韧性断裂准则
韧性断裂准则的参数标定方法及其适用性研究

韧性断裂准则的参数标定方法及其适用性研究摘要在工业生产过程中,材料由于承受大应力和大变形而产生起裂,因此通过数值模拟方法预测材料在成形过程中的起裂位置、起裂时刻以及裂纹扩展的方式越来越受到人们的重视。
数值模拟结果的准确性依赖于所选取的韧性断裂准则。
由于可移植性好,很多韧性断裂准则都已经被植入各主流的商业有限元软件中,使用者通过输入模型参数即可使用。
而一般的韧性断裂准则往往存在众多参数,不同的参数所得到的模拟结果截然不同。
模型参数确定需要通过一系列的不同应力状态的试验结果得到,但是所需要的应力状态变量在试验过程中并不是一个定值,因此有学者引入了平均值的计算方法来便于进行参数的标定。
不过目前还没有人评估过,该计算方法确定的参数是否会对韧性断裂准则的使用引入新的误差。
因此研究韧性断裂准则的参数标定方法及其适用性对于有限元数值模拟的应用具有重要意义。
为了评估使用平均值变量带来的误差,本文引入一系列的宽应力三轴度的试验,并提取了试验模拟的初始起裂点的断裂相关状态变量,如应力三轴度、罗德参数和等效断裂应变。
在此基础上,计算了初始起裂点的平均应力三轴度和平均罗德参数,并利用L-H韧性断裂准则来评估使用平均值变量带来的误差,同时引入了一个相对误差公式来标定该误差。
通过比较每组试验计算的累积损伤值和临界阈值,得到了使用平均值变量所引入的相对误差。
研究发现,在压缩试验中,该相对误差值较大。
且对于不同的试验,参数值C1和C2对引入相对误差值的影响也是不尽相同的。
因此为了深入探究平均值变量引入的误差受到哪些因素的影响,针对韧性断裂准则中存在的变量,如参数值C1和C2、应力三轴度与等效应变的函数类型以及被积函数类型,建立了一系列的以不同应力三轴度与等效应变的函数类型为基础的研究。
应力三轴度与等效应变的函数对引入相对误差的影响,即分段函数的指数a、应力三轴度截距值以及等效应变分段值对引入相对误差的影响。
研究发现,参数C2、应力三轴度与等效应变函数的指数a和应力三轴度截距值,会对相对误差的增加产生较大影响。
j-c断裂准则

j-c断裂准则J-C 断裂准则是指“韧性断裂准则”和“塑性裂纹扩展准则”的组合,它是一种用于描述材料破损行为的理论模型。
J-C 断裂准则的应用范围广泛,包括材料力学、机械工程、材料科学等领域。
本文将对 J-C 断裂准则的原理、应用以及实验验证进行介绍。
J-C 断裂准则的原理J-C 断裂准则首先要根据材料的塑性特性进行分析,因为材料的塑性变形是其破坏的先决条件。
材料在承受外力作用下会产生塑性变形,当外力达到一定限度时,材料开始形成裂纹。
J-C 断裂准则假设裂纹的形成和扩展是由两个因素决定的:应力强度因子 K 和断裂韧性 J。
应力强度因子 K 描述了裂纹尖端周围的应力分布,是判断裂纹扩展方向和速率的参数;而断裂韧性 J 描述了材料对裂纹扩展的抗力,是判断材料抗破坏能力的参数。
J = Jc + KY (1)其中,J 表示断裂韧性,Jc 表示材料的固有断裂韧性,K 表示应力强度因子,Y 为材料的本构关系函数。
如果 Y 值为 1,则称其为线性本构关系。
当应力强度因子 K 达到一定数值时,Jc 就成为了材料裂纹扩展的控制因素,此时,裂纹将会沿着材料的最弱面扩展,一直到材料完全断裂。
因此,J-C 断裂准则可以用于预测材料断裂的强度和扩展速度。
J-C 断裂准则在不同领域有不同的应用。
在工程领域,J-C 断裂准则用于预测管道、船舶、飞机等结构在高应力情况下的破坏行为。
在材料科学中,它可以用于评估材料的断裂韧性、抗裂纹扩展能力等性能。
J-C 断裂准则可以与有限元分析结合使用,为材料设计和强度分析提供指导。
通过对裂纹的尺寸和应力强度因子 K 值进行测量和计算,可以确定材料的固有断裂韧性 Jc,进而确定材料的抗破坏能力。
对 J-C 断裂准则的实验验证是对其可靠性的检验。
其中,最常用的实验方法是 K 值法和 J 值法。
K 值法是通过施加模拟外力,在试验样品上产生裂纹,并测量裂纹尖端的应力强度因子 K 值;J 值法则是通过在试验样品中人为制造裂纹,并测量裂纹的扩展比例和断裂韧性 J 值。
韧性断裂

