高中数学人教a版必修1学案:2.2对数函数知识导学案及答案
高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。
人教A版高中数学必修1《二章 基本初等函数 2.2 对数函数 互为反函数的两个函数图象之间的关系 》导学案_25

§2.4.1 反函数一、教材分析:反函数是新大纲人教版高一数学上册第二章第4节的内容,第一课时要弄清反函数的概念,以及其定义域、值域与原函数的联系。
会求一些简单的函数的反函数,并掌握求反函数的步骤。
弄清函数y = f (x ), x = f -1(y ) 与 y = f -1(x )间的区别和联系。
培养学习思维的严密性和灵活性,培养学习用辩证的观点观察、分析、解决问题的能力。
二、教学目标(1)知识与技能:了解反函数的概念,弄清函数与反函数的定义域和值域的关系,会求一些简单的函数的反函数。
(2)过程与方法:通过联系实际问题,在尝试,探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤、加深对函数与方程、数形结合以及有特殊到一般等数学思想方法的认识。
(3)情感态度价值观:进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象概括的能力。
三、教学重点:(1)反函数的概念;(2)反函数的求法。
四、教学难点:反函数的概念的理解。
五、教学过程1、课堂导入(1)温故知新师:前几次课我们学习了函数,有哪位同学可以告诉老师函数的概念是什么? 生:有两个非空集合A 、B ,如果确定某个f,任意一个x A ∈,在集合B 中都能找到唯一确定的数y 与它对应,则称f :A →B 的一个函数,记()y f x =,x A ∈。
师:函数的三要素?生:定义域、值域、对应法则。
(2)创设情境师:数学中处处存在着互逆现象,像原命题与逆命题等,那么在函数中有没有这种现象呢?好我们来看下面的一个情景:炎热的夏季正是荔枝销售的旺季,市场荔枝的单价为3.5元,某客人买了x 斤,问他花了多少钱?生A :y=3.5x ,师:有谁可以补充一下?生:[0,),0x y ∈+∞≥。
师:很好。
这是一个y 关于x 的函数,[0,)x ∈+∞是这个函数的定义域,y ≥0是这个函数的值域。
如果我们知道这位客人付了y 元,那么他买了多少斤?设他买了x 斤,那么大家可以列出他们的关系式吗?生: 3.5y x =,定义域为:y ≥0,值域: [0,)x ∈+∞。
高中数学人教新课标A版必修一基本初等函数对数函数及其性质

高中数学人教新课标A版必修1 第二章基本初等函数(I) 2.2.2 对数函数及其性质一、选择题1.已知,则()A. B. C. 3 D.【答案】A2.函数的定义域为()A. (,)B. (,)C. (,)D. [ ,)【答案】C3.设则f[f(2)]的值为()A. 0B.C. 2D.【答案】C4.设则()A. B. C. D.【答案】 D5.已知函数f(x)=,若f(a)=b,则f(−a)等于()A. bB. −bC.D.【答案】B6.已知函数的值域为[−1,1],则函数f(x)的定义域是()A. [ ,]B. [−1,1]C. [ ,2]D. (−∞,]∪[ ,+∞)【答案】A7.若<1,则实数a的取值范围是()A. (0,)B. (,+∞)C. (,1)D. (0,)∪(1,+∞)【答案】 D8.下图是对数函数y=log a x的图象,已知a值取,,,,则图象C1,C2,C3,C4对应的a值依次是()A. ,,,B. ,,,C. ,,,D. ,,,【答案】 D9.下列函数在其定义域内为偶函数的是()A. y=2xB. y=2xC. y=log2xD. y=x2【答案】 D10.函数的定义域是()A. B. C. D.【答案】D11.在同一直角坐标系中,当时,函数与的图象是()A. B.C. D.【答案】C12.已知f(x)=log3x,则的大小是()A. B.C. D.【答案】B13.设a=log3π,b=log2,c=log3,则()A. a>b>cB. a>c>bC. b>a>cD. b>c>a【答案】A14.函数f(x)=log2(3x+3−x)是()A. 奇函数B. 偶函数C. 既是奇函数又是偶函数D. 非奇非偶函数【答案】B15.已知是(−∞,+∞)上的减函数,那么a的取值范围是()A. (0,1)B.C.D.【答案】C16.已知函数f(x)=log a(x2+2x−3),若f(2)>0,则此函数的单调递增区间是()A. (−∞,−3)B. (−∞,−3)∪(1,+∞)C. (−∞,−1)D. (1,+∞)【答案】 D17.已知函数在[−1,+∞)上是减函数,则实数a的取值范围是()A. −8≤a≤−6B. −8<a<−6C. −8<a≤−6D. a≤−6【答案】C18.已知函数是定义在上的偶函数, 且在区间上单调递增. 若实数a满足, 则a的最小值是()A. B. 1 C. D. 2【答案】C19.函数f(x)=a x−2+log a(x−1)+1(a>0,a≠1)的图象必经过定点________.【答案】(2,2)20.函数y=2+log2x(x≥1)的值域为________.【答案】[2,+∞)21.已知函数f(x)满足当x≥4时;当x<4时f(x)=f(x+1),则f(2+log23)=________.【答案】二、填空题22.函数y=log a(x−1)+1(a>0且a≠1)的图象恒过定点________.【答案】(2,1)23.已知,则实数x的取值范围是________.【答案】24.若函数y=f(x)是函数(a>0,且a≠1)的反函数,且f(x)的图象经过点,则a=________. 【答案】三、解答题25.已知log a(2a+1)<log a(3a−1),求实数a的取值范围.【答案】解:当a>1时,原不等式等价于解得a>2.当0<a<1时,原不等式等价于解得<a<1.综上所述,a的取值范围是<a<1或a>2.26.已知f(x)=(a>0,a≠1).(1)求f(x)的定义域;(2)求使f(x)>0成立的x的取值范围.【答案】(1)解:由>0,得−2<x<2,故f(x)的定义域为(−2,2)(2)解:①当a>1时,由>0=log a1得>1,∴0<x<2.②当0<a<1时,由>0=log a1得0< <1,∴−2<x<0.故当a>1时,所求的取值范围为;当0<a<1时,所求的取值范围为27.若不等式2x−log a x<0在x∈上恒成立,求实数a的取值范围.【答案】解:要使不等式2x<log a x在x∈上恒成立,则函数y=log a x的图象在内恒在函数y =2x图象的上方,而y=2x的图象过点.由图可知,,显然这里0<a<1,∴函数y=log a x 递减.又,∴,即,∴所求的实数a的取值范围为.28.已知函数f(x)=x2−x+k,且log2f(a)=2,f(log2a)=k,a>0,且a≠1.(1)求a,k的值;(2)当x为何值时,f(log a x)有最小值?求出该最小值.【答案】(1)解:因为,所以,又a>0,且a≠1,所以(2)解:f(log a x)=f(log2x)=(log2x)2−log2x+2=(log2x− )2+.所以当log2x= ,即时,f(log a x)有最小值29.已知函数y=f(x)的图象与g(x)=log a x(a>0,且a≠1)的图象关于x轴对称,且g(x)的图象过点(9,2).(1)求函数f(x)的解析式;(2)若f(3x−1)>f(−x+5)成立,求x的取值范围.【答案】(1)解:∵log a9=2,解得a=3,∴g(x)=log3x.∵函数y=f(x)的图象与g(x)=log3x的图象关于x轴对称,∴(2)解:∵f(3x−1)>f(−x+5),∴,则,解得,所以x的取值范围为。
人教新课标版数学高一A版必修1素材 习题点拨 2.2对数函数

