高二数学必修三教案:§2.3变量间的相关关系(1)

合集下载

人教版高二数学上册必修3《变量间相关关系》教案

人教版高二数学上册必修3《变量间相关关系》教案

人教版高二数学上册必修3《变量间相关关系》教案PEP senior two mathematics volume 1 compulsory 3 "correlati on between variables" teaching plan人教版高二数学上册必修3《变量间相关关系》教案前言:数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。

本教案根据数学课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。

便于学习和使用,本文档下载后内容可按需编辑修改及打印。

一、三维目标1.知识与技能(1)通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。

(2)明确事物间的相互关系,认识现实生活中的变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。

2.过程与方法收集现实问题体会这种相关关系。

二、教学重难点重点:通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;利用散点图直观认识两个变量之间的线性关系。

难点:变量间的相关关系,利用散点图直观体会这种相关关系。

三、教学过程预习检测 1,什么叫散点图:2、三种关系:(1)。

如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系,即(2)。

如果所有的样本点都落在某一函数曲线附近,,变量之间就有(3)。

如果所有的样本点都落在某一直线附近,变量之间就有3、正、负相关的概念。

如果散点图中的点分布在从左下角到右上角的区域内,称为如果散点图中的点分布在从左上角到右下角的区域内,称为4、线性相关的概念:如果所有的样本点都落在,变量之间就有线性相关的关系。

教学实图:人体的脂肪百分比和年龄年龄23 27 39 4145 49 50 5354 56 57 5860 61 脂肪 9.517.8 21.2 25.927.5 26.3 28.229.6 30.2 31.430.8 33.5 35.234.6 05101xxxxxxxxxx020 25 30 35 40 45 50 55 6065 年龄脂肪含量四、当堂练习1、下列关系中,是带有随机性相关关系的是① 正方形的边长面积之间的关系;② 水稻产量与施肥量之间的关系③ 人的身高与年龄之间的关系④ 降雪量与交通事故的发生率之间的关系。

高中数学23变量间的相关关系一二全册精品教案新人教A版必修3教案

高中数学23变量间的相关关系一二全册精品教案新人教A版必修3教案

高中数学23变量间的相关关系一二全册精品教案新人教A版必修3教案教案名称:高中数学23变量间的相关关系一、二全册精品教案教材版本:新人教A版必修3教学目标:1.掌握变量之间的相关关系的概念;2.理解相关系数的含义和计算方法;3.能够应用相关关系解决实际问题;4.培养学生分析和解决问题的能力。

教学重点:1.相关系数的计算方法;2.相关关系的实际应用。

教学难点:1.相关系数的计算和解释;2.相关关系在实际问题中的应用。

教学准备:1.教师准备板书工具,包括黑板、彩色粉笔等;2.教师准备教学用具,如教学课件、实验仪器等。

教学过程:第一课时:1.导入(5分钟)教师通过引入相关关系在日常生活中的例子,引起学生的思考和兴趣,如“你有没有觉得吃得越多睡得越香?”、“你觉得天气越热人们购买冷饮的数量会有什么变化?”等。

2.引入(10分钟)教师通过示意图和简单的计算,引导学生理解变量之间的相关关系,并介绍相关系数的定义和计算方法。

3.基础知识讲解(25分钟)3.1相关系数的含义和计算方法:教师通过示例和公式解释相关系数的含义和计算方法,让学生掌握相关系数的计算公式。

3.2相关系数的性质和意义:教师讲解相关系数的性质和意义,引导学生理解相关系数与变量之间的线性关系程度的关系。

4.练习(10分钟)教师布置一些相关系数的计算练习题,让学生进行个人或小组练习。

第二课时:5.复习(5分钟)回顾上节课学习的内容,教师提问学生相关系数的计算方法及其含义,并解答学生疑惑。

6.拓展(15分钟)6.1相关系数的解读:教师通过实例和图表解释如何解读相关系数的大小和正负号。

6.2相关系数的应用:教师介绍相关系数在实际问题中的应用,如市场调研、经济预测等。

7.实验(20分钟)教师组织学生进行相关系数实验,通过观察和数据统计,让学生进一步理解相关系数的计算方法和含义。

8.总结归纳(10分钟)教师引导学生总结相关系数的计算方法、含义和应用,并与学生一起完成相关关系的概念思维导图。

高中数学人教A版必修3《变量间的相关关系》教学设计 (1)

高中数学人教A版必修3《变量间的相关关系》教学设计 (1)

课题:2.3.1变量间的相互关系(一)、(二)第个教案课型:新授课 2021 年 5月 31 日教学目标知识与技能:1. 了解线性回归的意义,了解最小二乘法思想;2. 会求回归直线方程。

过程与方法:经历描述两个变量的相关关系的过程,了解最小二乘法的思想。

情感、态度与价值观:学生亲自体验了发现数学、领悟数学的全过程教学重点用不同估算方法描述两个变量线性相关的过程教学难点用不同估算方法描述两个变量线性相关的过程教学方法讨论法教学过程:批注活动一:创设情景,揭示课题问题:1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.2. 在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?3. 这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.活动二:指导探究,师生交流(一):变量之间的相关关系思考1:考察下列问题中两个变量之间的关系,想一想这些问题中两个变量之间的关系是函数关系吗?(1)商品销售收入与广告支出经费;(2)粮食产量与施肥量;(3)人体内的脂肪含量与年龄.思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.思考4:函数关系与相关关系之间的区别与联系.函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系.函数关系是一种因果关系而相关关系不一定是因果关系,也可能是伴随关系.3. 函数关系与相关关系之间有着密切联系,在一定条件下可以互相转化.例 1 在下列两个变量的关系中,哪些是相关关系?活动三:合作学习,探究新知学(18分钟):散点图 【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.思考1:观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?思考2:以x 轴表示年龄,y 轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?思考3:上图叫做散点图,你能描述一下散点图的含义吗? 在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点? 一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域思考7:你能列举一些生活中的变量成正相关或负相关的实例吗?例2 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关.练习 2. 今有一组试验数据如下表所示:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( C )A. y =log 2xB. y =2xC. y =(x 2-1)/2D. y =2x -250494541392723年龄28.226.327.525.921.217.89.5脂肪61605857565453年龄34.635.233.530.831.430.229.6脂肪20253035404550556065510152025303540脂肪含量年龄0 1.51.9918.01127.54.04y 6.125.14.03.0x问题提出1. 两个变量之间的相关关系的含义如何?成正相关和负相关的两个相关变量的散点图分别有什么特点?自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系.正相关的散点图中的点散布在从左下角到右上角的区域,负相关的散点图中的点散布在从左上角到右下角的区域2. 观察人体的脂肪含量百分比和年龄的样本数据的散点图,这两个相关变量成正相关.我们需要进一步考虑的问题是,当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢?对此,我们从理论上作些研究. 例2活动四:归纳整理求回归直线的方法与步骤,提高认识(2分钟)X 2 3 4 5 Y2.5344.5某研究机构对高中学生的记忆力x 和判断力y 进行统计分析,得下表数据 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,求出y 关于x 的线性回归方程ˆˆˆy bx a =+; (3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力. x 6 8 10 12 y 2 3 5 6。