二、影响材料断裂韧性的因素 1.化学成分:一般规律为细化晶粒元素提高材料的强度合断裂 韧度;强烈固溶元素使得材料的强度大大提高,但塑韧性下降, 并且随着这些固溶元素增加,这种效应更加明显(固溶强化); 形成金属间化合物并且以第二相析出的,可以降低材料的塑韧性, 但对提高材料强度有利(时效强化); 2.基体相组织结构以及晶体结构:晶体结构对材料的塑韧性影 响是本质的,对称性低的晶体结构,其滑移系和滑移方向较少, 加工硬化率很高,因此这些金属或合金塑韧性就差。基体的相组 织结构主要也与其晶体结构有关; 3.晶粒尺寸:细化晶粒不仅可以提高材料的强度,对材料塑韧 性也是很有帮助的,因此是一种可以全面提高材料力学综合性能 的强化手段,因此可以提高材料的断裂韧度。 4.夹杂物及第二相:一般而言这两个因素均对材料的塑韧性不 利,但若基体是脆性的,而第二相是塑性,那么材料的断裂韧度 可以有所提高; 5.显微组织的影响:显微组织类型以及组织亚结构会对材料断 裂韧度产生影响。
6.特殊改性处理对材料断裂韧度的影响 (1)亚温淬火:亚温淬火指亚共析钢在双相不完全奥氏体区淬火 的热处理工艺,这种热处理后可以得到马氏体与铁素体的复相组 织,马氏体硬度和强度很高,但塑韧性很差,但基体中存在的铁 素体的对裂纹尖端可以起到应力集中的松弛作用,因此可以有效 提高材料的韧性。 (2)超高温淬火:这种方法可以提高材料韧性的原因一般认为 如下:马氏体由孪晶型转变为板条状,由脆性解离断裂转变为韧 窝聚集型;板条马氏体条束之间存在纳米尺度的奥氏体薄膜,可 以阻止裂纹的扩展;碳化物以及大的夹杂物融解,减小了裂纹萌 生和扩展的策源地。 7.外界因素影响 (1)温度(temperature):对大部分材料,降低温度会降低材料 的断裂韧度,但并不是完全相同; (2)应变速率(strain rate):应变速率增大相当于降低了材料的 温度,材料低温脆性对此有解释。
韧性断裂

断裂。主要条 件是超过工作压力,主要特征是发生了明 显的宏观塑性变形(不包括压缩失稳),且产 生延性断裂。如杆件的过量伸长或弯曲、 容器的过量鼓胀。
韧性断裂断口
• 韧性断裂的断口一般能寻见纤维区和剪唇 区。断口尺度较大时还出现放射形及人字 形山脊状花纹。
韧性断裂
韧性断裂是金属材料断裂前产生明 显宏观塑性变形的断裂。这种断裂 有一个缓慢的撕裂过程,在裂纹扩 展过程中不断的消耗能量。
韧性断裂与脆性断裂
一般规定光滑拉伸试样的断面收缩率小于 5%(反映微量的均匀塑性变形,因为脆性 断裂没有缩颈形成)者为脆性断裂;反之, 大于5%者为韧性断裂。 金属材料的韧性与脆性是根据一定条件下 的塑性变形量来规定的。
韧性断裂断口微观形貌
7050铝合金
7050属高强度可热处理合金,具有极高的强度 及抗剥落腐蚀和抗应力腐蚀断裂的性能。常用 于飞机结构件用于中厚板挤压件、自由锻打件 与模锻件。制造这类零件对合金要求是:抗剥 落腐蚀性与抗应力腐蚀开裂能力、断裂韧性与 抗疲劳性能都强。
abaqus损伤准则总结

ABAQUS中有四种初始断裂准则:在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍)对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shearcriteria)对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。
损伤的感念如下图所示:1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。
Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系:公式中::应力三轴度。
即平均应力和屈服应力的比值;为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变,力三轴度,其值为-2/3;因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出和参数三个参数即可。
根据方程已得到不同应力三轴度下的断、裂应变。
、和在一个应变速率下只需要三组数据,就可以求出方程中的。