教材习题点拨教材问题详解 思考在2.1.2的例8中,我们能从关系y =13×1.01x 中,算出任意一个年头x 的人口数.反之,如果问“哪一年的人口数可达到18亿,20亿,30亿,…”,该如何解决?答:此问题实际上就是从1813=1.01x ,2013=1.01x ,3013=1.01x ,…中分别求出x ,即已知底数和幂的值,求指数.这就是本节将要学习的对数问题.问题请你利用对数与指数的关系证明这两个结论. 答:∵a 0=1,∴log a 1=0. ∵a 1=a , ∴log a a =1. 教材习题详解 练习11.解:(1)23=8写成对数式为log 28=3; (2)25=32写成对数式为log 232=5; (3)2-1=12写成对数式为log 212=-1;(4)131273-=写成对数式为log 2713=-13. 2.解:(1)log 39=2写成指数式为32=9; (2)log 5125=3写成指数式为53=125; (3)log 214=-2写成指数式为2-2=14;(4)log 3181=-4写成指数式为3-4=181.点拨:指对数的互换,抓住底数相同,指数式的指数就是对数的值,即y =a x ⇔log a y =x .3.解:(1)log 525=2;(2)log 2116=-4;(3)lg1 000=3;(4)lg0.001=-3.点拨:解此类题目时用好log a a x =x 即可. 4.解:(1)log 1515=1;(2)log 0.41=0; (3)log 981=2;(4)log 2.56.25=2;(5)log 7343=3;(6)log 3243=5. 点拨:底的对数等于1,1的对数等于0. 教材问题详解 探究1从指数与对数的关系以及指数运算性质,你能得出相应的对数运算性质吗? 答:性质(1):设log a M =x ,log a N =y ,根据对数的定义,可得a x =M ,a y =N . 所以MN =a x ·a y =a x +y .所以log a (MN )=log a (a x +y )=x +y =log a M +log a N , 即log a (MN )=log a M +log a N .性质(2):设log a M =x ,log a N =y ,根据对数的定义,可得a x =M ,a y =N . 所以M N =a x ay =a x -y .所以log a M N =log a (a x -y )=x -y =log a M -log a N ,即log a MN=log a M -log a N .性质(3):设log a M =x ,根据对数的定义,可得a x =M . 所以M n =a xn .所以log a M n =xn =n log a M , 即log a M n =n log a M . 探究2你能根据对数的定义推导出下面的换底公式吗? log a b =log c blog c a (a >0且a ≠1,c >0且c ≠1,b >0)答:∵log a ba =b , ∴logc (log a ba)=log c b .∴log a b ·log c a =log c b . ∴log a b =log c b log c a .教材习题详解 练习2(1)lg(xyz )=lg x +lg y +lg z ; (2)lg xy 2z=lg x +2lg y -lg z ;(3)lg xy 3z=lg x +3lg y -12lg z ;(4)lg x y 2z =12lg x -2lg y -lg z .2.解:(1)log 3(27×92)=log 337=7; (2)lg1002=lg104=4; (3)lg0.000 01=lg10-5=-5; (4)ln e =12.3.解:(1)log 26-log 23=log 263=1;(2)lg5+lg2=lg10=1; (3)log 53+log 513=log 51=0;(4)log 35-log 315=log 313=-1.4.解:(1)log a c ·log c a =lg c lg a ·lg alg c =1;(2)log 23·log 34·log 45·log 52 =lg3lg2·lg4lg3·lg5lg4·lg2lg5=1; (3)(log 43+log 83)(log 32+log 92) =⎝⎛⎭⎫lg3lg4+lg3lg8⎝⎛⎭⎫lg2lg3+lg2lg9 =⎝⎛⎭⎫lg32lg2+lg33lg2⎝⎛⎭⎫lg2lg3+lg22lg3 =5lg36lg2·3lg22lg3=54. 点拨:对数的换底公式为log a b =log c blog c a ,其中c 是任意大于0且不等于1的数,它可以根据题意选择,常用的是c =10,即常用对数.教材问题详解 探究1选取底数a (a >0,且a ≠1)的若干个不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些共同特征吗?答:在同一坐标系中分别作出函数y =log 2x ,y =12log x ,y =log 3x ,13log x 的图象,如图所示.可以看出:在第一象限内,底数越小,图象越靠左边,底数越大,图象越靠右边.探究2在指数函数y=2x中,x是自变量,y是因变量.如果把y当成自变量,x当成因变量,那么x是y的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.答:在指数函数y=2x中,x是自变量,y是x的函数(x∈R,y∈R+),而且其在R上是增函数.过y轴正半轴上任意一点作x轴的平行线,与y=2x的图象有且只有一个交点.由指数式与对数式关系y=2x与x=log2y,即对于每一个y,在关系式x=log2y的作用之下,都有唯一的确定的值x和它对应,所以,可以把y作为自变量,x是y的函数,其对应关系是x=log2y.教材习题详解练习1.解:函数图象如图所示.相同点:图象都在y轴右侧,都经过(1,0)点.不同点:y=log3x单调递增,y=13log x单调递减.2.解:(1){x|x<1};(2){x|x>0且x≠1};(3){x|x<13};(4){x|x≥1}.点拨:对数的真数需大于0,分式的分母不等于0,二次根式的被开方数需不小于0.3.解:(1)log 106<log 108; (2)log 0.56<log 0.54; (3)2233log 0.5>log 0.6;(4)log 1.51.6>log 1.51.4. 习题2.2A 组1.解:(1)log 31=x ; (2)log 416=x ;(3)log 42=x ; (4)log 20.5=x ; (5)lg25=x ; (6)log 56=x .2.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =13;(5)10x =0.3;(6)e x =3.3.解:(1)0;(2)2;(3)-2;(4)2; (5)-14;(6)2.点拨:按对数的四则运算法则计算,应当根据式子的特征灵活变形,如(4)2log 510+log 50.25=log 5100+log 50.25=log 525=2.(5)2log 525-3log 264=2log 552-3log 226=2×2-3×6=-14.4.解:(1)lg6=lg2+lg3=a +b ; (2)log 34=lg4lg3=2lg2lg3=2ab;(3)log 212=lg12lg2=lg3+2lg2lg2=b +2aa ;(4)lg 32=lg3-lg2=b -a .点拨:根据已知,将底数不是10的全部换底成为常用对数,并将真数变成2的次幂或3的次幂.5.解:(1)∵lg x =lg a +lg b =lg(ab ), ∴x =ab .(2)∵log a x =log a m -log a n =log a mn ,∴x =m n.(3)∵lg x =3lg n -lg m =lg n 3-lg m =lg n 3m ,∴x =n 3m.(4)∵log a x =12log a b -log a c =log a b -log a c =log a b c ,∴x =bc.点拨:求解对数方程的方法是将所给等式化成两个对数式相等,根据底数相等得真数相等,从而去掉对数符号变为代数方程得解.6.解:设x 年后我国的GDP 在1999年的基础上翻两番,由题意知(1+7.3%)x =4,两边取常用对数,得x lg(1+7.3%)=lg4.故x =lg4lg(1+7.3%)≈20.答:约20年后我国的GDP 将在1999年的基础上翻两番.点拨:由于所列方程为指数型函数,所以通过取对数,将指数用对数表示出来,这也是解决此类问题的通用方法.7.解:(1)要使函数有意义,应有x >0, 故所求函数定义域为(0,+∞).(2)要使函数有意义,应有log 0.5(4x -3)≥0,即0<4x -3≤1, 解得34<x ≤1.故所求函数的定义域为⎝⎛⎦⎤34,1. 点拨:函数的定义域就是使函数有意义的自变量的取值范围,本题中的自变量要满足真数大于0,同时偶次根式的被开方数应当不小于0.8.解:(1)∵log 3m <log 3n 且函数y =log 3x 是单调递增函数, ∴m <n .(2)∵log 0.3m >log 0.3n 且函数y =log 0.3x 是单调递减函数, ∴m <n .(3)∵log a m <log a n (0<a <1)且函数y =log a x 为减函数,∴m >n . (4)∵log a m >log a n (a >1)且函数y =log a x 为增函数,∴m >n .点拨:比较对数值的大小,一般要利用对数函数的单调性,关键是看对数的底数,如果不能确定,则应分类讨论.9.解:由题意,得2 000ln ⎝⎛⎭⎫1+M m =12 000,于是1+M m =e 6.故Mm ≈402.43. 答:当燃料质量是火箭质量的402.43倍时,火箭的最大速度可达12 km/s .10.解:(1)图象①对应y =lg x ,图象②对应y =log 5x ,图象③对应y =log 2x .过y 轴上一点(0,1)作x 轴的平行线,分别交三个图象于点A 、B 、C (自左至右),设A (x 1,1),B (x 2,1),C (x 3,1), 则x 1=2,x 2=5,x 3=10. 