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_2

人教A版高中数学必修3《二章 统计  2.3 变量间的相关关系  2.3.1 变量之间的相关关系》优质课教案_2

§2.3变量间的相关关系1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。

2.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系3.两个变量具有线性相关关系时,会在数点图中作出线性回归直线,会用线性回归进行预测。

请同学们阅读教材P 84—P 91内容1.如果散点图中的分布从整体上看我们就称这两个变量之间具有 __这条直线中2.求回归方程的关键是如何用数学的方法来刻画“ ”如何实现这一目标呢?3.小结求回归方程的一般步骤:第一步,计算平均数______________.第二步,求和____________________.第三步,计算____________________.第四步,写出回归方程 ______________.4.利用计算器或计算机,如何求回归方程?5.线性回归直线a x b y +=的几何意义是:x 每增加一个单位,y 就相应 或 个单位,而不是 倍。

二、新课导学※ 探索新知新知1:线性相关如果散点图中的点分布从整体上看大致在一条直线附近,则这两个变量之间具有线性相关关系。

新知2:回归直线两个变量具有线性相关关系时,它们的散点图在一条直线附近,则这条直线称为回归直线。

新知3:回归直线方程分析与求法:分析:一是所求的回归直线方程只是“大体上”上接近了回归方程而且方程不唯一,可信度不高:二是没有从几何直观和代数精确上对回归直线作刻画,不能作合理的可靠的数学解释。

求回归方程的一般步骤:第一步,计算平均数 第二步,求和;,y x ;,∑∑==n i i n i i i x y x 121第三步,计算第四步,写出回归方程※ 典型例题例1.下列两个变量之间的关系,哪个不是函数关系 ( )A .角度和它的余弦值B .正方形的边长和面积C .正n 边形的边数和内角度数之和D .人的年龄与身高例2.下列两个变量中具有相关关系的是( )A .正方形的体积与边长B .匀速行驶的车辆的行驶距离与时间C .人的身高与体重D .人的身高与视力例 3.由一组10个数据(x i ,y i )算得 则b = ,a = ,回归方程为_____________________.※ 动手试试练1.下列那些变量是相关关系( )A.出租车与行驶里程B.房屋面积与房屋造价C.身高与体重D.铁球的体积大小与其体重练2.工人月工资y 与劳动生产率x 变化的回归方程y=50+80x ,下列判断正确的是( ) ①劳动生产率为1千克每小时时,工资为130元.②劳动生产率提高1千克每小时时,工资提高80元.③劳动生产率提高1千克每小时时,工资提高130元.④劳动生产率为2千克每小时时,工资为210元.A .①②B .①②④C. ②④ D . ①②③④练3.下列说法中不正确的是( )A.两个变量具有线性相关关系时,求出的回归方程才有意义;)())((1221121x b y a x n x y x n y x x x y y x x b n i i n i i i n i ini i i -=--=---=∑∑∑∑====,.a bx y +=∧,10,5==y x ,292,583121==∑∑==ni i n i i i x y xB.散点图能直观的反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.回归直线y=ax+b 一定经过(i x ,i y )(i=1,2,…,n)中的某些点三、总结提升1.通过收集现实问题中两个有关联变量之间的数据认识变量间的相关关系。

人教A版高中数学必修3《二章 统计 2.3 变量间的相关关系 2.3.1 变量之间的相关关系》优质课教案_19

人教A版高中数学必修3《二章 统计  2.3 变量间的相关关系  2.3.1 变量之间的相关关系》优质课教案_19

探究: 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 根据上述数据,人体的脂肪含量与年龄之间有怎样的关系?生:随着年龄增长,脂肪含量在增加 师:有没有更直观的方式?生:画图师:这个图跟我们所学过的函数图象有散区别,它叫作散点图。

2、利用最小二乘法推导回归系数公式。

1122211()()()nniii ii i nnii i i x x y y x y nx yb x x x nx a y bx====---==--=-∑∑∑∑(其中11n i i x x n ==∑,11ni i y y n ==∑) 推导过程用到偏差的平方,由于平方又叫二乘方,所以这种使“偏差的和”最小的方法叫 “最小二乘法”。

11n i i x x n ==∑= 11ni i y y n ==∑=1ni ii x y=∑=21nii x=∑= 1221ni ii nii x y nx yb xnx==-==-∑∑ a y bx =-=ˆybx a =+ : (二)、线性回归分析思想在实际中的应用例1有一个同学家开了一个小卖部,他为了研究气温对销售热饮的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表,(1)画出散点图(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律 (3)求回归方程(4)如果某天的气温是2℃,预测这天卖出的热饮杯数11ni i x x n ==∑=11ni i y y n ==∑= 1ni ii x y =∑= 21nii x=∑=1221ni ii nii x y nx yb xnx==-==-∑∑ a y bx =-=ˆybx a =+相关系数()()niix x y y r --=∑注意它的符号:当0r >时,x ,y 正相关,当0r <时,x ,y 负相关,统计学认为: 对于r ,若[]1,0.75r ∈--,那么负相关很强,若[]0.75,1r ∈,那么正相关很强,若(][)0.75,0.30r ∈--∈或r 0.30,0.75,那么相关性一般, 若[]0.25,0.25r ∈-,那么相关性较弱,:使学生体会:相关系数的绝对值越大,用线性回归模型拟合样本数据的效果就越好(三)、归纳总结,内化知识①先判断变量是否线性相关②若线性相关,利用公式计算出a 、b③利用回归方程对生活实际问题进行分析与预测 2、思想方法:数形结合、归纳、类比、最小二乘法(四)作业布置1、创新应用:预测人口:我国是一个人口大国,估计人口数量及发展趋势是我们制定经济发展计划等一系列相关政策的基础,人口数量预测是一个复杂的问题,不仅是人口与时间两个变量之间的关系,还与国家经济状况,科技发展,自然灾害和战争等其他因素有关。

