(a ≠0)的判别式Δ=b 2-4ac >0,那么方程有两个相异实根.大前提方程x 2-2mx +m -1=0的判别式Δ=4m 2-4(m -1)=4m 2-4m +4=(2m -1)2+3>0,小前提所以方程x2-2mx+m-1=0有两个相异实根.结论。
专题69 合情推理与演绎推理(解析版)

2020年领军高考数学一轮复习(文理通用)专题69合情推理与演绎推理最新考纲1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.基础知识融会贯通1.合情推理(1)归纳推理①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).②特点:由部分到整体、由个别到一般的推理.(2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).②特点:由特殊到特殊的推理.(3)合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.2.演绎推理(1)演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.重点难点突破【题型一】归纳推理命题点1与数字有关的等式的推理【典型例题】《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:2,3,4,5,则按照以上规律,若10具有“穿墙术”,则n=()A.48 B.63 C.99 D.120【解答】解:根据题意,2,则有2,3,则有3,4,则有4,5,则有5,若10,则有n=102﹣1=99;故选:C.【再练一题】观察下列各式:72=49,73=343,74=2401,…,则72020的末两位数字为()A.01 B.43 C.07 D.49【解答】解:72=49,73=343,74=2401,75=16807,76=117649,77=823543,即7n的末两位数分别为49,43,01,07,具备周期性,周期为4,2020=504×4+4,则72020的末两位数为与74的末两位数相同,即01,故选:A.命题点2与不等式有关的推理【典型例题】已知,经计算f(4)>2,,f(16)>3,,则根据以上式子得到第n个式子为.【解答】解:观察已知中等式:f(4)=f(22)>2,f(8)=f(23),f(16)=f(24)>3,f(32)=f(25),…,则f(2n+1)(n∈N*)故答案为:f(2n+1)(n∈N*)【再练一题】已知x>1,观察下列不等式:x2;x23;x34;…按此规律,第n个不等式为.【解答】解:由x2;x23;x34;…按此规律,第n个不等式为:x n n+1,故答案为:x n n+1命题点3与数列有关的推理【典型例题】把数列{a n}的各项按照如图规律排成三角形数阵;若a n=2n﹣1,n∈N*,则该数阵的第20行所有项的和为.【解答】解:由该数阵的规律可得:第1行的最后一项的项数为1=12,第2行的最后一项的项数为4=22,第3行的最后一项的项数为9=32则第n行的最后一项的项数为n2,则该数阵的第20行最后一项的项为﹣a,第一项为:﹣a由已知有:第20行共20×2﹣1=39项,则从左到右按相邻两项分组,每一组的和为2,则该数阵的第20行所有项的和S=2×19﹣a38﹣(2×202﹣1)=﹣761,故答案为:﹣761.【再练一题】如图所示,直角坐标平面被两坐标轴和两条直线y=±x等分成八个区域(不含边界),已知数列{a n},S n 表示数列{a n}的前n项和,对任意的正整数n,均有a n(2S n﹣a n)=1,当a n>0时,点P n(a n,a n+1)()A.只能在区域②B.只能在区域②和④C.在区域①②③④均会出现D.当n为奇数时,点P n在区域②或④,当n为偶数时,点P n在区域①或③【解答】解:任意的正整数n,均有a n(2S n﹣a n)=1,则S n(a n),∴S n+1(a n+1),∴a n+1(a n+1﹣a n),即a n+1﹣a n,∵a n>0,∴a n+10,解得a n+1<﹣1或0<a n+1<1,故点P n(a n,a n+1)只能在区域②和④故选:B.命题点4与图形变化有关的推理【典型例题】如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树形图形,称为“勾股树”.若某勾股树含有255个正方形,且其最大的正方形的边长为,则其最小正方形的边长为()A.B.C.D.【解答】解:由题意,正方形的边长构成以为首项,以为公比的等比数列,现已知共得到255个正方形,则有1+2+…+2n﹣1=255,∴n=8,∴最小正方形的边长为()7.故选:A.【再练一题】按如图的规律所拼成的一图案共有1024个大小相同的小正三角形“△”或“∇”,则该图案共有()A.16层B.32层C.64层D.128层【解答】解:设该图案共有n层,则1+3+5+…+(2n﹣1)=1024,即n2=210,所以n=25=32,故选:B.思维升华归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.(2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解.(3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.