据此即得图象与函数的对应关系.(2)函数y =12log x ,y =15log x ,y =110log x 的图象都在y 轴右侧,经过(1,0),并且单调递减.其图象如下图所示.(3)从图中可以发现,y =12log x 与y =log 2x ,y =15log x 与y =log 5x ,y =110log x 与y =lg x 的图象关于x 轴对称.点拨:函数y =log a x 与y =1log ax 的图象关于x 轴对称,对于y =log a x ,当a >1时,a越大,图象在第一象限内越靠近x 轴;当0<a <1时,a 越小,图象在第四象限内越靠近x 轴.11.(1)解:log 225·log 34·log 59=lg25lg2·lg4lg3·lg9lg5=2lg5lg2·2lg2lg3·2lg3lg5=8;(2)证明:log a b ·log b c ·log c a =lg b lg a ·lg c lg b ·lg alg c=1,命题成立 . 点拨:利用换底公式,可以产生能够约分的式子,达到化简的目的,通常将底数化为10,使用常用对数.12.解:(1)由题意得,v =12log 32 700100=12log 327=12log 333=32; (2)鱼静止时的速度为0,于是有12log 3O100=0,即O100=1.故O =100. 答:耗氧量是2 700个单位时,游速是32m/s ;当鱼静止时,耗氧量为100个单位.B 组1.解:∵x log 34=1,∴x =1log 34=log 43. ∴4x +4-x =44log 3log 344-+=3+13=103.点拨:本题中使用了对数恒等式,即log a xa x =,运用这一等式,可以将复杂的指数式变得简单.2.解:∵当0<a <1时,由log a 34<1可得log a 34<log a a ,∴a <34.∴a 的取值范围是0<a <34;∵当a >1时,由log a 34<1可得log a 34<log a a ∴a >34.∴a 的取值范围是a >1. 综上,a 的取值范围是⎝⎛⎭⎫0,34(1,+∞).点拨:由于对数不等式中的底数为字母,所以必须进行分类讨论. 3.解:(1)当声强为10-12W/m 2时,声强级L I =10lg ⎝ ⎛⎭⎪⎫10-1210-12=0(dB);当声强为1 W/m 2时,声强级L I =10lg ⎝⎛⎭⎫110-12=120(dB).所以一般正常人听觉的声强范围是0(dB)≤L I ≤120(dB).(2)当声强为10-6W/m 2时,声强级L I =10lg ⎝ ⎛⎭⎪⎫10-610-12=60(dB). 4.解:(1)要使f (x )+g (x )有意义,则有⎩⎪⎨⎪⎧x +1>0,1-x >0,即-1<x <1.故函数f (x )+g (x )的定义域为(-1,1).(2)由(1)知函数的定义域为(-1,1),关于原点对称,f (-x )+g (-x )=log a (1-x )+log a (x +1)=f (x )+g (x ),故函数f (x )+g (x )是偶函数.点拨:f (x )+g (x )的定义域应为f (x )与g (x )的定义域的交集,判断奇偶性的首要条件是定义域关于原点对称.5.解:(1)符合f (a ·b )=f (a )+f (b )的函数有f (x )=log 2x ,g (x )=log 3x ,h (x )=15log x 等.这些函数都是对数函数.(2)符合f (a +b )=f (a )·f (b )的函数有f (x )=2x ,g (x )=3x ,h (x )=⎝⎛⎭⎫15x等,这些函数都是指数函数.点拨:题目给出的两条性质分别是对数式和指数式的性质,所以举例应分别是对数函数和指数函数.。
2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。
高中数学人教A版必修1课件:2、2、2对数函数及其性质

个元素和它对应,那么这样的对应(包括集合A,B以及A到B
的对应法则f)叫做集合A到集合B的映射,记作: f : A B
其中,如果 a A,b B ,且元素a和元素b对应,那么我们
把元素b叫做元素a的象,元素a叫做元素b的原象
说明:1 映射 f : A B有方向性,即它只表示从集合A
a 1
0 a 1
y
y
图
y loga x
(1,0)
像
o (1,0)
xo
x
y loga x
定义域 性值 域 质 单调性
奇偶性 过定点
(0,)
(0,)
R 在(0,)上递增
R 在(0,)上递减
非奇非偶
非奇非偶
(1,0), 即x=1时,y=0
单调性的应用
例 比较对数值大小
1. 同底的两个对数比较
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 ) 解:(3)当a>1时,函数y=log ax在(0,+∞)上是增函数, log a5.1<log a5.9 当0<a<1时,函数y=log ax在(0,+∞)上是减函数, log a5.1>log a5.9
⑧ y log 1 x
概念辨析
例2 下列函数是对数函数的是(D) A. y=log2(3x-2) B. y=log(x-1)x C. y=log0.3x2 D. y=lnx
2.对数函数的图像和性质
用描点法作y=log2x与y=log0.5x的图象.
x
1 4
2017-2018学年高中数学人教A版必修1学案:2.2对数函数知识导学案

2.2 对数函数知识导学一般地,对于一个数a(a>0且a ≠1),如果a 的b 次幂等于N,即a b =N,那么就称b 是以a为底的N 的对数,记作log a N=b,其中,a 叫做对数的底数,N 叫做真数.在实际应用中,一定要注意指数式与对数式的等价性,即log a N=b ⇔a b =N.对数的运算性质就是把真数的乘、除、乘方降级为对数的加、减、乘运算.一般地,我们称log a N=aN b b log log 为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程.有了对数的概念后,要求log 0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数.有了常用对数和自然对数,再利用对数的运算性质,我们就可以求log 0.840.5的值了. 对数恒等式:N a alog =N 的证明也很简单,只要紧扣对数式的定义即可证明. ∵a b =N,∴b=log a N.∴a b =N a a log =N,即N a alog =N. 如5log 33=5, 6log 44=6等.要熟记对数恒等式的形式,会使用这一公式化简对数式.作对数函数的图象一般有两种方法:一是描点法,即通过列表、描点、连线的方法作出对数函数的图象;二是通过观察它和指数函数图象之间的关系,并利用它们之间的关系作图. 比较大小是对数函数性质应用的常见题型.当底数相同时,可利用对数函数的性质比较;当底数和指数不同时,要借助于中间量进行比较.比较两个对数式的大小,底相同时,可利用对数性质进行比较.不同类的函数值的大小常借助中间量0、1等进行比较.对数函数y=log a x(a>0且a ≠1)与指数函数y=a x (a>0且a ≠1)互为反函数,这两个函数的图象关于直线y=x 对称.因此,我们只要画出和y=a x 的图象关于直线y=x 对称的曲线,就可以得到y=log a x 的图象,然后根据图象特征得出对数函数的性质.疑难导析通过将对数函数与指数函数的图象进行对比,可以发现:当a>1或0<a<1时,对数函数与指数函数的单调性是一致的〔即在区间(0,+∞)上同时为增函数,或者同时为减函数〕.对数函数的图象都经过点(1,0),这与性质log a 1=0⇔a 0=1是分不开的.对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a>0,且a ≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y 轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域.性质靠图象体现,图象靠性质总结.数形结合不仅是我们研究函数的一个重要工具,同时也是我们在解题时的常用方法.借助图形的形象直观,可以迅速准确地得到相关问题的答案,尤其是选择题,能结合图象来思考,会事半功倍.问题导思对数换底公式口诀:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.对数函数的运算性质的助记口诀:积的对数变加法,商的对数变为减,幂的乘方取对数,要把指数提到前.对数函数y=log a x(a>0且a≠1)的性质的助记口诀:对数增减有思路,函数图象看底数,底数只能大于0,等于1来也不行,底数若是大于1,图象从下往上增;底数0到1之间,图象从上往下减.无论函数增和减,图象都过(1,0)点.比较两个对数型的数的大小是一种常见的题型,好好把握.