高中数学必修三导学案23变量间的相关关系1

高中数学必修三导学案23变量间的相关关系1

适用精选文件资料分享高中数学必修三导教课方案变量间的相关关系(1)2.3 变量间的相关关系( 1)【学习目标】 1 .认识相关关系的相关看法; 2 .会画散点图,会利用散点图直观认识变量间的相关关系.【新知自学】知识回顾:课前回顾 1 、函数的定义是什么? 2 、关于函数,当时, = . 的值是独一的吗?新知梳理:1. 两个变量之间的关系(1)函数关系:两个变量的关系是.(2)相关关系:两个变量的关系是.【感悟】相关关系与函数关系有什么异同点?2.两个变量的相关关系的相关看法(1)散点图:将样本的几个数据描在中获得的图形.(2)正相关:在散点图中,点分布在从到的地域,关于两个变量的这类相关关系,我们称它为正相关.(3)负相关:在散点图中,点分布在从到的地域,关于两个变量的这类相关关系,我们称它为负相关. 3. 两个变量的线性相关、回归直线假如散点图上的点的分布大体在周边,就称这两个变量之间拥有关系,这条直线叫做.对点练习: 1. 以下两个变量中拥有相关关系的是()( A)正方体的体积与边长(B)匀速行驶的车辆的行驶距离与时间(C)人的体重与饭量(D)人的身高与视力 2.以下各关系不属于相关关系的是()(A)产品的样本与生产数目( B )球的表面积与体积(C)家庭的支出与收入(D)人的年龄和体重 3.以下变量关系是线性相关的是(). (A)人的身高与视力(B)角的大小与所对圆弧长(C)收入水平与纳税水平(D)人的年龄和身高【合作研究】典例精析【典型例题】例题 1. 在关于人的脂肪含量(百分比)和年龄关系的研究中,获得以下一组数据:判断它们能否有相关关系,如有,作一拟合直线 . 年龄 23 27 39 41 45 49 50 58脂肪变式训练 1. 观察两相关变量得以下数据: x -1 -2 -3 -4 -5 5 4 32 1 y -9 -7 -5 -3 -1 1 5 3 7 9画出散点图,判断它们能否有相关关系 .例题 2. 以下是某地采集到的不一样样楼盘新房屋的销售价格y(单位:万元)和房屋面积 x(单位:平方米)的数据:x 115110 80 135 105y 124.8 121.6 119.4 129.2 122 (1)画出数据的散点;(2)判断新房屋的售价格和房屋面之能否拥有相关关系?假如有相关关系,是正相关是相关?【堂小】【当堂达】 1. 判断下形中拥有相关关系的两个量是哪一个?()2.5 个学生的数学和物理成以下表:学科 / 学生数学 80 75 70 65 60物理 70 66 68 64 62画出散点,并判断它能否性相关 .【作】 1. 相关性回的法,不正确的选项是()(A)相关关系的两个量不是因果关系(B)散点能直反响数据的相关程度(C)回直最能代表性相关的两个量之的关系(D)任一数据都有回方程 2. 以下两个量拥有相关关系的是()(A)正方体的体与棱(B)数学成与学数学的(C)匀速行的行距离与(D)球的半径与体 3. 哪些量是相关关系()(A)出租与行的程里程(B)房屋面与房屋的价格(C)身高与体重(D)的大小与量 4. 有四量:①汽的重量与汽每耗费 1 升汽油所行的均匀行程;②高三年女生的身高与体重;③某人均匀每天吸烟量与其身体健康状况;④汽的重量与百公里耗油量 . 此中两个量成正相关的是()(A)①③(B)②④ ( C)②③ ( D)①④ 5. 量 x, y 有数据理力争(,)(i=1,2, ⋯,10),得散点 1;量 u ,v 有数据(,)(i=1,2, ⋯,10), 得散点 2. 由两个散点可以判断(). (A)量 x 与 y 正相关, u 与 v 正相关(B)量 x 与 y 正相关, u 与v 相关(C)量 x 与 y 相关, u 与 v 正相关(D)量 x 与y 相关, u 与 v 相关 . 6. 某种品的广告支出x 与售 y (位:百万元)之有以下数据: x 2 4 5 6 8 y 30 40 60 50 70 (1)画出散点;(2)从散点中判断售金与广告支出成什么的关系?7.假如某公司的广告支出 x(百万元 ) 与售 y ( 百万元)之有以下数据:x 2 4 5 6 8 y 30 40 60 50 70(1)画出散点图;(2)判断广告费支出与销售额之间有无相关关系?如有是正相关还是负相关?。