帮助文件中的建议:ABAQUS==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?)=此时,通过对进行杯突实验的板料印制网格,可以得到其成形极限(。
):例如三点弯曲试验中,应力三轴度为已知量(印制方程二=0.57735。
网格测量,具体如何测量不是很清楚):例如在单轴拉伸实验中,应力三轴度为已知量=0.333方程三。
平均应力为屈服应力的三分之一。
SIMUWE论坛中的建议:这个应该通过单轴拉伸实验、压缩实验和纯剪切实验。
第04讲:断裂准则及其应用

本讲内容
1 2 3 4
断裂准则 断裂韧性及其影响因素
断裂准则的工程应用
线弹性断裂力学的适用范围
16
断裂准则的工程应用
G准则 断裂准则 K准则
G ≥ GC
K i ≥ (K C )i
等价
K I ≥ K IC
K I :Ⅰ型裂纹的应力强度因子
K IC :平面应变断裂韧度
17
应用断裂准则的步骤 步骤① 步骤①:计算裂纹尖端区域的应力强度因子
5
本讲内容
1 2 3 4
断裂准则
断裂韧性及其影响因素
断裂准则的工程应用 线弹性断裂力学的适用范围
6
断裂韧度
称为材料的断裂韧度。 材料抵抗裂纹扩展的抗力K C 或 GC 称为材料的断裂韧度。
经典Ⅰ型裂纹断裂时临界裂纹长度
1 K IC aC = π σ
2
断裂韧度反映了材料抵抗裂纹扩展的能力。断裂韧性 越高,材料断裂时所允许的裂纹尺寸越长。
21
σ1
σ2
σ1
σ2
22
对于高强度钢,如果相应断裂韧度较低, 对于高强度钢,如果相应断裂韧度较低,允许临界裂纹长 度很短,除应进行常规强度校核外, 度很短,除应进行常规强度校核外,必须严格检查与控制构 件含裂纹长度,利用断裂准则进行安全校核。因而对结构材 件含裂纹长度,利用断裂准则进行安全校核。 料,高强度不是追求的唯一目标,还应提高其断裂韧性。 高强度不是追求的唯一目标,还应提高其断裂韧性。 对于中、低强度钢,相应断裂韧度较高, 对于中、低强度钢,相应断裂韧度较高,允许临界裂纹 长度较长,因而对中、 长度较长,因而对中、小型零件不会出现裂纹导致的脆断问 主要考虑常规强度问题。 题,主要考虑常规强度问题。
abaqus损伤准则总结

ABAQUS中有四种初始断裂准则:在高应变速率下变形时,有shear failure和tensile failure(旋压用不到,不再介绍)对于断裂延性金属:可以选用A:韧性准则(ductile criteria)和B:剪切准则(shearcriteria)对于缩颈不稳定性可以使用(钣金):C:FLD、FLSD、M-K以及MSFLD对于铝合金、镁合金以及高强钢在变形过程中会出现不同机制的断裂,可能会将以上准则联合起来进行使用。
损伤的感念如下图所示:1.韧性断裂准则中提供的韧性断裂准则需要输入的参数为:1.1ABAQUS断裂应变;应力三轴度;应变速率要测量不同应力三轴度下的断裂应变需要进行大量的实验,这是不可取的。
Hooputra et al,2004通过实验和理论推导得到了在定应变速率下,断裂应变和应力三轴度的关系:公式中::应力三轴度。
即平均应力和屈服应力的比值;为等双轴拉伸时的应力三:等双轴拉伸时,断裂时的等效塑性应变,轴度,其值为2/3;为等双轴压缩时的应:等双轴压缩时,断裂时的等效塑性应变,力三轴度,其值为-2/3;因此,为了得到断裂时等效塑性应变和应力三轴度的关系,只需要求出和参数三个参数即可。
根据方程已得到不同应力三轴度下的断、裂应变。
、和在一个应变速率下只需要三组数据,就可以求出方程中的。
帮助文件中的建议:ABAQUS==2/3方程一(是不是:例如在杯突试验中,应力三轴度为已知量杯突实验和等双轴拉伸的变形时等效的,杯突实验如何在高温下进行,能否用双向拉伸实验代替?)=此时,通过对进行杯突实验的板料印制网格,可以得到其成形极限(。
):例如三点弯曲试验中,应力三轴度为已知量(印制方程二=0.57735。
网格测量,具体如何测量不是很清楚):例如在单轴拉伸实验中,应力三轴度为已知量=0.333方程三。
平均应力为屈服应力的三分之一。
SIMUWE论坛中的建议:这个应该通过单轴拉伸实验、压缩实验和纯剪切实验。
(完整版)断裂力学与断裂韧性.