两个同底数的对数比较大小的一般步骤:①确定所要考查的对数函数;②根据对数底数判断对数函数增减性;③比较真数大小,然后利用对数函数的增减性判断两对数值的大小.对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.典题导考绿色通道利用数形结合的方法可以快速地比较两个对数的大小,有时也可以画出函数的略图.由此可见,学会一种思考方法比解决一道题目更重要.典题变式比较下列各组数中两个值的大小:(1)log23.4,log28.5;(2)log0.31.8,log0.32.7;(3)log a5.1,log a5.9(a>0,a≠1).答案:(1)log23.4<log28.5;(2)log0.31.8>log0.32.7;(3)当a>1时,log a5.1<log a5.9;当0<a<1时,log a5.1>log a5.9.绿色通道本题的求解中,分解化简和方程思想的运用在处理很多问题中具有一般性.典题变式1.已知3a=2,用a表示log34-log36.答案:a-1.2.已知log32=a,3b=5,用a、b表示log330.答案: 21 (a+b+1). 绿色通道研究函数的性质一定得先考虑定义域,在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性;奇函数在关于原点对称的区间上具有相同的单调性.典题变式1.已知函数f(x)=lg(x 2-3x+2)的定义域为F,函数g(x)=lg(x-1)+lg(x-2)的定义域为G,那么( ) A.G F B.G=F C.F ⊆G D.F ∩G=∅答案:A2.求函数y=31log (-x 2+4x+5)的定义域和值域.答案:函数的定义域为{x|-1<x<5};值域为{y|y ≥-2}.3.已知f(x)=log a xx -+11 (a>0且a ≠1). (1)求函数的定义域;(2)讨论函数的单调性;(3)求使f(x)>0的x 的取值范围.解答:(1)定义域为(-1,1).(2)当a>1时,f(x)为(-1,1)上的增函数;当0<a<1时,f(x)为(-1,1)上的减函数.(3)当a>1时,f(x)>0的解为(0,1);当0<a<1时,f(x)>0的解为(-1,0).绿色通道画函数图象是研究函数变化规律的重要手段,画函数图象通常有两种方法:列表法和变换法.变换法有如下几种:平移变换:y=f(x+a),将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位而得到;y=f(x)+a,将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位而得到.翻折变换:y=|f(x)|,将y=f(x)的图象在x 轴下方部分沿x 轴翻折到x 轴的上方,其他部分不变;y=f(|x|),它是一个偶函数,x ≥0时,图象与y=f(x)的图象完全一样,当x ≤0时,其图象与x ≥0时的图象关于y 轴对称.对称变换:y=-f(x),它的图象与函数y=f(x)的图象关于x 轴对称;y=f(-x),它的图象与y=f(x)的图象关于y 轴对称;y=-f(-x),它的图象与y=f(x)的图象关于原点成中心对称. 伸缩变换:y=f(ax)(a>0),将y=f(x)图象上各点的横坐标压缩(a>1)或伸长(0<a<1)到原来的a 倍,纵坐标不变;y=af(x)(a>0),将y=f(x)图象上各点的横坐标不变,纵坐标压缩(0<a<1)或伸长(a>1)到原来的a 倍.典题变式若log a 2<log b 2<0,则a 、b 满足的关系是( )A.1<a<bB.1<b<aC.0<a<b<1D.0<b<a<1答案:D绿色通道本题两小题的函数的定义域与值域正好错位.(1)中函数的定义域为R,由判别式小于零确保;(2)中函数的值域为R,由判别式不小于零确定.典题变式设a ≠0,对于函数f(x)=log 3(ax 2-x+a),(1)若x ∈R ,求实数a 的取值范围;(2)若f(x) ∈R ,求实数a 的取值范围. 答案:(1)a>21; (2)0<a ≤21.。
人教A版必修1第二章2.2.2对数函数及其性质重难点题型(举一反三)(含解析版)

2.2.2对数函数及其性质重难点题型【举一反三系列】【知识点1 对数函数的定义】1.对数函数的概念一般地,把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =. 【知识点2 对数函数的图象与性质】 对数函数的图象与性质列表如下:温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质. 【知识点3 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞);在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.【考点1 对数函数的概念】【例1】(2019秋•林芝县校级月考)下列函数是对数函数的是()A.y=log3(x+1)B.y=log a(2x)(a>0,且a≠1)C.y=lnxD.【变式1-1】给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【变式1-2】下列函数表达式中,是对数函数的有()①y=log x2;②y=log a x(a∈R)③y=log8x;④y=lnx⑤y=log x(x+2);⑥y=2log4x⑦y=log2(x+1)A.1个B.2个C.3个D.4个【变式1-3】下列函数中,是对数函数的个数为()①y=log a x2(a>0,且a≠1);②y=log2x﹣1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x;⑥y=log a x(a>0,a≠1)A.1B.2C.3D.4【考点2 利用对数函数的性质比较大小】【例2】(2019秋•福田区校级月考)设,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<b<a【变式2-1】(2019秋•天山区校级月考)已知正实数a,b,c满足log a2=2,log3b=,c6=7,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【变式2-2】(2019秋•沙坪坝区校级月考)已知a=log30.3,b=30.3,c=0.30.2,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【变式2-3】(2019•西湖区校级模拟)下列关系式中,成立的是()A.B.C.D.【考点3 与对数函数有关的函数图象识别】【例3】(2018秋•合阳县期末)已知a>0,b>0,且ab=1,a≠1,则函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是()A.B.C.D.【变式3-1】(2019•西湖区校级模拟)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.【变式3-2】(2018秋•船营区校级月考)函数f(x)=的图象可能是()A.B.C.D.【变式3-3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【考点4 对数函数图象过定点问题】【例4】(2018秋•赣州期中)函数y=log a(x﹣1)+log a(x+1)(a>0且a≠1)的图象必过定点()A.()B.(0,﹣)C.()D.()【变式4-1】(2019秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点P,则P点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【变式4-2】(2018秋•烟台期中)函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)【变式4-3】(2019秋•赣州期末)已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【考点5 有关对数函数奇偶性问题】【例5】(2018•肇庆二模)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【变式5-1】(2019秋•南充期末)已知函数f(x)=log a(x﹣m)的图象过点(4,0)和(7,1),则f (x)在定义域上是()A.增函数B.减函数C.奇函数D.偶函数【变式5-2】(2019秋•新宁县校级期中)对于函数,下列说法正确的是()A.f(x)是奇函数B.f(x)是偶函数C.f(x)是非奇非偶函数D.f(x)既是奇函数又是偶函数【变式5-3】(2016春•石家庄校级月考)函数f(x)=ln(1+2x),g(x)=ln(1﹣2x),则f(x)+g(x)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数【考点6 与对数函数有关的定义域问题】【例6】(2018秋•肇庆期末)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【变式6-1】(2019•西湖区校级模拟)函数的定义域是()A.B.C.D.