高中数学 变量间的相关关系教案 新人教版必修3

高中数学 变量间的相关关系教案 新人教版必修3

2.3 变量间的相关关系(教师用书独具)●三维目标1.知识与技能通过收集现实问题中两个有关联变量的数据,认识变量间的相关关系.2.过程与方法明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系.3.情感、态度与价值观通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想.●重点难点重点:(1)通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;(2)利用散点图直观认识两个变量之间的线性关系.难点:(1)变量之间相关关系的理解;(2)作散点图和理解两个变量的正相关和负相关.从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来.通过对典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律.通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系强化本节重点.通过学生讨论、交流,用TI图形计算器展示、对比自己作出的散点图,得出线性相关关系、正负相关关系的概念.教师及时将求线性方程的公式展示出来,通过例题的讲解和训练,进一步加深对散点图和回归方程的理解,突破难点.(教师用书独具)●教学建议结合本节课的教学内容和学生的认知水平,充分发挥教师的主导作用,让学生真正成为教学活动的主体.通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性.本节课宜采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“散点图”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,通过例题和变式训练进一步巩固本节知识,将自己所学知识应用于对现实生活的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新.●教学流程创设问题情境引入问题:人体内脂肪的含量与年龄之间有何关系?⇒引导学生结合必修一中函数图象的画法将对应点在坐标系中描出,观察比较,分析这些点的特征⇒错误!⇒错误!⇒通过例2及其变式训练,使学生掌握线性回归方程的求法⇒研究现实生活中的实际问题,应用本节知识完成例3及变式能够对总体进行估计⇒归纳整理,进行课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固所掌握的知识,并进行反馈矫正(见学生用书第41页)课标解读1.理解两个变量的相关关系的概念.(难点)2.会作散点图,并利用散点图判断两个变量之间是否具有相关关系.(重点) 3.会求回归直线方程.(重点)4.相关关系与函数关系.(易混点)变量间的相关关系【问题导思】下表是水稻产量与施化肥量的一组观测数据:施化肥量15202530354045 水稻产量3203303604104604704801.将上述数据制成散点图.【提示】散点图如下:2.施化肥量与水稻产量有关系吗?【提示】有关系.1.相关关系:不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.2.散点图:将样本中几个数据点(x i,y i)(i=1,2,…,n)描在平面直角坐标系中得到的图形.3.正相关与负相关:散点图中的点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,称它为正相关.若散点图中的点分布在从左上角到右下角的区域内,对于两个变量的这种相关关系,称它为负相关.回归直线方程【问题导思】一台机器由于使用时间较长,生产的零件有一些会有缺陷.按不同转速生产出有缺陷的零件的统计数据如下:转速x(转/秒)1614128每小时生产有缺1198 5陷的零件数y(件)1.在平面直角坐标系中作出散点图.【提示】2.从散点图中判断x和y之间是否具有相关关系?【提示】有.3.若转速为10转/秒,能否预测机器每小时生产缺陷的零件件数?【提示】可以.根据散点图作出一条直线,求出直线方程后可预测.1.回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程.3.最小二乘法求回归直线时,使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.4.求回归方程若两个具有线性相关关系的变量的一组数据为:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则所求的回归方程为y ∧=b ∧x +a ∧,其中a ∧,b ∧为待定的参数,由最小二乘法得:⎩⎪⎨⎪⎧b ∧=∑i =1nx i-x y i-y ∑i =1nx i-x 2=∑i =1nx i y i -n x -y-∑i =1nx 2i -n x -2,a ∧=y -b ∧x .b ∧是回归直线斜率,a ∧是回归直线在y 轴上的截距.(见学生用书第41页)线性相关关系的判断以下是在某地搜集到的不同楼盘新房屋的销售价格y(单位:万元)和房屋面积x(单位:m2)的数据:房屋面积x(m2)11511080135105 销售价格y(万元)24.821.619.429.222(1)画出数据对应的散点图;(2)判断新房屋的销售价格和房屋面积之间是否具有相关关系?如果有相关关系,是正相关还是负相关?【思路探究】涉及两个变量房屋面积与销售价格,以房屋面积为自变量,考察销售价格的变化趋势从而做出判断.【自主解答】(1)数据对应的散点图如图所示:(2)通过以上数据对应的散点图可以判断,新房屋的销售价格和房屋的面积之间具有相关关系,且是正相关.两个随机变量x和y相关关系的确定方法:1.散点图法:通过散点图,观察它们的分布是否存在一定规律,直观地判断.2.表格、关系式法:结合表格或关系式进行判断.3.经验法:借助积累的经验进行分析判断.5个学生的数学和物理成绩如下表:学生A B C D E成绩学科数学8075706560物理7066686462 画出散点图,并判断它们是否具有线性相关关系.【解】以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如图所示,由散点图可知,两者之间具有线性相关关系,且是正相关.求回归直线方程一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)102030405060708090100加工时间y(分)626875818995102108115122(1)y与x是否具有线性相关关系?(2)如果y与x具有线性相关关系,求y关于x的回归直线方程.【思路探究】画散点图→确定相关关系→求回归直线系数→写回归直线方程 【自主解答】 (1)画散点图如下:由上图可知y 与x 具有线性相关关系. (2)列表、计算:i 1 2 3 4 5 6 7 8 9 10 x i 10 20 30 40 50 60 70 80 90 100 y i62 68 75 81 89 95 102 108 115 122 x i y i62016025034044505007408 40105012200x =55,y =91.7,∑i =110=x 2i =38 500,∑i =110y 2i =87 777,∑i =110x i y i =55 950b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x 2=55 950-10×55×91.738 500-10×552≈0.668, a ∧=y -b ∧x =91.7-0.668×55=54.96.即所求的回归直线方程为:y ∧=0.668x +54.96.用公式求回归方程的一般步骤: 1.列表x i ,y i ,x i y i ;2.计算x ,y ,∑ni =1x 2i ,∑ni =1x i y i ; 3.代入公式计算b ∧、a ∧的值; 4.写出回归方程.从某一行业随机抽取12家企业,它们的生产产量与生产费用的数据如下表:企业编号 1 2 3 4 5 6 7 8 9 10 11 12产量x /台 40 42 50 55 85 78 84 100 116 125 130 140费用y /万元130150155140150154165170167180175185(1)绘制生产产量x 和生产费用y 的散点图;(2)如果两个变量之间是线性相关关系,请用最小二乘法求出其回归直线方程. 【解】 (1)两个变量x 和y 之间的关系的散点图如图所示.(2)根据散点图可知,两个变量x 和y 之间的关系是线性相关关系.