断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。
而[σ],对塑性材料[σ]=σs /n,对脆性材料[σ]=σb/n,其中n为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith)断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,引力和位移的关系如以正弦函数关系表示,当位移达到Xm 时吸力最大以σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。
可见理论断裂强度即相当于克服最大引力σc。
该力和位移的关系为图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality $Stephen M.Graham a ,n ,Tingting Zhang b ,Xiaosheng Gao b ,Matthew Hayden caDepartment of Mechanical Engineering,United States Naval Academy,590Holloway Rd,Annapolis,MD 21402,USA bDepartment of Mechanical Engineering,The University of Akron,Akron,OH 44325,USA cAlloy Development and Mechanics Branch,Naval Surface Warfare Center,West Bethesda,MD 20817,USAa r t i c l e i n f oArticle history:Received 11November 2010Received in revised form 8September 2011Accepted 17October 2011Available online 25October 2011Keywords:Ductile fractureExperimental technique Tension TorsionStress triaxiality Lode parametera b s t r a c tDevelopments in computational mechanics have given engineers tools to predict the evolution of damage in complex structures.Damage models have been developed that relate failure strain to stress triaxiality and Lode angle.Calibration of these models has traditionally relied on specimens that exhibit high triaxiality and limited Lode angle.This paper presents a specimen that can be tested in combined tension and torsion to achieve low triaxiality over a range of Lode angle.Numerical analysis of the specimen shows that it exhibits uniformity of stress–strain and stable values of triaxiality and Lode angle as plastic strain develops,both of which are desirable characteristics for calibration of ductile failure models.The design of a new displacement and rotation gage is presented that allows non-contact measurement at the gage section.Experimental results are used to develop the failure surface for 5083aluminum.Published by Elsevier Ltd.1.IntroductionDevelopments in computational mechanics have enabled engi-neers to conduct stress analysis and perform failure predictions on complex structures.When stresses exceed the yield point of the material in a structure,predictions of stress,strain,and damage will be highly dependent on the constitutive model used to characterize plasticity and damage.Therefore,accurate predictions of structural integrity depend on accurate material models.Development of these models requires constitutive theories that properly account for the influence of stress on yielding and plastic flow,and on experimental methods to calibrate the models.Calibration for parts of a structure that exhibit high constraint is readily done using simple tensile type specimen geometries.However,it is a particular challenge for low constraint areas such as thin sections,regions under predominant shear,and at surfaces because the specimen geometry and loading required to achieve low triaxiality are more complex.Since failure in structures often initiates in thin sections or at surfaces,calibration could significantly influence the accuracy of failure predictions.The most widely used approach for characterizing plasticity of ductile metals has been the classical J 2plasticity theory.In this theory the yield surface depends only on the second invariant of the stress deviator,J 2.However,it has been known for some time that yielding in geomaterials is sensitive to not only the hydro-static stress,but also to the Lode angle,which is related to the third invariant of the deviator stress tensor [1–5].Recently the influence of hydrostatic stress and Lode angle on yielding in ductile metals has been investigated [6–15].Damage models have been developed [6–8]that relate failure strain to the stress triaxiality,which is defined as the ratio of the hydrostatic stress to equivalent stress.These models have recently been extended to include the influence of Lode angle [9,11–14].Before continuing this review of past work,it is useful to define the various parameters used in ductile fracture models and to show how they are related.Triaxiality,T ,is universally recognized as the ratio of the mean stress over the von Mises equivalent stress,although the symbol used to represent it varies.T ¼Z ¼s m s eð1ÞThe mean stress is defined ass m ¼13ðs 1þs 2þs 3Þ¼I 13ð2Þs 1,s 2,and s 3are the principal stresses and I 1is the first invariant of the stress tensor.Contents lists available at SciVerse ScienceDirectjournal homepage:/locate/ijmecsciInternational Journal of Mechanical Sciences0020-7403/$-see front matter Published by Elsevier Ltd.doi:10.1016/j.ijmecsci.2011.10.007$Role of the funding source:this work was funded by the Advanced Combatant Materials Program through the Naval Sea Systems Command (NAVSEA)and the Metals Division of the Survivability,Structures,and Materials Department at the Naval Surface Warfare Center,Carderock Division (NSWCCD).NAVSEA had no direct involvement in the collection,analysis and interpretation of data,in writing the report,or in the decision to submit the paper for publication.nCorresponding author.Tel.:þ14102936519;fax:þ14102933041.E-mail address:smgraham@ (S.M.Graham).International Journal of Mechanical Sciences 54(2012)172–181The Von Mises equivalent stress iss e ¼1ffiffiffi2p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs 1Às 2Þ2þðs 2Às 3Þ2þðs 3Às 1Þ2q ¼ffiffiffiffiffiffiffi3J 2p ð3ÞThere are many different variations on the definition of theLode angle,y ,and