【变式6-2】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1]C.(﹣∞,1]D.[1,+∞)【变式6-3】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【考点7 与对数函数有关的值域问题】【例7】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【变式7-1】(2019春•赣榆区校级月考)函数的值域为.【变式7-2】(2019秋•九原区校级期末)函数y=(x)2﹣x2+5 在2≤x≤4时的值域为.【变式7-3】(2019秋•松江区期末)函数的值域为.【考点8 与对数函数有关的最值问题】【例8】(2019秋•离石区校级月考)设x≥0,y≥0且x+2y=,则函数u=log0.5(8xy+4y2+1)的最大值为.【变式8-1】(2019秋•田阳县校级月考)函数f(x)=log a(x+1)在[0,3]上的最大值与最小值的差为2,则a的值为.【变式8-2】(2019春•天津期末)若函数y=log a(x2﹣ax+1)有最小值,则a的取值范围是.【变式8-3】(2019秋•会宁县校级期中)已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.【考点9 与对数函数的单调性有关的问题】【例9】(2019春•吉林期末)已知函数f(x)=log a(x+3)﹣log a(3﹣x),a>0且a≠1.(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【变式9-1】(2018秋•南岗区校级期中)已知f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,(1)求f(0)的值和实数m的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并说明理由;(3)若f()>0且f(b﹣2)+f(2b﹣2)>0成立,求实数b的取值范围.【变式9-2】(2019秋•番禺区校级期中)已知函数.(1)求函数的定义域.(2)讨论函数f(x)的奇偶性.(3)判断函数f(x)的单调性,并用定义证明.【变式9-3】(2019秋•荔湾区校级期末)已知函数f(x)=log3(1+x)﹣log3(1﹣x).(1)求函数f(x)定义域,并判断f(x)的奇偶性.(2)判断函数f(x)在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x的不等式f(1﹣x)+f(1﹣x2)>0.2.2.2对数函数及其性质重难点题型【举一反三系列】【知识点1 对数函数的定义】 1.对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 2.两种特殊的对数函数(1)常用对数函数:以10为底的对数函数x y lg =. (2)自然对数函数:以无理数e 为底的对数函数x y ln =. 【知识点2 对数函数的图象与性质】对数函数的图象与性质列表如下:温馨提示:掌握对数函数的图象和性质,其关键是理解图象的特征,利用几何直观掌握函数的性质. 【知识点3 反函数】在指数函数)10(≠>=a a a y x ,中,x 是自变量,y 是x 的函数,其定义域是R ,值域是(0,+∞);在对数函数)1,0(log ≠>=a a y x a 中,y 是自变量,x 是y 的函数,其定义域是R ,值域是(0,+∞), 像这样的两个函数叫作互为反函数.【考点1 对数函数的概念】【例1】(2019秋•林芝县校级月考)下列函数是对数函数的是( ) A .y =log 3(x +1)B.y=log a(2x)(a>0,且a≠1)C.y=lnxD.【分析】根据对数函数的定义即可得出.【答案】解:根据对数函数的定义可得:只有y=lnx为对数函数.故选:C.【点睛】本题考查了对数函数的定义,考查了推理能力与计算能力,属于基础题.【变式1-1】给出下列函数:①y=x2;②y=log3(x﹣1);③y=log x+1x;④y=logπx.其中是对数函数的有()A.1个B.2个C.3个D.4个【分析】由对数函数的定义依次判断即可.【答案】解:①y=x2的真数为x2,故不是对数函数;②y=log3(x﹣1)的真数为x﹣1,故不是对数函数;③y=log x+1x的底数为x+1,故不是对数函数;④y=logπx是对数函数;故选:A.【点睛】本题考查了对数函数的定义的应用.【变式1-2】下列函数表达式中,是对数函数的有()①y=log x2;②y=log a x(a∈R)③y=log8x;④y=lnx⑤y=log x(x+2);⑥y=2log4x⑦y=log2(x+1)A.1个B.2个C.3个D.4个【分析】根据对数函数的定义,y=log a x(a>0,且a≠1),逐一分析给定函数是否为指数函数,可得结论.【答案】解:①y=log x2不是对数函数;②y=log a x(a∈R)不是对数函数;③y=log8x是对数函数;④y=lnx是对数函数;⑤y=log x(x+2)不是对数函数;⑥y=2log4x不是对数函数;⑦y=log2(x+1)不是对数函数;综上所述,对数函数有2个,故选:B.【点睛】本题考查的知识点是对数函数的定义,熟练掌握对数函数的定义,是解答的关键.【变式1-3】下列函数中,是对数函数的个数为()①y=log a x2(a>0,且a≠1);②y=log2x﹣1;③y=2log8x;④y=log x a(x>0,且x≠1);⑤y=log5x;⑥y=log a x(a>0,a≠1)A.1B.2C.3D.4【分析】根据对数函数的定义进行判断即可.【答案】解:①y=log a x2(a>0,且a≠1),真数不是变量x,不是对数函数;②y=log2x﹣1,不是对数函数;③y=2log8x;系数不是1,不是对数函数④y=log x a(x>0,且x≠1),底数不是常数,不是对数函数;⑤y=log5x,满足对数函数的定义,是对数函数;⑥y=log a x(a>0,a≠1)满足对数函数的定义,是对数函数,故是对数函数的有⑤⑥,共有2个,故选:B.【点睛】本题主要考查函数概念的判断,根据对数函数的定义是解决本题的关键.【考点2 利用对数函数的性质比较大小】【例2】(2019秋•福田区校级月考)设,则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.c<b<a【分析】根据对数的换底公式可得出,从而可得出2<log420<log315,且可得出,这样即可得出a,b,c的大小关系.【答案】解:,,,且log54>log53>0,∴,∴2=log416<log420<log315,∴a<c<b.故选:C.【点睛】考查对数的换底公式,以及指数函数和对数函数的单调性,增函数的定义,不等式的性质.【变式2-1】(2019秋•天山区校级月考)已知正实数a,b,c满足log a2=2,log3b=,c6=7,则a,b,c的大小关系是()A.a<b<c B.a<c<b C.c<b<a D.c<a<b【分析】根据条件可得出,从而得出a6=8,b6=9且c6=7,a,b,c都是正数,这样即可得出a,b,c的大小关系.【答案】解:∵log a2=2,log3b=,c6=7,∴∴a6=8,b6=9,c6=7,且a,b,c都是正数,∴c<a<b故选:C.【点睛】考查对数的定义,对数与指数的互化,以及指数的运算,幂函数的单调性.【变式2-2】(2019秋•沙坪坝区校级月考)已知a=log30.3,b=30.3,c=0.30.2,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【分析】容易得出,从而可得出a,b,c的大小关系.【答案】解:∵log30.3<log31=0,30.3>30=1,0<0.30.2<0.30=1∴a<c<b.故选:B.【点睛】考查对数函数、指数函数的单调性,以及增函数、减函数的定义.【变式2-3】(2019•西湖区校级模拟)下列关系式中,成立的是()A.B.C.D.【分析】容易得出,从而可得出正确的选项.【答案】解:∵log34>log33=1,0<0.31.7<0.30=1,log0.310<log0.31=0,∴.故选:A.【点睛】考查对数函数和指数函数的单调性,增函数和减函数的定义.【考点3 与对数函数有关的函数图象识别】【例3】(2018秋•合阳县期末)已知a>0,b>0,且ab=1,a≠1,则函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是()A.B.C.D.