下面用最小二乘法求回归直线方程.1 2 3 4 5 6 7 8 9 10 11 12 合40 42 50 55 85 78 84 100 116 125 130 140 1 130 150 155 140 150 154 165 170 167 180 175 185 1 5200 6300 7750 7700 12750 12012 13860 17000 19372 22500 22750 25900 17160017642500325722560847056 10000 13456 15625 16900 19600 10x ≈87.08,y ≈160.1,n x y =167 298.096,n x 2≈90 995.116 8设所求的回归直线方程是y ∧=b ∧x +a ∧,所以b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=173 094-167 298.096104 835-90 995.116 8=5 795.90413 839.883 2≈0.42,a ∧=y -b ∧x =160.1-0.42×87.08≈123.53.所求的回归直线方程是y ∧=0.42x +123.53.利用回归方程对总体进行估计(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程y ∧=b ∧x +a ∧;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?【思路探究】 (1)以产量为横坐标,以生产能耗对应的测量值为纵坐标,在平面直角坐标系内画散点图;(2)应用计算公式求得线性相关系数b ∧,a ∧的值;(3)实际上就是求当x =100时,对应的y 的值.【自主解答】 (1)散点图,如图所示.(2)由题意,得∑i =14x i y i =3×2.5+4×3+5×4+6×4.5=66.5,x =3+4+5+64=4.5, y =2.5+3+4+4.54=3.5,∑i =14x 2i =32+42+52+62=86, ∴b ∧=66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7, a ∧=y -b ∧x =3.5-0.7×4.5=0.35,故线性回归方程为y ∧=0.7x +0.35.(3)根据回归方程的预测,现在生产100吨产品消耗的标准煤为0.7×100+0.35=70.35(吨),故耗能减少了90-70.35=19.65(吨标准煤).1.回归分析是寻找相关关系中非确定性关系的某种确定性.2.只有当两个变量之间存在线性相关关系时,才能用回归直线方程对总体进行估计和预测.否则,如果两个变量之间不存在线性相关关系,即使由样本数据求出回归直线方程,用其估计和预测结果也是不可信的.炼钢是一个氧化降碳的过程,钢水含碳量的多少直接影响冶炼时间的长短,必须掌握钢水含碳量和冶炼时间的关系.如果已测得炉料熔化完毕时,钢水含碳量x与冶炼时间y(从炉料熔化完毕到出钢的时间)的几种对应数据如下表所示:x(0.01%)104180190177147134150191204121 y(分)10020021185155135170205235125(1)作出散点图,判断冶炼时间y对钢水含碳量x是否线性相关;(2)求回归直线方程;(3)预测当钢水含碳量为160个0.01%时应冶炼多少分钟.【解】 (1)以x 轴表示含碳量,y 轴表示冶炼时间,可作散点图如图所示.从图中可以看出,各点散布在一条直线附近,即它们线性相关. (2)列表如下:i 1 2 3 4 5 6 7 8 9 10 x i 104 180 190 177 147 134 150 191 204 121y i 100 200 210 185 155 135 170 205 235 125y i 1040036000399003274522785180902550039155479401512x =159.8,y =172,∑i =110x 2i =265 448,∑i =110x i y i =287 640设所求的回归直线方程为y ∧=b ∧x +a ∧.b ∧=∑i =110x i y i -10x y∑i =110x 2i -10x 2=287 640-10×159.8×172265 448-10×159.82≈1.27,a ∧=y -b ∧x ≈172-1.27×159.8≈-30.95,即所求的回归直线方程为y ∧=1.27x -30.95.(3)当x =160时,y ∧=1.27×160-30.95≈172(分),即大约冶炼172分钟.(见学生用书第43页)数形结合在线性相关性中的应用(12分)下表数据是退水温度x(℃)对黄硐延长性y(%)效应的试验结果,y是以延长度计算的,且对于给定的x,y为正态变量,其方差与x无关.x(℃)300400500600700800y (%) 40 50 55 60 67 70(1)画出散点图;(2)指出x ,y 是否线性相关;(3)若线性相关,求y 关于x 的线性回归方程; (4)估计退水温度是1 000 ℃时,黄硐延长性的情况.【思路点拨】 根据所给数据画出散点图,然后可借助函数的思想分析. 【规范解答】 (1)散点图如图所示.4分(2)由散点图可以看出样本点分布在一条直线的附近,可见y 与x 线性相关. (3)列出下表,并用科学计算器进行有关计算.i 12 3 4 5 6 x i 300 400 500 600 700 800 y i 40 50 55 60 67 70 x i y i 12000 20000 27500 36000 46900 56000 x 2i 90000 160000 250000 360000 490000 640000x =550,y =57,∑i =16x 2i =1 990 000,∑i =16x i y i =198 400于是可得:b ∧=∑i =16x i y i -6x y∑i =16x 2i -6x 2=198 400-6×550×571 990 000-6×5502 ≈0.058 857,a ∧=y -b ∧x =57-0.058 857×550=24.628 65.9分因此所求的线性回归方程为y ∧=0.058 857x +24.628 65.(4)将x =1 000代入回归方程得y ∧=0.058 857×1 000+24.628 65=83.486,即退水温度是1 000 ℃时,黄硐延长性大约是83.486%.1.在研究两个变量是否存在某种关系时,必须从散点图入手,对于散点图,可以做出如下判断:(1)如果所有的样本点都落在某一函数曲线上,那么就用该函数来描述变量之间的关系,即变量之间具有函数关系;(2)如果所有的样本点都落在某一函数曲线附近,那么变量之间具有相关关系;(3)如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系.2.利用散点图判断两个变量之间是否具有线性相关关系,体现了数形结合思想的作用,而用回归直线方程进行估计又体现了函数与方程思想的应用.1.判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图.根据散点图,可以很容易看出两个变量是否具有相关关系,是否线性相关,是正相关还是负相关.2.求回归直线方程时应注意的问题(1)知道x 与y 呈线性相关关系,无需进行相关性检验,否则应首先进行相关性检验,如果两个变量之间本身不具有相关关系,或者说,它们之间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计和预测的量也是不可信的.(2)用公式计算a ∧,b ∧的值时,要先算出b ∧,然后才能算出a ∧.3.利用回归方程,我们可以进行估计和预测.若回归直线方程为y ∧=b ∧x +a ∧,则x =x 0处的估计值为y ∧0=b ∧x 0+a ∧.由于回归直线将部分观测值所反映的规律进行了延伸,所以它在情况预报、资料补充等方面有着广泛的应用.(见学生用书第44页)1.下列变量之间的关系是相关关系的是( ) A .正方体的表面积与体积 B .光照时间与果树产量C .匀速行驶车辆的行驶距离与时间D .中国足球队的比赛成绩与中国乒乓球队的比赛成绩 【解析】 A 、C 是函数关系,D 无相关关系. 【答案】 B2.设一个回归方程y ∧=3+1.2x ,则变量x 增加一个单位时( ) A .y 平均增加1.2个单位 B .y 平均增加3个单位 C .y 平均减少1.2个单位 D .y 平均减少3个单位【解析】 由b =1.2>0,故选A. 【答案】 A3.若施化肥量x (千克/亩)与水稻产量y (千克/亩)的回归方程为y ∧=5x +250,当施化肥量为80千克/亩时,预计水稻产量为亩产________千克左右.【解析】 当x =80时,y ∧=400+250=650. 