【题型二】类比推理【典型例题】已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推那么该数列的前50项和为()A.1044 B.1024 C.1045 D.1025【解答】解:将已知数列分组,使每组第一项均为1,即:第一组:20,第二组:20,21,第三组:20,21,22,…第k组:20,21,22,…,2k﹣1,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2k﹣1,每项含有的项数为:1,2,3,…,k,总共的项数为N=1+2+3+…+k,当k=9时,45,故该数列的前50项和为S50=21﹣1+22﹣1+23﹣1+…+29﹣1+1+2+4+8+169+31=1044.故选:A.【再练一题】设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r.将此结论类比到空间四面体:设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,则四面体的内切球半径为r=()A.B.C.D.【解答】解:设△ABC的三边长分别为a,b,c,△ABC的面积为S,则△ABC的内切圆半径为r.设四面体S﹣ABC的四个面的面积分别为S1,S2,S3,S4,体积为V,设四面体的内切球的球心为O,则球心O到四个面的距离都是r,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为:V(S1+S2+S3+S4)r,∴r.故选:C.思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.【题型三】演绎推理【典型例题】某演绎推理的“三段”分解如下:①函数f(x)=1gx是对数函数;②对数函数y=log a x(a>1)是增函数;③函数f(x)=lgx是增函数,则按照演绎推理的三段论模式,排序正确的是()A.①→②→③B.③→②→①C.②→①→③D.②→③→①【解答】解:①函数f(x)=1gx是对数函数;②对数函数y=log a x(a>1)是增函数;③函数f(x)=lgx是增函数,大前提是②,小前提是①,结论是③.故排列的次序应为:②→①→③,故选:C.【再练一题】矩形的对角线互相垂直,正方形是矩形,所以正方形的对角线互相垂直.在以上三段论的推理中()A.大前提错误B.小前提错误C.推理形式错误D.结论错误【解答】解:大前提,“矩形的对角线互相垂直”,小前提,正方形是矩形,结论,所以正方形的对角线互相垂直,大前提是错误的,因为矩形的对角线相等.以上三段论推理中错误的是:大前提,故选:A.思维升华演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,当大前提不明确时,可找一个使结论成立的充分条件作为大前提.基础知识训练1.===…,依此规律,=则2+a b 的值分别是() A .79 B .81C .100D .98【答案】D 【解析】====2n ≥=9b =,29180a =−=, 故2801898a b +=+=, 故选:D .2.下面几种推理过程是演绎推理的是( )A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{}n a 中,111111,2n n n a a a a −−⎛⎫==+ ⎪⎝⎭,可得231,1a a ==,由此归纳出{}n a 的通项公式1n a = 【答案】C 【解析】解:∵A 中是从特殊→一般的推理,均属于归纳推理,是合情推理;B 中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C 为三段论,是从一般→特殊的推理,是演绎推理;D 为不完全归纳推理,属于合情推理. 故选:C .3.下列三句话按三段论的模式排列顺序正确的是( )①2019不能被2整除;②一切奇数都不能被2整除;③2019是奇数.A.①②③B.②①③C.②③①D.③②①【答案】C【解析】解:根据题意,按照演绎推理的三段论,应为:大前提:一切奇数都不能被2整除,小前提:2019是奇数,结论:2019不能被2整除;∴正确的排列顺序是②③①.故选:C.4.将正整数排列如图:则图中数2019出现在()A.第44行第84列B.第45行第84列C.第44行第83列D.第45行第83列【答案】D【解析】依题意,经过观察,第n行的最后一个数为n2,而令n2≤2019得,n≤44,所以2019在第45行,2019﹣442=83,所以2019 在第45行,第83列.故选:D.5.类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是()①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等.A.①B.②C.①②③D.③【答案】C【解析】正四面体中,各棱长相等,各侧面是全等的等边三角形,因此,同一顶点上的任两条棱的夹角都相等;①正确; 对于②,正四面体中,各个面都是全等的正三角形,相邻两个面所成的二面角中,它们有共同的高,底面三角形的中心到对棱的距离相等,∴相邻两个面所成的二面角都相等,②正确;对于③,各个面都是全等的正三角形,∴各面都是面积相等的三角形,同一顶点上的任两条棱的夹角都相等,③正确.∴①②③都是合理、恰当的.故选:C .6.