related parameters in the literature.In the early work of Lode [16],the Lode angle is defined as the angle measured counter-clockwise from the projection of the s 1axis to a point on a deviatoric plane (constant hydrostatic stress),as shown in Fig.1.s 10,s 20,and s 30are the projections of the principal stress axes on a deviatoric plane.P (x ,r ,y )are the Haigh-Westergaard cylindrical coordinates.x ¼I1ffiffiffi3p ¼ffiffiffi3p s mð4Þr ¼ffiffiffiffiffiffiffi2J 2p ¼ffiffiffi2r s e ð5Þcos ð3y Þ¼ffiffiffiffiffiffi27p J 32J 3=22¼27J 32s 3eð6ÞFor an isotropic material the ordering of the principal stresses does not influence the material behavior,therefore the stress space has three symmetry axes,as shown in Fig.1,and the Lode angle is limited to 0r y r ðp =3Þ.Xue [17]defined an alternative Lode angle,y L ,relative to the shear meridian axis [18],as shown in Fig.2.The shear meridian axis (y ¼301or p /6)represents all states of stress that can be formed by combining a state of pure shear with a hydrostatic stress.There is also a tensile meridian axis (y ¼01)representing states of stress formed by combining uniaxial tension with hydrostatic stress,and a compression meridian axis (y ¼601or p /3)formed by combining uniaxial compression with a hydrostatic stress.The two angles are related by y L ¼y Àðp =6Þand Àðp =6Þr y L r ðp =6Þ.This angle is related to the principal stresses by the following equation,where s 1,s 2,s 3are the principal values of the deviatoric stress tensor (s i ¼s i Às m ).y L ¼tan À11ffiffiffi3p 2s 2Às 1Às 313ð7ÞXue also defines a parameter that is the relative ratio of theprincipal deviatoric stresses.w ¼s 2Às 3s 1Às 3ð8ÞThe values of these parameters for common specimen types are compared in Table 1.Barsoum and Faleskog [13]use the parameter m to describe Lode angle dependence.m ¼2s 2Às 1Às 3s 1Às 3ð9ÞThis parameter is equivalent to the quantity in parentheses in Eq.(7),thereforey L ¼tan À1m ffiffiffi3p ð10ÞBai and Wierzbicki [14]define a normalized third deviatoric stress invariant,x ,which is not the same as the Haigh–Westergaard coordinate.x ¼27J 3s e¼cos ð3y Þð11Þwhere the range of the Lode angle is 0r y r ðp =3Þcorresponding to 1Z x Z À1.They also introduce a normalized Lode angle.y ¼1À6yp¼1À2pcos À1xð12ÞThis Lode angle parameter has the same range as x .Xue and Wierzbicki [19]introduce another variation on the Lode angle that is anti-symmetric about the tensile meridian axis.tan ðy ’L Þ¼Àm ffiffiffi3p ð13Þσ1’3’Fig.1.Deviatoric plane showing definition of Lode angle,y .σ1’3’P ( , Fig.2.Deviatoric plane showing definition of Lode parameter y L and its relation to the Lode angle,y .Table 1Comparison of Lode angle parameters for three stress states.Stress stateMeridian axisyy Lwmxyy 0Ly gx gGeneralized tension (axisymmetric tension)Tensile ðs 14s 2¼s 3Þ0Àðp =6Þ0À1þ1þ1ðp =6ÞÀðp =6Þþ1Pure torsion and plane strainShear ðs 2¼ð1=2Þðs 1þs 3ÞÞðp =6Þ00.5000000Generalized compression (axisymmetric compression)Compression ðs 1¼s 24s 3Þðp =3Þðp =6Þþ1þ1À1À1Àðp =6Þðp =6ÞÀ1S.M.Graham et al./International Journal of Mechanical Sciences 54(2012)172–181173The prime has been added to differentiate it from the Barsoum and Faleskog y L .The parameters presented thus far are based on the ordering of principal stresses s 1Z s 2Z s 3.Gao et al.[10]modify the defini-tion of x based on the ordering s 2Z s 3Z s 1as presented in [20].x g ¼cos 3y g þp ¼cos3y g þpð14Þwhere y g is measured from the shear meridian axis,which is now 301(p /6)counter-clockwise from the s 02axis,in a manner similar to y L .Adding p /6makes the angle anti-symmetric about the shear meridian axis,as can be seen in Table 1.In a study by Gao et al.[11],notched round and flat tensile specimens were used to investigate the influence of hydrostatic stress and Lode angle on ductile failure in DH36steel.Varying the notch radius allowed them to obtain a range of triaxiality.For the round tensiles,notch radii ranging from 1.12to 8.94mm yielded triaxiality of 1.3to 0.9,respectively,for DH36steel.The triaxiality depends not only on the specimen geometry,but also on the plastic behavior of the material.In a different study on 5083aluminum [10],the same specimen geometries yielded triaxiality ranging from about 1.6to 0.8.However,the axisymmetry of a notched tensile specimen causes it to have the same Lode angle (y ¼01,x ¼þ1),regardless of the notch geometry and material.Consequently,it does not allow investigation of Lode angle effects.Notched flat tensile specimens,referred to as plane strain specimens,were used to achieve triaxiality of 0.8–1.1(depending on the notch radius)for DH36steel at a Lode angle of y ¼301(x ¼0).They point out that alternative specimen designs are required to more accurately calibrate the failure surface at Lode angles between 0and 1because curvature of the failure surface is greater at low triaxiality,so failure strain becomes more sensitive to x [11].Wierzbicki et al.[21]developed a unique butterfly shaped specimen that is tested in combined tension and shear in order to investigate failure at low triaxiality.This specimen achieves triaxiality over the range of À0.191to 1.01and À0.503r x r 0.858;however,it requires some complex machining and a unique apparatus to perform the tests.The variation in triaxiality and Lode angle during evolution of plastic deformation required that average values of triaxiality and x be calculated by integrating over strain.It is also possible to achieve low triaxiality and a range of Lode angle using a simple notched tubular specimen tested in com-bined tension and torsion [13].Faleskog et al.were able to achieve triaxiality from about 0.3–1.3and Lode parameter À1r m r 0,which from Table 1corresponds to 0r x r 1,for a high yield strength and low strain hardening steel.Gao et al.