【分析】根据a与b的正负,利用指数函数与对数函数的性质判断即可确定出其图象.【答案】解:∵a>0,b>0,且ab=1,a≠1,∴函数f(x)=a x与函数g(x)=﹣log b x在同一坐标系中的图象可能是,故选:B.【点睛】此题考查了指数函数与对数函数的图象,熟练掌握指数、对数函数的图象与性质是解本题的关键.【变式3-1】(2019•西湖区校级模拟)若当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,则函数y=log a||的图象大致为()A.B.C.D.【分析】由于当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1,利用指数函数的图象和性质可得0<a<1.先画出函数y=log a|x|的图象,此函数是偶函数,当x>0时,即为y=log a x,而函数y=log a||=﹣log a|x|,即可得出图象.【答案】解:∵当x∈R时,函数f(x)=a|x|始终满足0<|f(x)|≤1.因此,必有0<a<1.先画出函数y=log a|x|的图象:红颜色的图象.而函数y=log a||=﹣log a|x|,其图象如黑颜色的图象.故选:B.【变式3-2】(2018秋•船营区校级月考)函数f(x)=的图象可能是()A.B.C.D.【分析】先求出函数的定义域,再判断函数为奇函数,即图象关于原点对称,故可以排除BC,再根据函数值域,可排除D.【答案】解:∵f(x)=,∴函数定义域为(﹣∞,0)∪(0,+∞),∵,∴函数f(x)为奇函数,图象关于原点对称,故排除B、C,∵当0<x<1时,lnx<0,∴f(x)=<0,x∈(0,1)故排除D.故选:A.【点睛】本题主要考查了绝对值函数以及函数的值域、奇偶性和单调性,属于基础题.【变式3-3】(2019秋•洛南县期末)函数y=|lg(x+1)|的图象是()A.B.C.D.【分析】本题研究一个对数型函数的图象特征,函数y=|lg(x+1)|的图象可由函数y=lg(x+1)的图象将X轴下方的部分翻折到X轴上部而得到,故首先要研究清楚函数y=lg(x+1)的图象,由图象特征选出正确选项【答案】解:由于函数y=lg(x+1)的图象可由函数y=lgx的图象左移一个单位而得到,函数y=lgx的图象与X轴的交点是(1,0),故函数y=lg(x+1)的图象与X轴的交点是(0,0),即函数y=|lg(x+1)|的图象与X轴的公共点是(0,0),考察四个选项中的图象只有A选项符合题意故选:A.【点睛】本题考查对数函数的图象与性质,解答本题关键是掌握住对数型函数的图象图象的变化规律,由这些规律得出函数y=|lg(x+1)|的图象的特征,再由这些特征判断出函数图象应该是四个选项中的那一个【考点4 对数函数图象过定点问题】【例4】(2018秋•赣州期中)函数y=log a(x﹣1)+log a(x+1)(a>0且a≠1)的图象必过定点()A.()B.(0,﹣)C.()D.()【分析】根据对数函数的性质求出定点的坐标即可.【答案】解:y=log a(x﹣1)+log a(x+1)=log a(x2﹣1),令x2﹣1=1,解得:x=±,而x﹣1>0,解得:x>1,故x=,故函数的图象过(,0),故选:C.【点睛】本题考查了对数函数的性质,考查特殊值问题,是一道基础题.【变式4-1】(2019秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点P,则P点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【分析】令2x+3=1,求得x的值,从而求得P点的坐标.【答案】解:令2x+3=1,可得x=﹣1,此时y=3.即函数y=3+log a(2x+3)(a>0,a≠1))的图象必经过定点P的坐标为(﹣1,3).故选:C.【点睛】本题主要考查对数函数的单调性和特殊点,属于基础题.【变式4-2】(2018秋•烟台期中)函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2)B.(2,2)C.(﹣1,2)D.(﹣1,3)【分析】根据log a1=0,a0=1,求出定点的坐标即可.【答案】解:令x+2=1,解得:x=﹣1,故y=0+1+2=3,故图象过(﹣1,3),故选:D.【点睛】本题考查了对数函数,指数函数的性质,根据log a1=0,a0=1是解题的关键.【变式4-3】(2019秋•赣州期末)已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【分析】令=1,解得x=﹣2,y=0,进而得到f(x)=log a的图象恒过点的坐标.【答案】解:令=1,解得:x=﹣2,故f(﹣2)=log a1=0恒成立,即f(x)=log a的图象恒过点(﹣2,0),故选:B.【点睛】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.【考点5 有关对数函数奇偶性问题】【例5】(2018•肇庆二模)已知f(x)=lg(10+x)+lg(10﹣x),则f(x)是()A.f(x)是奇函数,且在(0,10)是增函数B.f(x)是偶函数,且在(0,10)是增函数C.f(x)是奇函数,且在(0,10)是减函数D.f(x)是偶函数,且在(0,10)是减函数【分析】求出函数的定义域,根据函数奇偶性的定义以及复合函数的单调性判断即可.【答案】解:由得:x∈(﹣10,10),故函数f(x)的定义域为(﹣10,10),关于原点对称,又由f(﹣x)=lg(10﹣x)+lg(10+x)=f(x),故函数f(x)为偶函数,而f(x)=lg(10+x)+lg(10﹣x)=lg(100﹣x2),y=100﹣x2在(0,10)递减,y=lgx在(0,10)递增,故函数f(x)在(0,10)递减,故选:D.【点睛】本题考查了函数的单调性和函数的奇偶性问题,考查转化思想,是一道基础题.【变式5-1】(2019秋•南充期末)已知函数f(x)=log a(x﹣m)的图象过点(4,0)和(7,1),则f (x)在定义域上是()A.增函数B.减函数C.奇函数D.偶函数【分析】把(4,0)和(7,1)代入f(x)列出方程组解出a,m,根据对数函数的性质判断.【答案】解:∵f(x)的图象过点(4,0)和(7,1),∴,解得.∴f(x)=log4(x﹣3).∴f(x)是增函数.∵f(x)的定义域是(3,+∞),不关于原点对称.∴f(x)为非奇非偶函数.故选:A.【点睛】本题考查了对数函数的性质,属于基础题.【变式5-2】(2019秋•新宁县校级期中)对于函数,下列说法正确的是()A.f(x)是奇函数B.f(x)是偶函数C.f(x)是非奇非偶函数D.f(x)既是奇函数又是偶函数【分析】根据函数奇偶性的定义判断函数的奇偶性即可.【答案】解:由>0,解得:﹣1<x<1,故函数f(x)的定义域是(﹣1,1),关于原点对称,而f(﹣x)=log2=﹣log2=﹣f(x),故f(x)是奇函数,故选:A.【点睛】本题考查了函数的奇偶性问题,是一道基础题.【变式5-3】(2016春•石家庄校级月考)函数f(x)=ln(1+2x),g(x)=ln(1﹣2x),则f(x)+g(x)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数【分析】首先令h(x)=f(x)+g(x),求出h(x)的定义域,而后用函数奇偶性定义求证.【答案】解:令h(x)=f(x)+g(x)=ln(2x+1)+ln(1﹣2x)由得:﹣<x<,h(x)定义域为(﹣,),∴h(﹣x)=ln(1﹣2x)+ln(1+2x)=h(x),所以,h(x)为偶函数.故选:B.【点睛】本题主要考查了奇偶函数的定义域要求,以及函数奇偶性定义,属基础题.【考点6 与对数函数有关的定义域问题】【例6】(2018秋•肇庆期末)函数y=的定义域为()A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【分析】根据分式的分母不为0,对数的真数大于0,建立关系式,解之即可.【答案】解:要使函数有意义则解得x>1且x≠2∴函数的定义域为(1,2)∪(2,+∞)故选:C.【点睛】本题考查函数定义域的求解,属基础题,做这类题目的关键是找对自变量的限制条件.【变式6-1】(2019•西湖区校级模拟)函数的定义域是()A.B.C.D.【分析】由函数的解析式列出不等式进行求解即可.【答案】解:由题意得,,解得x>,则函数的定义域是,故选:C.【点睛】本题考查了函数的定义域的求法,属于基础题.【变式6-2】(2018秋•宜宾期末)函数y=的定义域是()A.(,+∞)B.(,1]C.(﹣∞,1]D.[1,+∞)【分析】首先由根式有意义得到log0.5(4x﹣3)≥0,然后求解对数不等式得到原函数的定义域.【答案】解:要使原函数有意义,则log0.5(4x﹣3)≥0,即0<4x﹣3≤1,解得.所以原函数的定义域为(].故选:B.【点睛】本题考查了对数函数定义域,训练了对数不等式的解法,是基础的计算题.