高考物理最新教案-高中物理易错题分析集锦——3圆周运动 精品

合集下载

高中物理圆周运动优秀教案及教学设计精品

高中物理圆周运动优秀教案及教学设计精品

高中物理圆周运动优秀教案及教学设计精品一、教材分析《匀速圆周运动》为高中物理必修2第五章第5节.它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内容作为该章节的重要部分,主要要向学生介绍描述圆周运动的几个基本概念,为后继的学习打下一个良好的基础。

人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析总结出规律,从而形成理性认识。

教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。

二、教学目标1.知识与技能①知道什么是圆周运动、什么是匀速圆周运动。

理解线速度的概念;理解角速度和周期的概念,会用它们的公式进行计算。

②理解线速度、角速度、周期之间的关系:v=rω=2πr/T。

③理解匀速圆周运动是变速运动。

④能够用匀速圆周运动的有关公式分析和解决具体情景中的问题。

2.过程与方法①运用极限思维理解线速度的瞬时性和矢量性.掌握运用圆周运动的特点去分析有关问题。

②体会有了线速度后,为什么还要引入角速度.运用数学知识推导角速度的单位。

3.情感、态度与价值观①通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。

②体会应用知识的乐趣,感受物理就在身边,激发学生学习的兴趣。

③进行爱的教育。

在与学生的交流中,表达关爱和赏识,如微笑着对学生说“非常好!”“你们真棒!”“分析得对!”让学生得到肯定和鼓励,心情愉快地学习。

三、教学重点、难点1.重点①理解线速度、角速度、周期的概念及引入的过程;②掌握它们之间的联系。

2.难点①理解线速度、角速度的物理意义及概念引入的必要性;②理解匀速圆周运动是变速运动。

四、学情分析学生已有的知识:1.瞬时速度的概念2.初步的极限思想3.思考、讨论的习惯4.数学课中对角度大小的表示方法五、教学方法与手段演示实验、展示图片、观看视频、动画;讨论、讲授、推理、概括师生互动,生生互动,六、教学设计(一)导入新课(认识圆周运动)●通过演示实验、展示图片、观看视频、动画,让学生认识圆周运动的特点,演示小球在水平面内圆周运动展示自行车、钟表、电风扇等图片观看地球绕太阳运动的动画观看花样滑冰视频提出问题:它们的运动有什么共同点?答:它们的轨迹是一个圆.师:对,这就是我们今天要研究的圆周运动观看动画,思考问题:这两个球匀速圆周运动有什么不同?答:快慢不同提出问题:如何描述物体做圆周运动的快慢?学生动手,分组实践,观察自行车的传动装置,思考与讨论:自行车的大齿轮,小齿轮,后轮中的质点都在做圆周运动。

高中物理易错题精选(含答案有解析分章节)

高中物理易错题精选(含答案有解析分章节)

⾼中物理易错题精选(含答案有解析分章节)⾼考物理易错题精选讲解1:质点的运动错题集⼀、主要内容本章内容包括位移、路程、时间、时刻、平均速度、即时速度、线速度、⾓速度、加速度等基本概念,以及匀变速直线运动的规律、平抛运动的规律及圆周运动的规律。

在学习中要注意准确理解位移、速度、加速度等基本概念,特别应该理解位移与距离(路程)、速度与速率、时间与时刻、加速度与速度及速度变化量的不同。

⼆、基本⽅法本章中所涉及到的基本⽅法有:利⽤运动合成与分解的⽅法研究平抛运动的问题,这是将复杂的问题利⽤分解的⽅法将其划分为若⼲个简单问题的基本⽅法;利⽤物理量间的函数关系图像研究物体的运动规律的⽅法,这也是形象、直观的研究物理问题的⼀种基本⽅法。

这些具体⽅法中所包含的思想,在整个物理学研究问题中都是经常⽤到的。

因此,在学习过程中要特别加以体会。

三、错解分析在本章知识应⽤的过程中,初学者常犯的错误主要表现在:对要领理解不深刻,如加速度的⼤⼩与速度⼤⼩、速度变化量的⼤⼩,加速度的⽅向与速度的⽅向之间常混淆不清;对位移、速度、加速度这些⽮量运算过程中正、负号的使⽤出现混乱:在未对物体运动(特别是物体做减速运动)过程进⾏准确分析的情况下,盲⽬地套公式进⾏运算等。