[22]developed an alternative specimen design that is similar to the notched tubular specimen used by Faleskog et al.Their specimen is a modified version of a specimen used by Lindholm et al.[23]for conducting high-rate torsion tests.The objective of this paperis to investigate the distribution of stresses,triaxiality and Load anglein the gage section of the modified Lindholm specimen for use in calibrating ductile fracture models under conditions of low triaxiality and varying Lode angle.2.Numerical analysisThe ideal specimen for calibration of ductile failure models would have three characteristics:(1)uniform stress and strain in the gage section,(2)ability to achieve a range of triaxiality and Lode angles that fall between the tension and shear cases,and (3)stationary triaxiality and Lode angle as plasticity evolves up to failure.The rationale behind each of these characteristics,along with numerical analysis to characterize the modified Lindholm specimen,will be presented in the following.It is not possible to directly measure internal stress in a combined tension þtorsion calibration specimen,therefore it is necessary to use numerical stress analysis to determine the triaxiality,Lode angle,and equivalent plastic strain in the specimen at the time of failure.The quantities that can be readily measured in the test are the applied force,deflection,applied torque,and rotation.The model must accurately reproduce the force–displacement and torque–rotation behavior of the specimen to validate the accuracy of the computed stresses.It is necessary to determine the key stress parameters at the location and time of failure.If the stresses in the gage section of the specimen are uniform,then the precise location of failure does not have to be determined as long as it occurs within the uniform stress region.Therefore,a specimen design that promotes uniformity of stresses obviates the need to determine failure location.In an effort to provide a relative comparison with established approaches from the literature,numerical stress analysis of the modified Lindholm specimen will be compared with the specimen used by Barsoum and Faleskog [13].The dimensions of the specimen they used,which will be referred to as the Notched Tube (NT)specimen,are shown in Fig.3.The dimensions of the modified Lindholm specimen are shown in Fig.4.The latter differs from the original Lindholm specimen in that it is longer and the ends are cylindrical rather than hexagonal.A cylindrical surface was required to grip the specimen in hydraulic collet grips in order to apply tension.The original Lindholm specimen was designed for pure torsional loading.The gage sections of the NT and Lindholm speci-mens are compared in Fig.5.Even though they are close to the same overall size,the gage sections are significantly different.The NT specimen has both internal and external circular notches,while the modified Lindholm specimen is notched only on the outside with a trapezoidal notch profile.The gage section in the modified Lindholm is uniform over 2.54mm (0.1in),while the gage section in theNTFig.3.Dimensions of NT specimen [13].All dimensions in mm.S.M.Graham et al./International Journal of Mechanical Sciences 54(2012)172–181174specimen is curved throughout.The gage section width (wall thickness)for the NT specimen is 1.2mm at the narrowest point,which is about twice the thickness of the wall throughout the gage section of the Lindholm specimen (0.74mm).The thin wall in the gage section acts to minimize the variation in stress through the wall thickness.The very tight tolerance on concentricity shown in Fig.4is intended to ensure axisymmetric deformation in the gage section.A series of finite element stress analyses were conducted to compare the distributions of stress and effective plastic strain in the gage section of the NT specimen and the Lindholm specimen under different combinations of tension and torsion.The stress state for both specimens will be characterized using the equivalent plastic strain,e p ,triaxiality parameter,T ,and the Lode parameter,m .A sense for the physical significance of the Lode parameter m can be gained by re-arranging the equation as follows [13]:m ¼s 2Àðs 1þs 3Þ=2ðs 1Às 3Þ=2ð15ÞLooking at this in terms of Mohr’s circle,the second term in the numerator,ðs 1þs 3Þ=2,is the center of the largest circle,and the term in the denominator is the corresponding radius.Therefore,m can be interpreted as the relative offset of the second principal stress from the center of the largest Mohr’s circle.For the purposes of this comparison,the material is assumed to follow the J 2flow plasticity theory and the same material is used to model both specimens.All the analysis here uses material properties of Weldox 960,which is the same material used by Barsoum and Faleskog [13].s ¼E eif s r s 0s s 0¼e e 0Nifs 4s 0ð16Þwhere E ¼208GPa,v ¼0.3,s 0¼956MPa,e 0¼0.0046and N ¼0.059.Analysis was conducted using ABAQUS and both specimens were modeled using 4-node axisymmetric elements with twist (CGAX4R).The element size in the gage section of both specimens was approximately 0.05mm Â0.05mm.The