正切函数是奇函数,()()2tan 2f x x =+是正切函数,因此()()2tan 2f x x =+是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .以上均不正确【答案】C 【解析】大前提:正切函数是奇函数,正确;小前提:()()2tan 2f x x =+是正切函数,因为该函数为复合函数,故错误;结论:()()2tan 2f x x =+是奇函数,该函数为偶函数,故错误;结合三段论可得小前提不正确. 故答案选C7.观察下列各式:1234577749734372401,716807,=====,,,,则20197的末尾两位数字为( )A .49B .43C .07D .01【答案】B 【解析】 根据题意,得2345749734372401,716807,====,,677117649,7823543==,8975764801,740353607...== 发现427k −的末尾两位数为49,4-17k 的末尾两位数为43,47k 的末尾两位数为01,417k +的末尾两位数为07,(1,2,3...k = ); 由于201945051=⨯−,所以20197的末两位数字为43; 故答案选B8.下面给出了四种类比推理:①由实数运算中的=⋅⋅a b b a 类比得到向量运算中的=⋅⋅a b b a ;②由实数运算中的 (⋅⋅⋅⋅(a b)c =a b c)类比得到向量运算中的(⋅⋅⋅⋅(a b)c =a b c); ③由向量a 的性质22||a a =类比得到复数z 的性质22||z z =;④由向量加法的几何意义类比得到复数加法的几何意义; 其中结论正确的是 A .①② B .③④C .②③D .①④【答案】D 【解析】①设a 与b 的夹角为θ,则cos a b a b θ⋅=⋅r r r r ,cos b a b a θ⋅=⋅r r r r ,则a b b a ⋅=⋅r r r r成立;②由于向量的数量积是一个实数,设a b m ⋅=r r ,b c n ⋅=r r,所以,()a b c mc ⋅⋅=r r r r 表示与c 共线的向量,()a b c na ⋅⋅=r r r r表示与a 共线的向量,但a 与b 不一定共线,()()a b c a b c ⋅⋅=⋅⋅r r r r r r不一定成立;③设复数(),z x yi x y R =+∈,则222z x y =+,()()22222z x yi x y xyi =+=−+是一个复数,所以22z z =不一定成立;④由于复数在复平面内可表示的为向量,所以,由向量加法的几何意义类比可得到复数加法的几何意义,这个类比是正确的。
高考数学 试题汇编 第二节 合情推理与演绎推理 理(含解析)

高考数学试题汇编第二节合情推理与演绎推理理(含解析)合情推理考向聚焦由已知条件归纳出一个结论或运用类比的形式给出某个问题的结论,是高考对合情推理的常规考法,从题型上看,以选择题、填空题为主,所占分值4~5分,属中低档题备考指津合情推理(归纳推理和类比推理)是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想.归纳推理时要做到归纳到位、准确;类比推理时,要从本质上去类比,不要被表面现象所迷惑1.(2012年江西卷,理6,5分)观察下列各式:a+b=1,a2+b 2=3,a 3+b3=4,a 4+b4=7,a5+b5=11,…,则a10+b10=( )(A)28 (B)76 (C)123 (D)199解析:本题考查递推数列知识以及归纳推理的思想方法.记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11;f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123,即a10+b10=123.故选C.答案:C.涉及递推数列的某一项或通项的问题(尤其是小题)常常可借助归纳推理加以解决.2.(2011年江西卷,理7)观察下列各式:55=3125,56=15625,57=78125,…,则52011的末四位数字为( )(A)3125 (B)5625 (C)0625 (D)8125解析:∵55=3125,56=15625,57=78125,58末四位数字为0625,59末四位数字为3125,510末四位数字为5625,511末四位数字为8125,512末四位数字为0625,…,由上可得末四位数字周期为4,呈规律性交替出现,∴52011=54×501+7末四位数字为8125.答案:D.3.(2012年陕西卷,理11,5分)观察下列不等式1+<,1++<,1+++<,……照此规律,第五个不等式为.解析:不完全归纳:第一个:1+<,第二个:1++<,第三个:1+++<,…归纳猜想:第n个:1+++…+<,故n=5时,1+++…+<.答案:1+++++<4.(2012年湖北卷,理13,5分)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等,显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999,则(1)4位回文数有个;(2)2n+1(n∈N+)位回文数有个.解析:已知1位回文数有9个,2位回文数有9个,3位回文数有90=9×10个,4位回文数有1001,1111,…,1991,2002,…,9999,共90个,以此类推,猜想2n+1位回文数与2(n+1)位回文数个数相等,均为9×10n个.