例1 汽车以10 m/s 的速度⾏使5分钟后突然刹车。

如刹车过程是做匀变速运动,加速度⼤⼩为5m/s 2 ,则刹车后3秒钟内汽车所⾛的距离是多少?【错解】因为汽车刹车过程做匀减速直线运动,初速v 0=10m/s 加速度a=5m/s 2,据S=2021at t v -,则位移S=9521310??-?=7.5(m )。

【错解原因】出现以上错误有两个原因。

⼀是对刹车的物理过程不清楚。

当速度减为零时,车与地⾯⽆相对运动,滑动摩擦⼒变为零。

⼆是对位移公式的物理意义理解不深刻。

位移S 对应时间t ,这段时间内a 必须存在,⽽当a 不存在时,求出的位移则⽆意义。

由于第⼀点的不理解以致认为a 永远地存在;由于第⼆点的不理解以致有思考a 什么时候不存在。

高考物理生活中的圆周运动易错剖析

高考物理生活中的圆周运动易错剖析

高考物理生活中的圆周运动易错剖析一、高中物理精讲专题测试生活中的圆周运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,半径R=2.5m 的竖直半圆光滑轨道在B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A 点.一瞬时冲量使滑块以一定的初速度从A 点开始运动,经B 点进入圆轨道,沿圆轨道运动到最高点C,并从C 点水平飞出,落在水平面上的D 点.经测量,D 、B 间的距离s1=10m,A 、B 间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C 点时的速度大小;(2)滑块刚进入圆轨道时,在B 点轨道对滑块的弹力; (3)滑块在A 点受到的瞬时冲量的大小. 【答案】(1) (2)45N (3)【解析】 【详解】(1)设滑块从C 点飞出时的速度为v c ,从C 点运动到D 点时间为t 滑块从C 点飞出后,做平抛运动,竖直方向:2R=gt 2 水平方向:s 1=v c t 解得:v c =10m/s(2)设滑块通过B 点时的速度为v B ,根据机械能守恒定律 mv B 2=mv c 2+2mgR 解得:v B =10m/s设在B 点滑块受轨道的压力为N ,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A 点开始运动时的速度为v A ,根据动能定理;-μmgs 2=mv B 2-mv A 2解得:v A =16.1m/s设滑块在A 点受到的冲量大小为I ,根据动量定理I=mv A 解得:I=8.1kg•m/s ; 【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.3.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案 高中物理《圆周运动》教学设计(优秀5篇)

圆周运动教案高中物理《圆周运动》教学设计(优秀5篇)高中物理《圆周运动》教学设计【优秀5篇】由作者为您收集整理,希望可以在圆周运动教案方面对您有所帮助。

高一物理圆周运动教案篇一教学重点线速度、角速度的概念和它们之间的关系教学难点1、线速度、角速度的物理意义2、常见传动装置的应用。

高中物理圆周运动优秀教案及教学设计篇二做匀速圆周运动的物体依旧具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动版轨迹是圆,所以匀速圆周运动是变加速曲线运动。

匀速圆周运动加速度方向始终指向圆心。

做变速圆周运动的物体总能分权解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。

速度(矢量,有大小有方向)改变的。

(或是大小,或是方向)(即a≠0)称为变速运动。

速度不变(即a=0)、方向不变的运动称为匀速运动。

而变速运动又分为匀变速运动(加速度不变)和变加速运动(加速度改变)。

所以变加速运动并不是针对变减速运动来说的,是相对匀变速运动讲的。

匀变速运动加速度不变(须的大小和方向都不变)的运动。

匀变速运动既可能是直线运动(匀变速直线运动),也可能是曲线运动(比如平抛运动)。

圆周运动是变速运动吗篇三高中物理《圆周运动》课件一、教材分析本节内容选自人教版物理必修2第五章第4节。

本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。

本节课是从运动学的角度来研究匀速圆周运动,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。

(过渡句)知道了教材特点,我们再来了解一下学生特点。

也就是我说课的第二部分:学情分析。

新高考物理考试易错题易错点09圆周运动附答案

新高考物理考试易错题易错点09圆周运动附答案

易错点09 圆周运动易错总结1.在半径不确定的情况下,不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小。