finite element meshes for the two specimens are shown in Fig.6.An axial displacement,u ,and a twist angle,y ,are imposed on the top end of each specimen while the bottom end is constrained against axial or rotational motion.Because the geometries of the Lindholm specimen and the NT specimen are different,they can not achieve the same values of both T and m concurrently.In the following,the tension–torsion ratio based on displacement is defined as:c ¼u R yð17ÞIn this equation R is the mean radius in the center of the gage section,which is 12mm for the NT specimen and 6.91mm for the Lindholm specimen.During the loading process the tension–torsion ratio,c ,is kept constant.The stress distributions presented in the following are all along a radial line in the center of the gage section,which is on the symmetry plane of the specimen.3.Numerical analysis results 3.1.Pure torsionFig.7compares the through-thickness distribution of T ,m and e p for pure torsion loading (c ¼0)at the time when the equivalent plastic strain,e p ,reaches a level of about 0.37.For pure torsion,T and m should both be zero.For the NT specimen,r m represents the mid-radius in the gage section (12mm)and t n is the half net thickness in the narrowest part of the notch (0.6mm).For the Lindholm specimen,r inner represents the inner radius (6.54mm)and t n is the wall thickness in the gage section (0.735mm).It is apparent that T and m are very close to zero through the whole thickness for both specimens.For the Lindholm specimen,the effective plastic strain remains constant through the thickness.3.2.Torsion–tensionIn an effort to provide a comparison under similar conditions,the tension–torsion ratios applied to the different specimens were chosen to produce similar m values.For the NT specimen,c ¼0.194,and for the Lindholm specimen,c ¼0.068.These values are chosen such that the two specimens produce m values of approximately À0.2.Fig.8compares the through-thickness distribution of T ,m and e p at the time when e p in the element at the inner surface of the Lindholm specimen,and the center if the NT specimen,reaches 0.02.Fig.9compares the through-thickness distribution of T ,m and e p at a higher strain level of 0.20.The plastic strain at yieldisFig.4.Dimensions of Lindholm specimen [23].All dimensions inmm.parison of gage sections in NT and Lindholm specimens (to scale).S.M.Graham et al./International Journal of Mechanical Sciences 54(2012)172–1811750.002,so these strain levels are well beyond yield.Fig.10compares the through-thickness distribution of T ,m and e p at the time when e p reaches 0.44.The thickness variations in these parameters are summarized in Table 2.From the above figures and the table we can see that e p remains almost constant through thickness for the Lindholm specimen.Triaxiality in the NT specimen is the lowest at the surfaces and reaches a maximum near the center,while T in the Lindholm specimen is the highest at the inner surface and exhibits a small gradual decrease through the thickness.Lode parameter shows a gradual increase from inner to outer surfaces in both specimens.In general,the stress and strain distributions in the modified Lindholm specimen exhibit good uniformity,thereby obviating the need to determine exact failurelocation.Fig.6.Finite element meshes for the:(a)NT specimen and (b)modified Lindholm specimen.0(r-r inner )/t n-1-0.500.51-1(r-r m )/t n-1-0.500.51μTεpεpTμ-0.50.5010.250.50.751Fig.7.Through-thickness distribution of T ,m and e p at the mid-section of the specimen for e p ¼0:37:(a)NT specimen and (b)Lindholm specimen.0(r-r inner )/t n-1-0.500.51-1(r-r m )/t n-1-0.500.51μTεpεpTμ-0.500.510.250.50.751Fig.8.Through-thickness distribution of T ,m and e p at the mid-section of the specimen for effective plastic strain of 0.02:(a)NT specimen and (b)Lindholm specimen.S.M.Graham et al./International Journal of Mechanical Sciences 54(2012)172–181176It is interesting to compare the two specimens at similar levels of triaxiality.In this case the Lode parameter will be different for the two.In an effort to achieve the same value for T ,an analysis was run where c ¼0:194for Faleskog specimen and 0.368for the Lindholm specimen.These values were chosen such that the two specimens produced similar T values,which were around 0.36.Fig.11compares the through-thickness distribution of T ,m and e p at the time when e p in the element at the inner surface for0(r-r inner )/t n-1-0.500.51-1(r-r m )/t n-1-0.500.51μTεpεpTμ-0.500.510.250.50.751Fig.9.Through-thickness distribution of T ,m and e p at the mid-section of the specimen for effective plastic strain of 0.20:(a)NT specimen and (b)Lindholm specimen.0(r-r inner )/t n-1-0.500.51-1(r-r m )/t n-1-0.500.51μTεpεpTμ-0.500.510.250.50.751Fig.10.Through-thickness distribution of T ,m and e p at the mid-section of the specimen for effective plastic strain of 0.44:(a)NT specimen and (b)Lindholm specimen.Table 2Summary of thickness variations of ductile fracture parameters.NT specimenLindholm specimene pTme pTmFig.80.02–0.0350.131–0.258À0.120to À0.2380.020–0.0230.046–0.063À0.120to À0.165Fig.90.20–0.3150.166–0.356À0.168to À0.2150.20–0.220.064–0.094À0.167to À0.247Fig.100.44–0.740.250–0.450À0.175to À0.2450.44–0.480.062–0.086À0.160to À0.230Fig.110.14–0.220.148–0.333À0.162toÀ0.2060.14–0.140.290–0.380À0.830toÀ0.970(r-r inner )/t n-1-0.50.51-1(r-r m )/t n-1-0.500.51μTεpεpTμ-0.500.510.250.50.751Fig.11.Through-thickness distribution of T ,m and e p at