【变式6-3】(2018春•连城县校级月考)函数y=的定义域是()A.[1,+∞)B.(,+∞)C.(1,+∞)D.(,1]【分析】利用对数的性质求解.【答案】解:函数y=的定义域满足:,解得.故选:D.【点睛】本题考查对数函数的定义域的求法,解题时要注意对数性质的灵活运用,是基础题.【考点7 与对数函数有关的值域问题】【例7】(2019秋•南昌校级期中)函数y=log4(2x+3﹣x2)值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域.【答案】解:设u(x)=2x+3﹣x2=﹣(x﹣1)2+4,当x=1时,u(x)取得最大值4,∵函数y=log4x为(0,+∞)上的增函数,∴当u(x)取得最大值时,原函数取得最大值,即y max=log4u(x)max=log44=1,因此,函数y=log4(2x+3﹣x2)的值域为(﹣∞,1],故填:(﹣∞,1].【点睛】本题主要考查了函数值域的求法,涉及对数函数的单调性,用到配方法和二次函数的性质,属于基础题.【变式7-1】(2019春•赣榆区校级月考)函数的值域为.【分析】先将原函数y=log0.5(x2+x+)转化为两个基本函数令t=x2+x+=(x+)2+,y=log0.5t 的,再用复合函数的单调性求解.【答案】解:令t=x2+x+=(x+)2+∈[,+∞],∵函数y=log0.5t的在定义域上是减函数,∴y∈(﹣∞,2];故答案为(﹣∞,2].【点睛】本题主要考查用复合函数的单调性来求函数的值域,本题关键是求出二次函数的值域,属于基础题.【变式7-2】(2019秋•九原区校级期末)函数y=(x)2﹣x2+5 在2≤x≤4时的值域为.【分析】利用换元法,令t=由2≤x≤4 可得﹣1≤t≤﹣,由题意可得y==(t﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,从而可求函数的值域.【答案】解:令t=,因为2≤x≤4,所以﹣1≤t≤﹣,则y==(t﹣1)2+4,又因为函数在[﹣1,﹣]单调递减,当t=﹣是函数有最小值,当t=﹣1时函数有最大值8;故答案为:{y|}【点睛】本题主要考查了对数的运算性质,换元法的应用,二次函数性质的应用及函数的单调性的应用,属于基础知识的简单综合试题.【变式7-3】(2019秋•松江区期末)函数的值域为.【分析】由函数的解析式可得,当x<1时,f(x)>;当x≥1时,f(x)≥0,综上可得f(x)的值域.【答案】解:由于函数,故当x<1时,f(x)=>.当x≥1时,f(x)=log2x≥log21=0.综上可得,f(x)≥0,故函数的值域为[0,+∞),故答案为[0,+∞).【点睛】本题主要考查求函数的值域,指数函数、对数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.【考点8 与对数函数有关的最值问题】【例8】(2019秋•离石区校级月考)设x≥0,y≥0且x+2y=,则函数u=log0.5(8xy+4y2+1)的最大值为.【分析】由已知中x≥0,y≥0且x+2y=,可得y∈[0,],8xy+4y2+1=﹣12y2+8y+1,结合二次函数的图象和性质及对数函数的图象和性质,可得答案.【答案】解:∵x+2y=,∴x=﹣2y,由x≥0,y≥0,可得y∈[0,],则8xy+4y2+1=﹣12y2+8y+1,令t=﹣12y2+8y+1,当y∈[0,]时,t∈[1,],又由u=log0.5t为减函数,故当t=1时函数u=log0.5(8xy+4y2+1)的最大值为0,故答案为:0.【点睛】本题考查的知识点是对数函数的值域和最值,其中熟练掌握对数函数的图象和性质是解答的关键.【变式8-1】(2019秋•田阳县校级月考)函数f(x)=log a(x+1)在[0,3]上的最大值与最小值的差为2,则a的值为.【分析】对a分a>1与0<a<1两类讨论,利用函数的单调性即可.【答案】解:若a>1,f(x)=log a(x+1)在[0,3]上单调递增,∴f(x)max=log a4=2log a2,f(x)min=log a1=0,∵f(x)max﹣f(x)min=2,∴2log a2﹣0=2,∴log a2=1,故a=2;若0<a<1,f(x)=log a(x+1)在[0,3]上单调递减,同理可得a=.故答案为:2或.【点睛】本题考查对数函数的单调性与最值,考查分类讨论思想,属于中档题.【变式8-2】(2019春•天津期末)若函数y=log a(x2﹣ax+1)有最小值,则a的取值范围是.【分析】先根据复合函数的单调性确定函数g(x)=x2﹣ax+1的单调性,进而分a>1和0<a<1两种情况讨论:①当a>1时,考虑对数函数的图象与性质得到x2﹣ax+1的函数值恒为正;②当0<a<1时,△=a2﹣4<0恒成立,x2﹣ax+1没有最大值,从而不能使得函数y=log a(x2﹣ax+1)有最小值.最后取这两种情形的并集即可.【答案】解:令g(x)=x2﹣ax+1(a>0,且a≠1),①当a>1时,y=log a x在R+上单调递增,∴要使y=log a(x2﹣ax+1)有最小值,必须g(x)min>0,∴△<0,解得﹣2<a<2∴1<a<2;②当0<a<1时,g(x)=x2﹣ax+1没有最大值,从而不能使得函数y=log a(x2﹣ax+1)有最小值,不符合题意.综上所述:1<a<2;故答案为:1<a<2.【点睛】本题考查对数函数的值域最值,着重考查复合函数的单调性,突出分类讨论与转化思想的考查,是中档题.【变式8-3】(2019秋•会宁县校级期中)已知函数f(x)=2+log3x,x∈[1,9],函数y=[f(x)]2+f(x2)的最大值为.【分析】根据f(x)的定义域为[1,9]先求出y=[f(x)]2+f(x2)的定义域为[1,3],然后利用二次函数的最值再求函数g(x)=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3的最大值.【答案】解:由f(x)的定义域为[1,9]可得y=[f(x)]2+f(x2)的定义域为[1,3],又g(x)=(2+log3x)2+(2+log3x2)=(log3x+3)2﹣3,∵1≤x≤3,∴0≤log3x≤1.∴当x=3时,g(x)有最大值13.故答案为:13【点睛】根据f(x)的定义域,先求出g(x)的定义域是正确解题的关键步骤,属于易错题.【考点9 与对数函数的单调性有关的问题】【例9】(2019春•吉林期末)已知函数f(x)=log a(x+3)﹣log a(3﹣x),a>0且a≠1.(1)求函数f(x)的定义域;(2)判断并证明函数f(x)的奇偶性;(3)若a>1,指出函数的单调性,并求函数f(x)在区间[0,1]上的最大值.【分析】(1)由题意可得,从而求定义域;(2)可判断函数f(x)是奇函数,再证明如下;(3)当a>1时,由复合函数的单调性及四则运算可得f(x)为增函数,从而求最值.【答案】解:(1)由题意知,;解得,﹣3<x<3;故函数f(x)的定义域为(﹣3,3);(2)函数f(x)是奇函数,证明如下,函数f(x)的定义域(﹣3,3)关于原点对称;则f(﹣x)=log a(﹣x+3)﹣log a(3+x)=﹣f(x),故函数f(x)是奇函数.(3)当a>1时,由复合函数的单调性及四则运算可得,f(x)=log a(x+3)﹣log a(3﹣x)为增函数,则函数f(x)在区间[0,1]上单调递增,故f max(x)=f(1)=log a2.【点睛】本题考查了函数的定义域,奇偶性,单调性,最值的判断与应用,属于基础题.【变式9-1】(2018秋•南岗区校级期中)已知f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,(1)求f(0)的值和实数m的值;(2)判断函数f(x)在区间(﹣1,1)上的单调性,并说明理由;(3)若f()>0且f(b﹣2)+f(2b﹣2)>0成立,求实数b的取值范围.【分析】(1)根据奇函数的特性,可得f(0)=0,再由f(﹣x)=﹣f(x),m≠﹣1,可得实数m的值;(2)结合对数函数的图象和性质,及复合函数同增异减的原则,可得函数f(x)在区间(﹣1,1)上的单调性;(3)由f()>0,可得函数f(x)在区间(﹣1,1)上的单调递增,结合函数的定义域和奇偶性,解不等式,可得实数b的取值范围.【答案】解:(1)∵f(x)=log a(a>0,且a≠1,m≠﹣1)是定义在区间(﹣1,1)上的奇函数,∴f(0)=0,且f(﹣x)=﹣f(x),即=﹣,即+==log a1=0,故m2=1,又∵m≠﹣1,故m=1,(2)由(1)得f(x)==,令t=,则t在区间(﹣1,1)上单调递减,当0<a<1时,y=log a t为减函数,此时函数f(x)在区间(﹣1,1)上的单调递增;当a>1时,y=log a t为增函数,此时函数f(x)在区间(﹣1,1)上的单调递减;(3)若f()=>0,则0<a<1,由(1)得,函数f(x)在区间(﹣1,1)上的单调递增,若f(b﹣2)+f(2b﹣2)>0,则f(b﹣2)>﹣f(2b﹣2),则f(b﹣2)>f(2﹣2b),则﹣1<2﹣2b<b﹣2<1,解得:b∈(,)【点睛】本题考查的知识点是对数函数的图象与性质,难度不大,属于基础题.