答案:(1)90 (2)9×10n5.(2011年陕西卷,理13)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n个等式为.解析:照等式规律,第n行的首位数字为n且有2n-1个相邻正整数相加∴n+(n+1)+…+(3n-2)=(2n-1)2答案:n+(n+1)+…+(3n-2)=(2n-1)26.(2011年山东卷,理15)设函数f(x)=(x>0),观察:f1(x)=f(x)=,f2(x)=f(f1(x))=,f3(x)=f(f2(x))=,f4(x)=f(f3(x))=,…根据以上事实,由归纳推理可得:当n∈N*且n≥2时,f n(x)=f(f n-1(x))= .解析:观察分母的x的系数数列:1,3,7,15,…,a n,…而分母的常数项数列:2,4,8,16,…,b n,…∴b n=2n,a n=2n-1,∴当n≥2时,f n(x)=f(f n-1(x))=答案:7.(2010年陕西卷,理12)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为.解析:观察已知等式13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,归纳可得,13+23+33+43+53+63=(1+2+3+4+5+6)2=212,故应填13+23+33+43+53+63=212.答案:13+23+33+43+53+63=2128.(2010年浙江卷,理14)设n≥2,n∈N,(2x+)n-(3x+)n=a0+a1x+a2x2+…+a n x n,将|a k|(0≤k ≤n)的最小值记为T n,则T2=0,T3=-,T4=0,T5=-,…,T n,…其中T n= .解析:由归纳推理得T n=.答案:此类题目要对所给的已知等式进行观察,分析其结构特征,再进行比较和联想,发现规律,归纳得出结论.演绎推理考向聚焦演绎推理也是高考重点考查的内容,渗透于各种题型的各个问题中,主要以综合题的形式考查演绎推理的基本步骤与严谨性,有时也会出现高难度题,12~14分备考指津在数学研究中,合情推理获得的结论,仅仅是一种猜想,未必可靠,它只能帮助我们猜想和发现结论,由已知条件归纳或类比出的结论,需要再运用演绎推理进行证明.也就是说,合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在前提和推理形式都正确的情况下,利用演绎推理证明所得结论是正确的9.(2011年浙江卷,理20)如图,在三棱锥P ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A MC B为直二面角?若存在,求出AM的长;若不存在,请说明理由.(1)证明:由AB=AC,D是BC的中点,得AD⊥BC.又PO⊥平面ABC,所以PO⊥BC.因为PO∩AD=O,所以BC⊥平面PAD,故BC⊥PA.(2)解:存在.如图,在平面PAB内作BM⊥PA于M,连接CM,PD.由(1)知AP⊥BC,得AP⊥平面BMC.又AP⊂平面APC,所以平面BMC⊥平面APC.在Rt△ADB中,AB2=AD2+BD2=(AO+OD)2+(BC)2=41,得AB=.在Rt△POD中,PD2=PO2+OD2,在Rt△PDB中,PB2=PD2+BD2,所以PB2=PO2+OD2+DB2=36,得PB=6.在Rt△POA中,PA2=AO2+OP2=25,得PA=5.又cos∠BPA==,从而PM=PB·cos∠BPA=2,所以AM=PA-PM=3.综上所述,存在点M符合题意,AM=3.演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理,在应用三段论来求解问题时,首先应该明确什么是问题中的大前提和小前提.在演绎推理中,只有前提和推理形式是正确的,结论才是正确的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合情推理1:与代数式有关的推理问题例1、观察()()()()()()223322443223,a b a b a b a b a b a ab ba b a b aa b ab b -=-+-=-++-=-+++进而猜想nn ab -=练习:观察下列等式:332123+=,33321236++=,33332123410+++=,…,根据上述规律,第五个...等式..为 。
解析:第i 个等式左边为1到i+1的立方和,右边为1+2+...+(i+1)的平方所以第五个...等.式.为333333212345621+++++=。
2:与三角函数有关的推理问题例1、观察下列等式,猜想一个一般性的结论。
2020202020202020202020203sin 30sin 90sin 150,23sin 60sin 120sin 18023sin 45sin 105sin 165,23sin 15sin 75sin 1352++=++=++=++=练习:观察下列等式:① cos2α=2 cos 2α-1;② cos 4α=8 cos 4 α-8 cos 2α+1;③ cos 6α=32 cos 6 α-48 cos 4 α+18 cos 2α-1;④ cos 8α= 128 cos 8α-256cos 6 α+160 cos 4 α-32 cos 2α+1;⑤ cos 10α=mcos 10α-1280 cos 8α+1120cos 6 α+ncos 4 α+p cos 2α-1; 可以推测,m -n+p= . 答案:9623:与不等式有关的推理例1、观察下列式子:213122+<,221151,233++<22211171,2344.............+++< 由上可得出一般的结论为: 。