2.地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等,而各点做匀速圆周运动的半径不同,故各点线速度大小不相等,由赤道向两极逐渐减小为零(极点)。

现在了牛顿的头上3.同一轮子上各质点的角速度关系(同轴转的问题):由于同一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同,且各质点具有相同的ω、T 和n .4.当向心力由静摩擦力提供时,静摩擦力的大小和方向是由物体运动状态决定的。

5.绳对物体只能产生拉力,杆对物体既可以产生拉力又可以产生支持力,所以求作用力时,应先利用临界条件判断杆对物体施力的方向,或先假设力作用于某一方向,然后根据所求结果的正负进行判断。

6.公式rv m ma F 2==是牛顿第二定律在圆周运动中的应用,向心力由做匀速圆周运动的物体所受的合外力所提供。

因此,牛顿定律及由牛顿定律推导出的一些规律(如超重、失重等)高中阶段仍适用。

7.物体做离心运动是合外力不足以提供向心力造成的,并不是受到“离心力”的作用。

8.物体在完全失去外力作用时,物体应沿当时其所在处的切线方向运动,而不是沿半径方向运动。

9.要明确物体做圆周运动需要的向心力a F (rmv F 2=)和提供的向心力b F 的关系,当ba F F <时,物体做离心运动;当b a F F =时,物体做匀速圆周运动;当b a F F >时,物体做近(向)心运动。

解题方法1.竖直面内圆周运动的轻绳(过山车)模型如图1所示,甲图中小球受绳拉力和重力作用,乙图中小球受轨道的弹力和重力作用,二者运动规律相同,现以甲图为例.图1(1)最低点动力学方程:F T1-mg =m v 21L所以F T1=mg +m v 21L(2)最高点动力学方程: F T2+mg =m v 22L所以F T2=m v 22L-mg(3)最高点的最小速度:由于绳不可能对球有向上的支持力,只能产生向下的拉力,由F T2+mg =mv 22L可知,当F T2=0时,v 2最小,最小速度为v 2=gL .讨论:当v 2=gL 时,拉力或压力为零. 当v 2>gL 时,小球受向下的拉力或压力. 当v 2<gL 时,小球不能到达最高点. 2.竖直面内圆周运动的轻杆(管)模型如图2所示,细杆上固定的小球和光滑管形轨道内运动的小球在重力和杆(管道)的弹力作用下做圆周运动.图2(1)最高点的最小速度由于杆和管在最高点处能对小球产生向上的支持力,故小球恰能到达最高点的最小速度v =0,此时小球受到的支持力F N =mg .(2)小球通过最高点时,轨道对小球的弹力情况①v >gL ,杆或管的外侧对球产生向下的拉力或弹力,mg +F =m v 2L ,所以F =m v 2L -mg ,F随v 增大而增大;②v =gL ,球在最高点只受重力,不受杆或管的作用力,F =0,mg =m v 2L;③0<v <gL ,杆或管的内侧对球产生向上的弹力,mg -F =m v 2L ,所以F =mg -m v 2L ,F 随v的增大而减小.【易错跟踪训练】易错类型1:对物理概念理解不透彻1.(2020·天津市第八中学)以下对有关物理概念的理解中正确的是( )A .物体的速度变化大其加速度就大B .受静摩擦力作用的物体一定处于静止状态C .骑自行车沿水平圆形轨道转弯时的向心力就是自行车手转动车把的力D .滑动摩擦力也可以对物体做正功 【答案】D 【详解】A .物体的速度变化大,根据公式∆=∆va t可知,加速度不一定大,故A 错误; B .运动的物体也可以收到静摩擦力,如随传送带一起斜向上运动的物体,故B 错误; C .骑自行车沿水平圆形轨道转弯时所需的向心力由地面对轮胎的侧向静摩擦力提供,故C 错误;D .滑动摩擦力的方向与物体相对运动方向相反,与物体运动方向可以相同,也可以相反,物体受滑动摩擦力可能做负功,也可能做正功,故D 正确; 故选D 。