the mid-section of the specimen when e p reaches 0.14:(a)NT specimen and (b)Lindholm specimen.S.M.Graham et al./International Journal of Mechanical Sciences 54(2012)172–181177Lindholm specimen,and the center of the NT specimen,reaches 0.14.We can see that once again e p remains constant through thickness for the Lindholm specimen (see summary in Table 2).The Lindholm specimen does show a small decrease in T going from the inner to outer radius.For this analysis,where m is approaching À1,the Lindholm specimen exhibits more variation in Lode parameter than the NT specimen.As mentioned previously,uniformity of stress and strain in the gage section is one desirable characteristic for a calibration specimen.Although it is not apparent from these graphs,the stress and strain distributions in the gage section of the Lindholm specimen are also uniform in the axial direction.The large ratio of gage section length to wall thickness (2.54/0.735¼3.5)ensures that the material over a large percentage of the gage length is not influenced by the transition at the ends.This is a desirable characteristic because it obviates the need to determine the exact axial location of the failure initiation.The second desirable characteristic is to achieve a range in triaxiality and Lode angle through control of the loading.For the NT and modified Lindholm specimens,this is achieved through choice of the tension–torsion ratio.For the Butterfly specimen,it is achieved by rotating the specimen axis relative to the loading axis to place the specimen under combined tension þshear.The different values of triaxiality and Lode parameter that can be achieved for each specimen are compared in Fig.12.The T and x values for the Butterfly specimen are average values up to failure.Lode angle for the NT specimen is presented in terms of Àm .It is important to note that although m and x are equal and opposite in sign at the meridian axes,in general m a Àx between these axes.The Lindholm results shown are for 5083aluminum,the NT results are for Weldox 960[13]and the Butterfly results are for A710steel [21].The values of triaxiality and Lode parameter achieved are partly dependent on the material properties,so this comparison only provides a general idea of the values that can be obtained and is not intended to isolate the influence of geometry.The Lindholm specimen behavior evolves from T ¼0and x ¼0under pure torsion to T ¼0.35and x ¼1at c ¼0.1.This is nearly the stress state of a smooth tensile specimen (T ¼0.33,x ¼1).As c is increased further,the stress state approaches plane stress bi-axial tension (s 1¼2s 2and s 3¼0)where T ¼0.58and x ¼0.This evolution results from the constraint imposed by the ends of the specimen outside the gage section as they inhibit circumferentialstrain,thereby inducing a circumferential stress.The stress state starts off on the shear meridian axis,gradually moves over to the tensile meridian axis at c ¼0.1and then moves back over to the shear meridian axis.Similar behavior is observed for the other two specimens,although the maximum Lode parameter occurs at different values of Triaxiality.The third desirable characteristic of a calibration specimen is to have minimal variation in triaxiality,Lode angle and effective plastic strain as plastic deformation evolves.Ideally,these para-meters would be stationary during plastic deformation all the way to failure.This would eliminate the need to calculate average values by integrating over strain.The evolution of triaxiality and Lode parameters m and x with increasing effective plastic strain is shown in Fig.13at tension–torsion ratios of c ¼0.194for the NT specimen and c ¼0.068for the Lindholm specimen,which were chosen to obtain similar m values of about À0.20.It is apparent that the modified Lindholm specimen quickly approaches nearly stationary values as plastic strain progresses.4.Material and experimental methodsExperiments were conducted using the modified Lindholm specimen over a range of tension–torsion ratios to calibrate a constitutive model for plasticity,and thereby validate the finite element model for future prediction of stresses and strains at ductile fracture.The tests were conducted in a two-axis servo-hydraulic load frame with axial and rotational actuators and hydraulic collet grips.The grips were carefully aligned to prevent buckling and development of asymmetric stresses in the relatively thin-wall gage section of the specimens.All tests were conducted in computer control,where axial extension and rotation were ramped with time to obtain a specific tension–torsion ratio and strain rate.Careful tuning of the servo-valve controllers was required to properly synchronize the axial and rotational actua-tors.In early tests it was observed that improper tuning led to a small time-lag in axial deflection that had a significant effect on the resulting development of plasticity in the specimen.In order to more accurately monitor and control the deforma-tion in the gage section of the specimen,a local extension plus rotation transducer that mounted just outside the gage section was developed.The transducer,shown in Fig.14,usesTriaxiality (T)L o d e P a r a m e t e r (ξ)00.20.40.60.81L o d e P a r a m e t e r (-μ)parison of Lode parameter and triaxiality over a range of applied loading conditions for the modified Lindholm,Butterfly and NT specimens.S.M.Graham et al./International Journal of Mechanical Sciences 54(2012)172–181178。