答案:222111211......,23(1)1n n n ++++<++练习、由331441551,,221331441+++>>>+++。
可猜想到一个一般性的结论是: 。
4:与数列有关的推理例1、已知数列}{n a 中,1a =1,当n ≥2时,121n n a a -=+,依次计算数列的后几项,猜想数列的一个通项表达式为: 。
例2、(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为例3、(2010深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --= .例4、等差数列}{n a 中,若10a = 0则等式121219......................(19,)n n a a a a a a n n N *-+++=+++<∈成立,类比上述性质,相应的,在等比数列中,若101b =,则有等式 。
练习:设等差数列{}n a 前n 项和为n s ,则36396129,,,s s s s s s s ---成等差数列。
类比以上结论:设等比数列{}n b 前n 项积为n T ,则3,T , ,129,T T 成等比数列。
6:与立体几何有关的推理例 1、在平面几何中有命题“正三角形内任意一点到三边距离之和是一个定值”,那么在正四面体中类似的命题是什么?12 3 4 5 6 7 8 9 10 11 12 13 14 15………………合情推理练习题一、选择题1.下列表述正确的是 ( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理A .①②③B .②③④C .②④⑤D .①③⑤ 2.数列2,5,11,20,,47,x …中的x 等于( )A .28B .32C .33D .27 3.下面使用类比推理恰当的是 ( )A .“若a·3=b·3,则a =b”类推出“若a·0=b·0,则a =b”B .“(a +b)c =ac +bc”类推出“a +b c =a c +bc ”C .“(a +b)c =ac +bc”类推出“a +b c =a c +bc (c≠0)”D .“()nn n ab a b =”类推出“()nn n a b a b +=+”4.由710>58,911>810,1325>921,…若a >b >0且m >0,则b +m a +m 与b a之间大小关系为( )A .相等B .前者大C .后者大D .不确定 5.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893 6.数列{}n a 的前n 项和为n S ,且n n a n S a 21,1== *N n ∈,试归纳猜想出n S 的表达式为( )A 、12+n n B 、112+-n n C 、112++n n D 、22+n n二、填空题1.已知:23150sin 90sin 30sin 222=++ ,23125sin 65sin 5sin 222=++ ,2223sin 18sin 78sin 1382++=,通过观察上述等式的规律,写出一般性的命题:_______________________2.(2012·陕西高考)观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74……照此规律,第五个不等式为____________________________________.3.(2011·陕西高考)观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第n个等式为____________________.4.一个正整数数表如下(表中下一行中的数的个数是上一行中数的个数的2倍):1.(2012·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:(1)sin213°+cos217°-sin 13°cos 17°;(2)sin215°+cos215°-sin 15°cos 15°;(3)sin218°+cos212°-sin 18°cos 12°;(4)sin2(-18°)+cos248°-sin(-18°)cos 48°;(5)sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)计算结果,将该同学的发现推广为三角恒等式.2.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{a n}是等和数列,且a1=2,公和为5.(1)求a18的值;(2)求该数列的前n项和S n.演绎推理1.定义根据一般性的真命题或逻辑规则,导出特殊性命题为真的推理,叫做演绎推理.即从一般性的原理出发,推出某个特殊情况下的结论的推理形式.它的特征是:当前提为真时,结论必然为真.2.三段论:“三段论”是演绎推理的一般模式(1)三段论的结构:①大前提—已知的一般原理;②小前提—所研究的特殊情况;③结论—根据一般原理,对特殊情况做出的判断.