【答案】 6504.某公司利润y (单位:千万元)与销售总额x (单位:千万元)之间有如下表对应数据:x 10 15 17 20 25 28 32 y11.31.822.62.73.3(1)画出散点图;(2)判断y 与x 是否具有线性相关关系. 【解】 (1)散点图如下:(2)由图可知,所有数据点接近直线排列,因此,认为y与x有线性相关关系,且为正相关.(见学生用书第105页)一、选择题1.判断下列图形中具有相关关系的两个变量是( )【解析】 A 、B 为函数关系,D 无相关关系. 【答案】 C2.(2013·广州高一检测)已知x 与y 之间的一组数据:x 0 1 2 3 4 y13579则y 与x 的线性回归方程y ∧=bx +a 必过点( ) A .(1,2) B .(5,2) C .(2,5) D .(2.5,5)【解析】 线性回归方程一定过样本中心(x ,y ). 由x =0+1+2+3+45=2,y =1+3+5+7+95=5.故必过点(2,5). 【答案】 C3.(2013·长沙高一检测)某商品销售量y (件)与销售价格x (元/件)呈负相关,其回归方程可能是( )A.y ∧=-10x +200 B.y ∧=10x +200C.y ∧=-10x -200 D.y ∧=10x -200【解析】 由于y 与x 呈负相关,∴x 的系数为负, 又y 不能为负值,∴常数必须是正值. 【答案】 A4.两个相关变量满足如下关系:x 10 15 20 25 30 y1 0031 0051 0101 0111 014两变量的回归直线方程为( )A.y ∧=0.56x +997.4 B.y ∧=0.63x -231.2C.y ∧=50.2x +501.4 D.y ∧=60.4x +400.7 【解析】 x =15(10+15+20+25+30)=20,y =15(1 003+1 005+1 010+1 011+1 014)=1 008.6,代入所给选项A 符合. 【答案】 A5.(2012·湖南高考)设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ∧=0.85x -85.71,则下列结论中不正确...的是( ) A .y 与x 具有正的线性相关关系 B .回归直线过样本点的中心(x ,y )C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg【解析】 由于线性回归方程中x 的系数为0.85,因此y 与x 具有正的线性相关关系,故A 正确.又线性回归方程必过样本中心点(x ,y ),因此B 正确.由线性回归方程中系数的意义知,x 每增加1 cm ,其体重约增加0.85 kg ,故C 正确.当某女生的身高为170 cm 时,其体重估计值是58.79 kg ,而不是具体值,因此D 不正确.【答案】 D 二、填空题6.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ∧=0.254x +0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】 由于y ∧=0.254x +0.321知,当x 增加1万元时,年饮食支出y 增加0.254万元.【答案】 0.2547.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:月平均气温x (℃) 17 13 8 2 月销售量y (件)24234055由表中数据算出线性回归方程中的b ∧=-2.气象部门预测下个月的平均气温约为6 ℃,据此估计,该商场下个月毛衣的销售量约为________件.【解析】 样本中心点是(10,35.5), 则a ∧=y --b ∧x -=35.5-(-2)×10=55.5, 故线性回归方程为y ∧=-2x +55.5,将x =6代入得y ∧=-2×6+55.5=43.5≈44. 【答案】 448.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据(由资料显示y 与x 呈线性相关关系):x 2 4 5 6 8 y3040605070根据上表提供的数据得到回归方程y ∧=b ∧x +a ∧中的b ∧=6.5,预测销售额为115万元时约需________万元广告费.【解析】 x =15(2+4+5+6+8)=5,y =15(30+40+60+50+70)=50,由b ∧=6.5知,a ∧=y -b ∧·x =50-6.5×5=17.5,∴y ∧=17.5+6.5x ,当y ∧=115时,解得x =15. 【答案】 15 三、解答题9.某工厂对某产品的产量与成本的资料分析后有如下数据:产量x (千件) 2 3 5 6 成本y (万元)78912(1)画出散点图;(2)求成本y 与产量x 之间的线性回归方程.(结果保留两位小数) 【解】 (1)散点图如图所示.(2)设y 与产量x 的线性回归方程为y ∧=b ∧x +a ∧,x =2+3+5+64=4,y =7+8+9+124=9, b ∧=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2=x 1y 1+x 2y 2+x 3y 3+x 4y 4-4x yx 21+x 22+x 23+x 24-4x2=1110=1.10, a ∧=y -b ∧x =9-1.10×4=4.60.∴回归方程为:y ∧=1.10x +4.60.10.高三(1)班的10名学生每周用于数学学习的时间x (h)与数学成绩y (分)之间有如下对应数据:x 24 15 23 19 16 11 20 16 17 13 y92799789644783687159如果y 与x 之间具有线性相关关系,求回归直线方程.(保留2位小数) 【解】 列出下表,并用科学计算器进行有关计算.i 1 2 3 4 5 6 7 8 9 10 x i 24 15 23 19 16 11 20 16 17 13 y i 92799789 64 4783687159 x i y i 2 208 1 185 2 231 1 6911 024517 1 660 1 088 1 207767x =17.4,y =74.9,∑i =110x 2i =3 182,∑i =110x i y i=13 578b ∧=∑i =110x i y i -10x·y∑i =110x 2i -10x2=545.4154.4≈3.53, a ∧=y -b ∧x =74.9-3.53×17.4≈13.48,∴所求的回归方程是y ∧=3.53x +13.48.11.某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份 2004 2006 2008 2010 2012 需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程y ∧=b ∧x +a ∧;(2)利用(1)中所求出的直线方程预测该地2014年的粮食需求量.【解】 (1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来求回归直线方程,先将数据预处理如下:年份-2008 -4 -2 0 2 4 需求量-257-21-111929对预处理的数据,容易算得x =0,y =3.2,b ∧=-4×-21+-2×-11+2×19+4×2942+22+22+42=26040=6.5, a ∧=y -b ∧x =3.2.由上述计算结果,知所求回归直线方程为y ∧-257=b ∧(x -2 006)+a ∧=6.5(x -2 006)+3.2. 即y ∧=6.5×(x -2 006)+260.2.(2)利用所求得的回归方程,可预测2014年的粮食需求量为 6.5×(2 014-2 006)+260.2=6.5×8+260.2=312.2(万吨).(教师用书独具)一般地,一个人的身高越高,他的手就越大.为了调查这一问题,对10名高三男生的身高与右手一拃长测量得如下数据(单位:cm): 身高 168 170 171 172 174 176 178 178 180 181一拃长 19.020.0 21.0 21.5 21.0 22.0 24.0 23.0 22.5 23.0(1)根据上述数据制作散点图,能发现两者有何近似关系吗? (2)如果两个变量近似成线性关系,求线性回归方程; (3)如果一个学生身高185 cm ,估计他的右手一拃长.【思路探究】 作散点图→判断→求a ∧,b ∧→得回归方程→估计 【自主解答】 (1)以横轴表示身高,以纵轴表示一拃长,作散点图.由散点图可以看出,各点散布在一条直线附近,即它们线性相关.(2)设线性回归方程为y ∧=b ∧x +a ∧.用计算器计算可得b ∧≈0.303,a ∧≈-31.246,∴回归方程为y ∧=0.303x -31.246.