【变式9-2】(2019秋•番禺区校级期中)已知函数.(1)求函数的定义域.(2)讨论函数f(x)的奇偶性.(3)判断函数f(x)的单调性,并用定义证明.【分析】(1)解不等式得出x的范围,从而得出函数f(x)的定义域;(2)将﹣x代入函数f(x)的解析式,利用对数的运算性质得到f(﹣x)=﹣f(x),从而得出答案;(3)在区间(1,+∞)上任取x1>x2>1,作差f(x1)﹣f(x2),通过对数的运算性质以及对数函数的单调性得出差值f(x1)﹣f(x2)的符号,从而得出函数f(x)在区间(1,+∞)上的单调性,再利用同样的方法可得出函数f(x)在区间(﹣∞,1)上的单调性.【答案】解:(1),零和负数无对数,,可得x<﹣1或x>1,则定义域为(﹣∞,﹣1)∪(1,+∞);(2)函数f(x)的定义域为(﹣∞,﹣1)∪(1,+∞),关于原点对称,=,因此,函数f(x)为奇函数;(3)函数f(x)在区间(﹣∞,﹣1)和(1,+∞)上都是减函数,下面利用定义来证明.先利用定义证明函数f(x)在区间(1,+∞)上的单调性.任取x1>x2>1,则==,∵x1>x2>1,则x1x2+x2﹣x1﹣1<x1x2+x1﹣x2﹣1,此时,g a1=0,即f(x1)<f(x2),所以,函数f(x)在区间(1,+∞)上单调递减,同理可证函数f(x)在区间(﹣∞,﹣1)上也为减函数.【点睛】本题考察函数的定义域的求解,考察对数型函数的奇偶性与单调性的定义,关键在于利用定义来判断函数的基本性质,以及熟悉定义法判断函数基本性质的基本步骤,属于中等题.【变式9-3】(2019秋•荔湾区校级期末)已知函数f(x)=log3(1+x)﹣log3(1﹣x).(1)求函数f(x)定义域,并判断f(x)的奇偶性.(2)判断函数f(x)在定义域内的单调性,并用单调性定义证明你的结论.(3)解关于x的不等式f(1﹣x)+f(1﹣x2)>0.【分析】(1)根据对数函数的性质以及函数的定义域,根据函数的奇偶性的定义判断函数的奇偶性即可;(2)根据函数单调性的定义判断函数的单调性即可;(3)根据函数的单调性以及函数的奇偶性判断即可.【答案】解:(1)要使函数f(x)=log3(1+x)﹣log3(1﹣x)有意义,必须满足,解得:﹣1<x<1,∴函数f(x)的定义域是(﹣1,1),综上所述,结论是:函数f(x)的定义域是(﹣1,1).f(x)=log3(1+x)﹣log3(1﹣x)=log3().f(﹣x)=log3=﹣log3.∴f(x)为奇函数.(2)函数f(x)=log3(),在区间(﹣1,1)上任取两个不同的自变量x1,x2,且设x1<x2,则f(x1)﹣f(x2)=log3,又(1+x1)(1﹣x2)﹣(1﹣x1)(1+x2)=2(x1﹣x2)<0,即(1+x1)(1﹣x2)<(1﹣x1)(1+x2),∵﹣1<x1<x2<1,∴1+x1>0,1﹣x2>0,∵(1+x1)(1﹣x2)>0,∴<1,∴log3<0,即f(x1)>f(x2),∴函数f(x)是定义域内的单调递增函数.(3)∵f(x)为奇函数,∴f(1﹣x)+f(1﹣x2)>0∴f(1﹣x)>f(x2﹣1),又∵f(x)在定义域上单调递增,∴1﹣x>x2﹣1,x2+x﹣2<0,即(x+2)(x﹣1)<0,∴﹣2<x<1,而,解得:0<x<,综上:0<x<1.【点睛】本题考查了函数的单调性、奇偶性问题,考查导数的应用以及转化思想,是一道中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 对数函数
知识导学
一般地,对于一个数a(a>0且a ≠1),如果a 的b 次幂等于N,即a b =N,那么就称b 是以a 为底的N 的对数,记作log a N=b,其中,a 叫做对数的底数,N 叫做真数. 在实际应用中,一定要注意指数式与对数式的等价性,即log a N=b a b =N. 对数的运算性质就是把真数的乘、除、乘方降级为对数的加、减、乘运算. 一般地,我们称log a N=a
N b b log log 为对数的换底公式.换底公式是对数中一个非常重要的公式,这是因为它是对一个对数进行变形运算的主要依据之一,是对数的运算性质.对数运算性质应用的前提是式子中对数的底相同.若底不同则需要利用换底公式化为底相同的.我们在应用换底公式时,一方面要证明它和它的几个推论;另一方面要结合构成式子的各对数的特点选择一个恰当的数作为对数的底,不要盲目地换底,以简化我们的解题过程.
有了对数的概念后,要求log 0.840.5的值,我们需要引入两个常用的对数:常用对数和自然对数.常用对数是指以10为底的对数;自然对数是指以e(e=2.718 28…,是一个无理数)为底的对数.
有了常用对数和自然对数,再利用对数的运算性质,我们就可以求log 0.840.5的值了.
对数恒等式:N a a log =N 的证明也很简单,只要紧扣对数式的定义即可证明. ∵a b =N,∴b=log a N.
∴a b =N a a log =N,
即N a a log =N.
如5log 33=5, 6log 44=6等.要熟记对数恒等式的形式,会使用这一公式化简对数式.
作对数函数的图象一般有两种方法:一是描点法,即通过列表、描点、连线的方法作出对数函数的图象;二是通过观察它和指数函数图象之间的关系,并利用它们之间的关系作图.
比较大小是对数函数性质应用的常见题型.当底数相同时,可利用对数函数的性质比较;当底数和指数不同时,要借助于中间量进行比较.比较两个对数式的大小,底相同时,可利用对数性质进行比较.不同类的函数值的大小常借助中间量0、1等进行比较.
对数函数y=log a x(a>0且a≠1)与指数函数y=a x(a>0且a≠1)互为反函数,这两个函数的图象关于直线y=x对称.
因此,我们只要画出和y=a x的图象关于直线y=x对称的曲线,就可以得到y=log a x 的图象,然后根据图象特征得出对数函数的性质.
疑难导析
通过将对数函数与指数函数的图象进行对比,可以发现:当a>1或0<a<1时,对数函数与指数函数的单调性是一致的〔即在区间(0,+∞)上同时为增函数,或者同时为减函数〕.对数函数的图象都经过点(1,0),这与性质log a1=0 a0=1是分不开的. 对数函数的反函数是指数函数,所以要利用指数函数的性质来研究对数函数.应该注意到:这两种函数都要求底数a>0,且a≠1;对数函数的定义域为(0,+∞),结合图象看,对数函数在y轴左侧没有图象,即负数与0没有对数,也就是真数必须大于0.这些知识可以用来求含有对数函数的定义域.
性质靠图象体现,图象靠性质总结.
数形结合不仅是我们研究函数的一个重要工具,同时也是我们在解题时的常用方法.借助图形的形象直观,可以迅速准确地得到相关问题的答案,尤其是选择
题,能结合图象来思考,会事半功倍.
问题导思
对数换底公式口诀:
换底公式真神奇,换成新底可任意,
原底加底变分母,真数加底变分子.
对数函数的运算性质的助记口诀:
积的对数变加法,商的对数变为减,
幂的乘方取对数,要把指数提到前.
对数函数y=log a x(a>0且a≠1)的性质的助记口诀:
对数增减有思路,函数图象看底数,
底数只能大于0,等于1来也不行,
底数若是大于1,图象从下往上增;
底数0到1之间,图象从上往下减.
无论函数增和减,图象都过(1,0)点.
比较两个对数型的数的大小是一种常见的题型,好好把握.
两个同底数的对数比较大小的一般步骤:
①确定所要考查的对数函数;
②根据对数底数判断对数函数增减性;
③比较真数大小,然后利用对数函数的增减性判断两对数值的大小.
对数函数的单调性取决于对数的底数是大于1还是小于1.而已知条件并未指明,因此需要对底数a进行讨论,体现了分类讨论的思想,要求学生逐步掌握.
典题导考
绿色通道
利用数形结合的方法可以快速地比较两个对数的大小,有时也可以画出函数的略图.由此可见,学会一种思考方法比解决一道题目更重要.
典题变式 比较下列各组数中两个值的大小:
(1)log 23.4,log 28.5;
(2)log 0.31.8,log 0.32.7;
(3)log a 5.1,log a 5.9(a>0,a ≠1).
答案:(1)log 23.4<log 28.5;
(2)log 0.31.8>log 0.32.7;
(3)当a>1时,log a 5.1<log a 5.9;
当0<a<1时,log a 5.1>log a 5.9.
绿色通道
本题的求解中,分解化简和方程思想的运用在处理很多问题中具有一般性. 典题变式
1.已知3a =2,用a 表示log 34-log 36.
答案:a-1.
2.已知log 32=a,3b =5,用a 、b 表示log 330.
答案: 2
1 (a+b+1). 绿色通道
研究函数的性质一定得先考虑定义域,在研究函数单调性时,注意奇偶性对函数单调性的影响,即偶函数在关于原点对称的区间上具有相反的单调性;奇函数在关于原点对称的区间上具有相同的单调性.。