物理高中圆周问题教案及反思

物理高中圆周问题教案及反思

物理高中圆周问题教案及反思教学目标:1.了解圆周运动的基本概念2.掌握圆周运动相关的公式和计算方法3.能够运用所学知识解决圆周运动问题教学重点:1.学会如何计算圆周运动的速度和加速度2.理解圆周运动的力学原理3.掌握运用公式解决圆周运动问题的方法教学步骤:1.导入(5分钟)通过一段视频或实例引入圆周运动的概念,并让学生展开讨论。

2.概念讲解(15分钟)讲解圆周运动的定义、速度和加速度的计算公式,以及在圆周运动中的力学原理等内容。

3.练习(20分钟)让学生通过一些实例进行练习,巩固所学知识,并引导他们应用公式解决问题。

4.讨论和解答(10分钟)组织学生讨论和分享解题思路,解答他们可能遇到的问题。

5.作业布置(5分钟)布置相关作业,巩固学生对圆周问题的掌握程度。

反思范本:1. 教学目标达成情况:本堂课教学目标较为明确,学生掌握了圆周运动的基本概念和公式,并能够运用所学知识解决圆周运动问题。

但对于一些难题的解决方法还需要加强。

2. 教学方法反思:本堂课采用了讲解和练习相结合的教学方法,但在练习环节的设计上可能不够充分,需要更多的实例让学生练习。

3. 学生表现反思:学生在课上表现出了积极的学习态度,大部分学生能够较快地接受新知识和掌握相关技能。

但在解题过程中有的学生还存在一定困难,需要更多的练习和指导。

4. 教学改进建议:(1)增加练习环节,在课堂上让学生多进行实例练习,巩固所学知识。

(2)拓展应用题的讨论,引导学生思考更复杂的圆周问题,提高他们解决问题的能力。

(3)多与学生沟通交流,及时发现问题并给予指导,帮助学生更好地理解和掌握知识。

通过反思与改进,可以更好地提高教学效果,让学生在学习物理高中圆周问题时更加得心应手。

高中物理易错题专题三物理生活中的圆周运动(含解析)含解析

高中物理易错题专题三物理生活中的圆周运动(含解析)含解析

高中物理易错题专题三物理生活中的圆周运动(含解析)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .2.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅ 解得:123gRv =,253gR v =3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。