(3)当x =185时,y ∧=24.809.即一个学生身高185 cm ,估计他的右手一拃长24.809 cm.在10年间,某城市居民的年收入x (万元)与某种商品的销售额y (万元)之间的关系有如下数据:1 2 3 4 5 6 7 8 9 10市居民年收入 32.2 31.1 32.9 35.8 37.1 38.0 39.0 43.0 44.6 46.0商品销售额25.030.034.037.039.041.042.044.048.051.0(1)画出散点图;(2)如果散点图中的各点大致分布在一条直线的附近,求y 与x 之间的回归直线方程. 【解】 (1)散点图如图所示:(2)列表如下:1 2 3 4 5 6 7 8 9 10 32.2 31.1 32.9 35.8 37.1 38.0 39.0 43.0 44.6 46. 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 51.i 8059331118.61324.61446.9 1558 1 638 1892 2140.8 234x -=37.97,y -=39.1,∑i =110x 2i =14 663.67,∑i =110x i y i =15 202.9b ∧=∑i =110x i y i -10x -y-∑i =110x 2i -10 x 2=15 202.9-10×37.97×39.114 663.67-10×37.972=356.63246.461≈1.447, a ∧=y --b ∧x -=39.1-1.447×37.97≈-15.843,因此所求的回归直线方程是y ∧=b ∧x +a ∧=1.447x -15.843.(见学生用书第45页)抽样方法的应用随机抽样方法有简单随机抽样、系统抽样和分层抽样这三种.三种方法的共同特点是在抽样过程中每个个体被抽取的机会相同,体现了这些抽样方法的客观性和公平性.其中简单随机抽样是最简单和最基本的抽样方法.在进行系统抽样和分层抽样时都要用到简单随机抽样方法.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体由差异明显的几部分组成时,常采用分层抽样.实现简单随机抽样,常用抽签法和随机数表法.某装订厂平均每小时装订图书362册,要求检验员每小时抽取40册图书检验其质量情况,请设计一个抽样方案.【思路点拨】因为总体容量比较大,样本容量也比较大,所以可用系统抽样的方法抽样.【规范解答】第一步:把这些图书分成40个小组,由于362÷40的商是9,余数是2,所以每个组有9册书,还剩余2册书,这时抽样间距就是9;第二步:先用简单随机抽样的方法从这些书中抽取2册书,不进行检查;第三步:将剩下的书进行编号,编号分别为0,1, (359)第四步:从第一组(编号为0,1,…,8)书中用简单随机抽样的方法,抽取1册书,设其编号为k;第五步:抽取编号分别为下面数字的书:k,k+9,k+18,k+27,…,k+39×9,这样就抽取了有40个个体的样本.某工厂平均每天生产某种机器零件大约10 000件,要求产品检验员每天抽取50件零件检查其质量状况,假设一天的生产时间中生产机器零件的件数是均等的,请你设计一个抽样方案.【解】 第一步:按生产时间将一天分为50个时间段,也就是说,每个时间段大约生产10 00050=200件产品,这时抽样间距就是200;第二步:将一天中生产的零件进行顺序编号,比如第一个生产出来的零件就是0号,第二个生产出来的零件就是1号等等;第三步:从第一个时间段中按照简单随机抽样的方法抽取一个产品,比如是第k 号零件; 第四步:顺次地抽取编号分别为下列数字的零件:k +200,k +400,k +600,…,k +9 800,这样就抽取了一个容量为50的样本.用样本的频率分布估计总体分布本专题主要利用统计表、统计图分析估计总体的分布规律.要熟练掌握绘制统计图表的方法,明确图表中有关数据的意义是正确分析问题的关键.从图形与图表中获取有关信息加以整理,是近年来高考命题的热点问题.(1)用样本频率分布估计总体频率分布时,通常要对给定的一组数据进行列表、作图处理,作频率分布表与频率分布直方图时要注意其方法步骤.(2)茎叶图刻画数据有两个优点:一是所有信息都可以从图中得到,二是便于记录和表示,但数据位数较多时不方便.某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:组别频数频率145.5~149.580.16149.5~153.560.12153.5~157.5140.28157.5~161.5100.20161.5~165.580.16165.5~169.5m n合计M N(1)求出表中字母m,n,M,N所对应的数值;(2)在给出的直角坐标系中画出频率分布直方图;(3)估计该校高一女生身高在149.5~165.5 cm范围内有多少人?【思路点拨】利用频率分布表的特征求出m,n,M,N,根据画频率分布直方图的步骤画出频率分布直方图,最后利用图形估计总体的分布.【规范解答】(1)由题意M=80.16=50,落在区间165.5~169.5内数据频数m=50-(8+6+14+10+8)=4,频率为n=0.08,总频率N=1.00.(2)(3)该所学校高一女生身高在149.5~165.5 cm之间的比例为0.12+0.28+0.20+0.16=0.76,则该校高一女生在此范围内的人数为450×0.76=342(人).下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高资料(单位:cm)区间[122,126)[126,130)[130,134)[134,138)[138,142) 人数58102233区间[142,146)[146,150)[150,154)[154,158]人数20116 5(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计身高低于134 cm的人数占总人数的百分比.【解】(1)列出样本频率分布表:分组频数频率[122,126) 5 0.04 [126,130) 8 0.07 [130,134) 10 0.08 [134,138) 22 0.18 [138,142) 33 0.28 [142,146) 20 0.17 [146,150) 11 0.09 [150,154) 6 0.05 [154,158) 5 0.04 合计120 1.00(2)画出频率分布直方图,如下图所示.(3)因为样本中身高低于134 cm 的人数的频率为 5+8+10120=23120≈0.19. 所以估计身高低于134 cm 的人数约占总人数的19%.用样本的数字特征估计总体的数字特征总体的平均数与标准差往往通过样本的平均数、标准差来估计.一般地,样本容量越大,对总体的估计越精确.平均数描述集中趋势,方差、标准差描述波动大小,也可以说方差、标准差反映各个数据与其平均数的离散程度.一组数据的方差或标准差越大,说明这组数据波动越大.方差的单位是原数据单位的平方,标准差的单位与原单位相同.某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:甲:102,101,99,98,103,98,99乙:110,115,90,85,75,115,110(1)这种抽样方法是哪一种?(2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定.【思路点拨】(1)由简单随机抽样的特点判断.(2)“茎”上写十位或百位,“叶”上写个位.(3)计算方差的大小比较稳定性.【规范解答】(1)根据三种抽样的特点可知为系统抽样.(2)茎叶图为:(3)x 甲=17(102+101+99+103+98+99+98)=100,x 乙=17(110+115+90+85+75+115+110)=100,所以x 甲=x 乙=100.s 2甲=17[(102-100)2+(101-100)2+(99-100)2+(103-100)2+(98-100)2+(99-100)2+(98-100)2]≈3.428 6,s 2乙=17[(110-100)2+(115-100)2+(90-100)2+(85-100)2+(75-100)2+(115-100)2+(110-100)2]≈228.571 4.由于x 甲=x 乙,s 2甲<s 2乙,所以甲车间产品较稳定.如图2-1是甲、乙两个数字网站在24天中每天的点击量统计的茎叶图,据图回答下列各题:(1)请说明哪个网站更受欢迎;(2)若每次点击给网站带来0.2元的收益,则甲、乙网站每天的平均收益各约为多少元?甲乙 9 9 9 9 2 3 7 7 79 9 4 4 4 4 4 5 4 4 4 4 1 5 1 3 3 7 7 3 6 5 5 5 5 5 5 7 3 2 7 0 3 3 3 3 3 3 93 380 6 6。