(2)“三段论”的表示:①大前提—M是P;②小前提—S是M;③结论—S是P.(3)三段论的依据:用集合观点来看就是:①若集合M的所有元素都具有性质P,②S是M的一个子集;③那么S中所有元素也都具有性质P.想一想:(1)“三段论”就是演绎推理吗?(2)在演绎推理中,如果大前提正确,那么结论一定正确吗?为什么?(3)正弦函数是奇函数,f(x)=sin(x2+1)是正弦函数,因此f(x)=sin(x2+1)是奇函数.以上推理中,“三段论”中的________是错误的.(1)解析:不是.三段论是演绎推理的一般模式.(2)解析:不一定正确.只有大前提和小前提及推理形式都正确,其结论才是正确的.(3)解析:小前提错误,因为f(x)=sin(x2+1)不是正弦函数.1.有一段演绎推理是这样的“任何实数的平方都大于0,因为a∈R,所以a2>0”,结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误大前提:任何实数的平方大于0是不正确的.2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是( )A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC【解析】选A.本题的推理形式是三段论,其大前提是一个一般的结论,即三角形中位线定理.3.下面是一段“三段论”推理过程:若函数f(x)在(a,b)内可导且单调递增,则在(a,b)内,f′(x)>0恒成立.因为f(x)=x3在(-1,1)内可导且单调递增,所以在(-1,1)内,f′(x)=3x2>0恒成立.以上推理中( )A.大前提错误B.小前提错误C.结论正确D.推理形式错误【解析】选A.因为对于可导函数f(x),f(x)在区间(a,b)上是增函数,f′(x)>0对x∈(a,b)恒成立,应该是f′(x)≥0对x∈(a,b)恒成立,所以大前提错误.4.以下推理过程省略的大前提为:.因为a2+b2≥2ab,所以2(a2+b2)≥a2+b2+2ab.【解析】由小前提和结论可知,是在小前提的两边同时加上了a2+b2,故大前提为:若a≥b,则a+c≥b+c.答案:若a≥b,则a+c≥b+c5.“π是无限不循环小数,所以π是无理数”以上推理的大前提是( )A.实数分为有理数和无理数B.π不是有理数C.无理数都是无限不循环小数D.有理数都是有限循环小数【解析】选C.用三段论推导一个结论成立,大前提应该是结论成立的依据.因为无理数都是无限不循环小数,π是无限不循环小数,所以π是无理数,故大前提是无理数都是无限不循环小数.6.因为中国的大学分布在全国各地,…大前提北京大学是中国的大学…小前提所以北京大学分布在全国各地.…结论(1)上面的推理形式正确吗?为什么?(2)推理的结论正确吗?为什么?【解析】(1)推理形式错误.大前提中的M是“中国的大学”它表示中国的所有大学,而小前提中M虽然也是“中国的大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误.(2)由于推理形式错误,故推理的结论错误.7.设数列{an }的前n项和为Sn,且满足an=3-2Sn(n∈N*).(1)求a1,a2,a3,a4的值并猜想an的表达式.(2)若猜想的结论正确,用三段论证明数列{an}是等比数列.【解析】(1)因为a n=3-2S n,所以a1=3-2S1=3-2a1,解得a1=1,同理a2=,a3=,a4=,…猜想a n=.(2)大前提:数列{a n},若=q,q是非零常数,则数列{a n}是等比数列. 小前提:由a n=,又=,结论:数列{a n}是等比数列.合情推理 随堂练习答案 选择题1—5:DBCBA 6: A 一、 填空题1. 2223sin (60)sin sin (60)2ααα-+++=. 2. 答案:1+122+132+142+152+162<116解析:观察得出规律,左边为项数个连续自然数平方的倒数和,右边为项数的2倍减1的差除以项数,即1+122+132+142+152+…+ ()212111n n n ++<++(n ∈N *,n ≥2),所以第五个不等式为1+122+132+142+152+162<116. 3. n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2解析:每行最左侧数分别为1、2、3、…,所以第n 行最左侧的数为n ; 每行数的个数分别为1、3、5、…,则第n 行的个数为2n -1.所以第n 行数依次是n 、n +1、n +2、…、3n -2.其和为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2. 4.259三、解答题1. 解:(1)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin α·cos(30°-α)=34.2.解:(1)由等和数列的定义,数列{a n }是等和数列,且a 1=2,公和为5, 易知a 2n -1=2,a 2n =3(n =1,2…),故a 18=3.(2)当n 为偶数时,S n =a 1+a 2+…+a n =(a 1+a 3+…+a n -1)+(a 2+a 4+…+a n )=52n ; 当n 为奇数时,S n =S n -1+a n =52(n -1)+2=52n -12.综上所述:S n=⎩⎪⎨⎪⎧52n ,n 为偶数,52n -12,n 为奇数.。