高中物理易错题分析集锦3圆周运动讲义

高中物理易错题分析集锦3圆周运动讲义

第三单元:圆周运动[内容和方法]本单元内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。本单元中所涉及到的基本方法与第二单元牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。[例题分析]在本单元知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。例1、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。A球的质量为m1,B球的质量为m2。它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是。【错解分析】错解:依题意可知在A球通过最低点时,圆管给A球向上的弹力N1为向心力,则有B球在最高点时,圆管对它的作用力N2为m2的向心力,方向向下,则有因为m2由最高点到最低点机械能守恒,则有错解形成的主要原因是向心力的分析中缺乏规范的解题过程。没有做受力分析,导致漏掉重力,表面上看分析出了N1=N2,但实际并没有真正明白为什么圆管给m2向下的力。总之从根本上看还是解决力学问题的基本功受力分析不过关。【正确解答】首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。A球在圆管最低点必受向上弹力N1,此时两球对圆管的合力为零,m2必受圆管向下的弹力N2,且N1=N2。据牛顿第二定律A球在圆管的最低点有同理m2在最高点有m2球由最高点到最低点机械能守恒【小结】比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。找出其中的联系就能很好地解决问题。例2、使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?【错解分析】错解:如图4-2所示,根据机械能守恒,小球在圆形轨道最高点A时的势能等于它在圆形轨道最低点B时的动能(以B点作为零势能位置),所以为从而得小球到达最高点A时的速度v A不能为零,否则小球早在到达A点之前就离开了圆形轨道。要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足式中,N A为圆形轨道对小球的弹力。上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。当N A=0时,【正确解答】以小球为研究对象。小球在轨道最高点时,受重力和轨道给的弹力。小球在圆形轨道最高点A时满足方程根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程解(1),(2)方程组得轨道的最高点A。例3、用长L=1.6m的细绳,一端系着质量M=1kg的木块,另一端挂在固定点上。现有一颗质量m =20g的子弹以v1=500m/s的水平速度向木块中心射击,结果子弹穿出木块后以v2=100m/s的速度前进。问木块能运动到多高?(取g =10m/s2,空气阻力不计)【错解分析】错解:在水平方向动量守恒,有mv1=Mv+mv2 (1)式①中v为木块被子弹击中后的速度。木块被子弹击中后便以速度v开始摆动。由于绳子对木块的拉力跟木块的位移垂直,对木块不做功,所以木块的机械能守恒,即h为木块所摆动的高度。解①,②联立方程组得到v = 8(v/s)h = 3.2(m)这个解法是错误的。h = 3.2m,就是木块摆动到了B点。如图4-3所示。则它在B点时的速度v B。应满足方程这时木块的重力提供了木块在B点做圆周运动所需要的向心力。解如果v B<4 m/s,则木块不能升到B点,在到达B点之前的某一位置以某一速度开始做斜向上抛运动。而木块在B点时的速度v B=4m/s,是不符合机械能守恒定律的,木块在B点时的能量为(选A点为零势能点)两者不相等。可见木块升不到B点,一定是h<3.2 m。实际上,在木块向上运动的过程中,速度逐渐减小。当木块运动到某一临界位置C时,如图4-4所示,木块所受的重力在绳子方向的分力恰好等于木块做圆周运动所需要的向心力。此时绳子的拉力为零,绳子便开始松弛了。木块就从这个位置开始,以此刻所具有的速度v c作斜上抛运动。木块所能到达的高度就是C点的高度和从C点开始的斜上抛运动的最大高度之和。【正确解答】如上分析,从式①求得v A= v = 8m/s。木块在临界位置C时的速度为v c,高度为h′=L(1+cosθ)如图4-4所示,根据机械能守恒定律有木块从C点开始以速度v c做斜上抛运动所能达到的最大高度h″为【小结】物体能否做圆运动,不是我们想象它怎样就怎样,这里有一个需要的向心力和提供向心力能否吻合的问题,当需要能从实际提供中找到时,就可以做圆运动。所谓需要就是符合牛顿第二定律F向= ma向的力,而提供则是实际中的力若两者不相等,则物体将做向心运动或者离心运动。例4 假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则[ ] A.根据公式v=ωr,可知卫星运动的线速度增大到原来的2倍。D.根据上述选项B和C给出的公式,可知卫星运动的线速度将减【错解分析】错解:选择A,B,C所以选择A,B,C正确。A,B,C中的三个公式确实是正确的,但使用过程中A,【正确解答】正确选项为C,D。A选项中线速度与半径成正比是在角速度一定的情况下。而r变化时,角速度也变。所以此选项不正确。同理B选项也是如此,F∝1/r2是在v一定时,但此时v变化,故B选项错。而C选项中G,M,m都是恒量,所以F∝【小结】物理公式反映物理规律,不理解死记硬背经常会出错。使用中应理解记忆。知道使用条件,且知道来拢去脉。卫星绕地球运动近似看成圆周运动,万有引力提供向心力,由此将根据以上式子得出例5、从地球上发射的两颗人造地球卫星A和B,绕地球做匀速圆周运动的半径之比为R A∶R B=4∶1,求它们的线速度之比和运动周期之比。设A,B两颗卫星的质量分别为m A,m B。这里错在没有考虑重力加速度与高度有关。根据万有引力定律知道:可见,在“错解”中把A,B两卫星的重力加速度g A,g B当作相同的g来处理是不对的。【正确解答】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有【小结】我们在研究地球上的物体的运动时,地面附近物体的重力加速度近似看做是恒量。但研究天体运动时,应注意不能将其认为是常量,随高度变化,g值是改变的。例11、如图2-30,一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P处于静止。P的质量为12kg,弹簧的劲度系数k=800N/m。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动。已知在前0.2s内F是变化的,在0.2s以后F是恒力,则F的最小值是多少,最大值是多少?【错解分析】错解:F最大值即N = 0时,F = ma+mg=210(N)错解原因是对题所叙述的过程不理解。把平衡时的关系G = F+N,不自觉的贯穿在解题中。【正确解答】解题的关键是要理解0.2s前F是变力,0.2s后F是恒力的隐含条件。即在0.2s 前物体受力和0.2s以后受力有较大的变化。以物体P为研究对象。物体P静止时受重力G、称盘给的支持力N。因为物体静止,∑F=0N = G = 0 ①N = kx0②设物体向上匀加速运动加速度为a。此时物体P受力如图2-31受重力G,拉力F和支持力N′据牛顿第二定律有F+N′-G = ma ③当0.2s后物体所受拉力F为恒力,即为P与盘脱离,即弹簧无形变,由0~0.2s内物体的位移为x0。物体由静止开始运动,则将式①,②中解得的x0= 0.15m代入式③解得a = 7.5m/s2F的最小值由式③可以看出即为N′最大时,即初始时刻N′=N = kx。代入式③得F min= ma + mg-kx0=12×(7.5+10)-800×0.15=90(N)F最大值即N=0时,F = ma+mg = 210(N)【小结】本题若称盘质量不可忽略,在分析中应注意P物体与称盘分离时,弹簧的形变不为0,P物体的位移就不等于x0,而应等于x0-x(其中x即称盘对弹簧的压缩量)。。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三单元:圆周运动
[内容和方法]
本单元内容包括圆周运动的动力学部分和物体做圆周运动的能量问题,其核心内容是牛顿第二定律、机械能守恒定律等知识在圆周运动中的具体应用。