高二数学 教案 2.3.1变量之间的相关关系教案人教版_必修3

高二数学  教案  2.3.1变量之间的相关关系教案人教版_必修3

2.3.1变量之间的相关关系教学目标:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

教学重点:通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。

【探究新知】一、创设情景:举一些现实生活中存在的许多相关关系的例子。

(P84)二、讲授新课:1相关关系的概念:自变量取值一定时,因变量的取值带有一定的随机性,则两个变量之间的关系叫做相关关系.对相关关系的理解应当注意以下几点:其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系,其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.【概念辨析】1、下列两个变量之间的关系不具有线性关系的是 ( )A. 小麦产量与施肥值B. 球的体积与表面积C. 蛋鸭产蛋个数与饲养天数D. 甘蔗的含糖量与生长期的日照天数2、下面现象间的关系属于线性相关关系的是( )A. 圆的周长和它的半径之间的关系B. 价格不变条件下,商品销售额与销售量之间的关系C. 家庭收入愈多,其消费支出也有增长的趋势D. 正方形面积和它的边长之间的关系3、下列两个变量之间的关系哪个不是函数关系?()A、角度和它的余弦值B、正方形边长和面积C、正n边形的边数和顶点角度之和D、人的年龄和身高观察表中数据,大体上随着施化肥量的增加,水稻的产量也在增加.只是表中两者之间的关系表现的不是很真切,需要对数据进行分析.我们可以作统计图、表,以便对两者有一个直观的印象和判断.散点图是研究相关关系最常用的一种统计图.2 散点图 我们把表示具有相关关系的两个变量的一组数据的图形,叫做散点图.上例的散点图如图.量 x 54321从散点图可以看出两变量的确存在一定关系,可见散点图能形象地反映各对数据的密切程度.从散点图可以看出因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域,这种相关关系称作 .若因变量随自变量的增大而减小则称作 ,负相关的散点图中的点分布在左上角到右下角的区域.练习 (09海南高考 )对变量x, y 有观测数据理力争(1x ,1y )(i=1,2,…,10),得散点图1;对变量u ,有观测数据(1u ,1v )(i=1,2,…,10),得散点图2. 由这两个散点图可以判断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 变量间的相关关系§2.3.1 变量之间的相关关系§2.3.2 两个变量的线性相关第1课时(一)导入新课思路 1在学校里,老师对学生经常这样说:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着一种相关关系.这种说法有没有根据呢?):请同学们如实填写下表(在空格中打“√” 好中差你的数学成绩你的物理成绩学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系.(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对.)物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法.数学成绩的高低对物理成绩的高低是有一定影响的.但决非唯一因素,还有其他因素,如是否喜欢物理,用在物理学习上的时间等等.(总结:不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少.但这两个变量是有一定关系的,它们之间是一种不确定性的关系.如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义.)为很好地说明上述问题,我们开始学习变量之间的相关关系和两个变量的线性相关.(教师板书课题)思路 2某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿的出生率低,于是,他就得出一个结论:天鹅能够带来孩子.你认为这样得到的结论可靠吗?如何证明这个结论的可靠性?(二)推进新课、新知探究、提出问题(1)粮食产量与施肥量有关系吗?“名师出高徒”可以解释为教师的水平越高,学生的水平也越高.教师的水平与学生的水平有什么关系?你能举出更多的描述生活中两个变量的相关关系的成语吗?(2)两个变量间的相关关系是什么?有几种?(3)两个变量间的相关关系的判断.讨论结果:(1)粮食产量与施肥量有关系,一般是在标准范围内,施肥越多,粮食产量越高;教师的水平与学生的水平是相关的,如水滴石穿,三人行必有我师等.我们还可以举出现实生活中存在的许多相关关系的问题.例如:商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关.粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素.因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等有关,可能还与个人的先天体质有关.应当说,对于上述各种问题中的两个变量之间的相关关系,我们都可以根据自己的生活、但是,不管你的经验多么丰富,如果只凭经学习经验作出相应的判断,因为“经验当中有规律”.验办事,还是很容易出错的.因此,在分析两个变量之间的相关关系时,我们需要一些有说服力的方法.在寻找变量之间相关关系的过程中,统计同样发挥着非常重要的作用.因为上面提到的这种关系,并不像匀速直线运动中时间与路程的关系那样是完全确定的,而是带有不确定性.这就需要通过收集大量的数据(有时通过调查,有时通过实验),在对数据进行统计分析的基础上,发现其中的规律,才能对它们之间的关系作出判断.(2)相关关系的概念:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.两个变量之间的关系分两类:①确定性的函数关系,例如我们以前学习过的一次函数、二次函数等;我们就说身高与体重这两个变②带有随机性的变量间的相关关系,例如“身高者,体重也重”,量具有相关关系.相关关系是一种非确定性关系.如商品销售收入与广告支出经费之间的关系.(还与商品质量、居民收入、生活环境等有关)(3)两个变量间的相关关系的判断:①散点图.②根据散点图中变量的对应点的离散程度,可以准确地判断两个变量是否具有相关关系.③正相关、负相关的概念.①教学散点图出示例题:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄23 27 38 41 45 49 50 脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2 年龄53 54 56 57 58 60 61 脂肪29.6 30.2 31.4 30.8 33.5 35.2 34.6 分析数据:大体上来看,随着年龄的增加,人体中脂肪的百分比也在增加.我们可以作散点图来进一步分析.②散点图的概念:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图,如下图.从散点图我们可以看出,年龄越大,体内脂肪含量越高.图中点的趋势表明两个变量之间确实存在一定的关系,这个图支持了我们从数据表中得出的结论.(a.如果所有的样本点都落在某一函数曲线上,就用该函数来描述变量之间的关系,即变量之间具有函数关系. b.如果所有的样本点都落在某一函数曲线附近,变量之间就有相关关系.c.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系)③正相关与负相关的概念:如果散点图中的点散布在从左下角到右上角的区域内,称为正相关.如果散点图中的点散布在从左上角到右下角的区域内,称为负相关.(注:散点图的点如果几乎没有什么规则,则这两个变量之间不具有相关关系)(三)应用示例思路 1例1 下列关系中,带有随机性相关关系的是_____________.①正方形的边长与面积之间的关系②水稻产量与施肥量之间的关系③人的身高与年龄之间的关系④降雪量与交通事故的发生率之间的关系解析:两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②水稻产量与施肥量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄达到一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系,因此填②④.答案:②④例 2 有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?分析:学生思考,然后讨论交流,教师及时评价.解:从已经掌握的知识来看,吸烟会损害身体的健康,但是除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果.我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题.但吸烟引起健康问题的可能性大.因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.点评:在探究研究的过程中,如果能够从两个变量的观察数据之间发现相关关系是极为有意义的,由此可以进一步研究二者之间是否蕴涵因果关系,从而发现引起这种相关关系的本质原因是什么.本题的意义在于引导学生重视对统计结果的解释,从中发现进一步研究的问题.思路 2例1 有时候,一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同类型的某种食品的数据.第二列表示此种食品所含热量的百分比,第三列数据表示由一些美食家以百分制给出的对此种食品口味的评价:品牌所含热量的百分比口味记录A 25 89B 34 89C 20 80D 19 78E 26 75F 20 71G 19 65H 24 62I 19 60J 13 52(1)作出这些数据的散点图.(2)关于两个变量之间的关系,你能得出什么结论?解:(1)散点图如下:(2)基本成正相关关系,即食品所含热量越高,口味越好.例2 案例分析:一般说来,一个人的身高越高,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系.为了对这个问题进行调查,我们收集了北京市某中学2003年高三年级96名学生的身高与右手一拃长的数据如下表.性别身高/cm 右手一拃长/cm 性别身高/cm 右手一拃长/cm 女152 18.5 女153 16.0女156 16.0 女157 20.0女158 17.3 女159 20.0女160 15.0 女160 16.0女160 17.5 女160 17.5女160 19.0 女160 19.0女160 19.0 女160 19.5女161 16.1 女161 18.0女162 18.2 女162 18.5女163 20.0 女163 21.5女164 17.0 女164 18.5女164 19.0 女164 20.0女165 15.0 女165 16.0女165 17.5 女165 19.5女166 19.0 女167 19.0女167 19.0 女168 16.0女168 19.0 女168 19.5女170 21.0 女170 21.0女170 21.0 女171 19.0女171 20.0 女171 21.5女172 18.5 女173 18.0女173 22.0 男162 19.0男164 19.0 男165 21.0男168 18.0 男168 19.0男169 17.0 男169 20.0男170 20.0 男170 21.0男170 21.5 男170 22.0男171 21.5 男171 21.5男171 22.3 男172 21.5男172 23.0 男173 20.0男173 20.0 男173 20.0男173 20.0 男173 21.0男174 22.0 男174 22.0男175 16.0 男175 20.0男175 21.0 男175 21.2男175 22.0 男176 16.0男176 19.0 男176 20.0男176 22.0 男176 22.0男177 21.0 男178 21.0男178 21.0 男178 22.5男178 24.0 男179 21.5男179 21.5 男179 23.0男180 22.5 男181 21.1男181 21.5 男181 23.0男182 18.5 男182 21.5男182 24.0 男183 21.2男185 25.0 男186 22.0男191 21.0 男191 23.0 (1)根据上表中的数据,制成散点图.你能从散点图中发现身高与右手一拃长之间的近似关系吗?(2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系.(3)如果一个学生的身高是188 cm,你能估计他的一拃大概有多长吗?解:根据上表中的数据,制成的散点图如下.从散点图上可以发现,身高与右手一拃长之间的总体趋势是成一直线,也就是说,它们之间是线性相关的.那么,怎样确定这条直线呢?同学1:选择能反映直线变化的两个点,例如(153,16),(191,23)两点确定一条直线.同学2:在图中放上一根细绳,使得上面和下面点的个数相同或基本相同.同学3:多取几组点对,确定几条直线方程.再分别算出各个直线方程斜率、截距的算术平均值,作为所求直线的斜率、截距.同学4:从左端点开始,取两条直线,如下图.再取这两条直线的“中间位置”作一条直线.同学5:先求出相同身高同学右手一拃长的平均值,画出散点图,如下图,再画出近似的直线,使得在直线两侧的点数尽可能一样多.同学6:先将所有的点分成两部分,一部分是身高在170 cm以下的,一部分是身高在170 cm 以上的;然后,每部分的点求一个“平均点”——身高的平均值作为平均身高、右手一拃的平均值作为平均右手一拃长,即(164,19),(177,21);最后,将这两点连接成一条直线.同学7:先将所有的点按从小到大的顺序进行排列,尽可能地平均分成三等份;每部分的点按最小的点为(161.3,18.2),中间的点为(170.5,20.1),最大照同学3的方法求一个“平均点”,的点为(179.2,21.3).求出这三个点的“平均点”为(170.3,19.9).我再用直尺连接最大点与最小点,然后平行地推,画出过点(170.3,19.9)的直线.同学8:取一条直线,使得在它附近的点比较多.在这里需要强调的是,身高和右手一拃长之间没有函数关系.我们得到的直线方程,只是对其变化趋势的一个近似描述.对一个给定身高的人,人们可以用这个方程来估计这个人的右手一拃长,这是十分有意义的.(四)知能训练一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了10次试验,收集数据如下:零件数x(个)10 20 30 40 50 60 70 80 90 100 加工时间y(min) 62 68 75 81 89 95 102 108 115 122 画出散点图;关于加工零件的个数与加工时间,你能得出什么结论?答案:(1)散点图如下:(2)加工零件的个数与所花费的时间呈正线性相关关系.(五)拓展提升以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积(m2)115 110 80 135 105销售价格(万元)24.8 21.6 18.4 29.2 22 (1)画出数据对应的散点图;(2)指出是正相关还是负相关;(3)关于销售价格y和房屋的面积x,你能得出什么结论?解:(1)数据对应的散点图如下图所示:(2)散点图中的点散分布在从左下角到右上角的区域内,所以是正相关.(3)关于销售价格y和房屋的面积x,房屋的面积越大,价格越高,它们呈正线性相关的关系.。

相关文档
最新文档