本单元中所涉及到的基本方法与第二单元牛顿定律的方法基本相同,只是在具体应用知识的过程中要注意结合圆周运动的特点:物体所受外力在沿半径指向圆心的合力才是物体做圆周运动的向心力,因此利用矢量合成的方法分析物体的受力情况同样也是本单元的基本方法;只有物体所受的合外力的方向沿半径指向圆心,物体才做匀速圆周运动。

根据牛顿第二定律合外力与加速度的瞬时关系可知,当物体在圆周上运动的某一瞬间的合外力指向圆心,我们仍可以用牛顿第二定律对这一时刻列出相应的牛顿定律的方程,如竖直圆周运动的最高点和最低点的问题。

另外,由于在具体的圆周运动中,物体所受除重力以外的合外力总指向圆心,与物体的运动方向垂直,因此向心力对物体不做功,所以物体的机械能守恒。

[例题分析]
在本单元知识应用的过程中,初学者常犯的错误主要表现在:对物体做圆周运动时的受力情况不能做出正确的分析,特别是物体在水平面内做圆周运动,静摩擦力参与提供向心力的情况;对牛顿运动定律、圆周运动的规律及机械能守恒定律等知识内容不能综合地灵活应用,如对于被绳(或杆、轨道)束缚的物体在竖直面的圆周运动问题,由于涉及到多方面知识的综合,表现出解答问题时顾此失彼。

例1、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A球的质量为m1,B球的质量为m2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v0。

设A球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足关系式是。

【错解分析】错解:依题意可知在A球通过最低点时,圆管给A球向上的弹力N1为向心力,则有
B球在最高点时,圆管对它的作用力N2为m2的向心力,方向向下,则有
因为m2由最高点到最低点机械能守恒,则有
错解形成的主要原因是向心力的分析中缺乏规范的解题过程。

没有做受力分析,导致漏掉重力,表面上看分析出了N1=N2,但实际并没有真正明白为什么圆管给m2向下的力。

总之从根本上看还是解决力学问题的基本功受力分析不过关。

【正确解答】首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。

A球在圆管最低点必受向上弹力N1,此时两球对圆管的合力为零,m2必受圆管向下的弹力N2,且N1=N2。

据牛顿第二定律A球在圆管的最低点有
同理m2在最高点有
m2球由最高点到最低点机械能守恒
【小结】比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。

找出其中的联系就能很好地解决问题。

例2、使一小球沿半径为R的圆形轨道从最低点上升,那么需给它最小速度为多大时,才能使它达到轨道的最高点?
【错解分析】错解:如图4-2所示,根据机械能守恒,小球在圆形轨道最高点A时的势能等于它在圆形轨道最低点B时的动能(以B点作为零势能位置),所以为
从而得
小球到达最高点A时的速度v A不能为零,否则小球早在到达A点之前就离开了圆形轨道。

要使小球到达A点(自然不脱离圆形轨道),则小球在A点的速度必须满足
式中,N A为圆形轨道对小球的弹力。

上式表示小球在A点作圆周运动所需要的向心力由轨道对它的弹力和它本身的重力共同提供。

当N A=0时,
【正确解答】以小球为研究对象。

小球在轨道最高点时,受重力和轨道给的弹力。

小球在圆形轨道最高点A时满足方程
根据机械能守恒,小球在圆形轨道最低点B时的速度满足方程
解(1),(2)方程组得
轨道的最高点A。

例3、用长L=1.6m的细绳,一端系着质量M=1kg的木块,另一端挂在固定点上。

现有一颗质量m =20g的子弹以v1=500m/s的水平速度向木块中心射击,结果子弹穿出木块后以v2=100m/s的速度前进。

问木块能运动到多高?(取g =10m/s2,空气阻力不计)【错解分析】错解:在水平方向动量守恒,有
mv1=Mv+mv2 (1)
式①中v为木块被子弹击中后的速度。

木块被子弹击中后便以速度v开始摆动。

由于绳子对木块的拉力跟木块的位移垂直,对木块不做功,所以木块的机械能守恒,即
h为木块所摆动的高度。

解①,②联立方程组得到
v = 8(v/s)
h = 3.2(m)
这个解法是错误的。

h = 3.2m,就是木块摆动到了B点。

如图4-3所示。

则它在B点时的速度v B。

应满足方程
这时木块的重力提供了木块在B点做圆周运动所需要的向心力。


如果v B<4 m/s,则木块不能升到B点,在到达B点之前的某一位置以某一速度开始做斜向上抛运动。

而木块在B点时的速度v B=4m/s,是不符合机械能守恒定律的,木块在B点时的能量为(选A点为零势能点)
两者不相等。

可见木块升不到B点,一定是h<3.2 m。

实际上,在木块向上运动的过程中,速度逐渐减小。

当木块运动到某一临界位置C时,如图4-4所示,木块所受的重力在绳子方向的分力恰好等于木块做圆周运动所需要的向心力。

此时绳子的拉力为零,绳子便开始松弛了。

木块就从这个位置开始,以此刻所具有的速度v c作斜上抛运动。

木块所能到达的高度就是C点的高度和从C点开始的斜上抛运动的最大高度之和。

【正确解答】如上分析,从式①求得v A= v = 8m/s。

木块在临界位置C时的速度为v c,高度为
h′=L(1+cosθ)
如图4-4所示,根据机械能守恒定律有
木块从C点开始以速度v c做斜上抛运动所能达到的最大高度h″为
【小结】物体能否做圆运动,不是我们想象它怎样就怎样,这里有一个需要的向心力和提供向心力能否吻合的问题,当需要能从实际提供中找到时,就可以做圆运动。

所谓需要就是符合牛顿第二定律F向= ma向的力,而提供则是实际中的力若两者不相等,则物体将做向心运动或者离心运动。

例4 假如一做圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍做圆周运动,则[ ]
A.根据公式v=ωr,可知卫星运动的线速度增大到原来的2倍。

D.根据上述选项B和C给出的公式,可知卫星运动的线速度将减
【错解分析】错解:选择A,B,C
所以选择A,B,C正确。

A,B,C中的三个公式确实是正确的,但使用过程中A,
【正确解答】正确选项为C,D。

A选项中线速度与半径成正比是在角速度一定的情况下。

而r变化时,角速度也变。

所以此选项不正确。

同理B选项也是如此,F∝1/r2是在v一定时,但此时v变化,故B选项错。

而C选项中G,M,m都是恒量,所以F∝
【小结】物理公式反映物理规律,不理解死记硬背经常会出错。

使用中应理解记忆。

知道使用条件,且知道来拢去脉。

卫星绕地球运动近似看成圆周运动,万有引力提供向心力,由此将
根据以上式子得出
例5、从地球上发射的两颗人造地球卫星A和B,绕地球做匀速圆周运动的半径之比为R A∶R B=4∶1,求它们的线速度之比和运动周期之比。

设A,B两颗卫星的质量分别为m A,m B。

这里错在没有考虑重力加速度与高度有关。

根据万有引力定律知道:
可见,在“错解”中把A,B两卫星的重力加速度g A,g B当作相同的g来处理是不对的。

【正确解答】卫星绕地球做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有
【小结】我们在研究地球上的物体的运动时,地面附近物体的重力加速度近似看做是恒量。

但研究天体运动时,应注意不能将其认为是常量,随高度变化,g值是改变的。

相关文档
最新文档