函数恒成立与有解问题

合集下载

第10讲 恒成立能成立3种常见题型(解析版)

第10讲 恒成立能成立3种常见题型(解析版)

第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。

有解与恒成立问题

有解与恒成立问题

(2)若函数f (x)在(-1,3)上单调,求实数a的取值范围.
3.在△ABC 中,角A,B,C 所对的边分别为a,b,c.若存在λ∈R, 不等式 λBC BA BC 成立,则 c b 的最小值为________.
bc
4.已知函数
的值是
f x x a2
.
ex a 2a R ,若存在 x0 R ,使得
3.存在实数x使不等式2sinx+cosx-a>0成立,则a的取值范围是 , 5.
设f(x)=2sinx+cosx = 5sin(x+θ) 5, 5
1.a=f(x)有解 2(1)a<f(x)恒成立
2(2)a≤f(x)恒成立 3.a<f(x)有解
分离变量 值域转化
A.情景再现
4(1)若关于x的不等式x2-ax-a>0的解集为R,求实数a的取值范围; (2)若关于x的不等式x2-ax-a≤-3的解集不是空集,求实数a的取值范围
归纳: 常见的双变量不等式恒成立问题的类型
(1)对于任意的x1∈[a,b],总存在x2∈[m,n],使得f (x1)=g(x2)⇔
.
(2)对于任意的x1∈[a,b],总存在x2∈[m,n],使得f (x1)=g(x2)⇔
(3)对于任意的x1∈[a,b],总存在x2∈[m,n],使得f (x1)≤g(x2)⇔
2
x
B.知识梳理:
有解与恒成立问题常见处理方法: 方法一:分离变量 值域转化 方法二:数形结合 探究大小 方法三:带参讨论(下次课内容)
C.拓展提升 数形结合 探究大小
f

x



x
2 x 3, 2

函数恒成立存在性及有解问题

函数恒成立存在性及有解问题

-.函数恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:假设A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,假设,D x ∈B x f ≤)(在D 上恰成立,那么等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,那么()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,那么()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,那么()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,那么()()x g x f max min ≤8、假设不等式()()f x g x >在区间D 上恒成立,那么等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、假设不等式()()f x g x <在区间D 上恒成立,那么等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例题讲解:题型一、常见方法1、函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1〕对任意]2,1[∈x ,都有)()(x g x f >恒成立,数a 的取值围; 2〕对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,数a 的取值围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,数b 的取值围.3、两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,那么实数m 的取值围为题型二、主参换位法(某个参数的围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值围。

函数恒成立存在性与有解问题

函数恒成立存在性与有解问题

函数恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;例题讲解:题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

二次函数型有关的恒成立与有解问题教师版

二次函数型有关的恒成立与有解问题教师版

1 / 13二次函数型 的恒成立与有解题型归纳一、知识点形如()()()2g x a f x bf x c =++⎡⎤⎣⎦的函数称为二次型函数,与二次型函数有关的恒成立或有解问题一般利用二次函数的性质求解.二、例题赏析(一)一元二次不等式在R 上的恒成立或有解问题 对于二次函数)0(0)(2≠>++=a c bx ax x f 有:1.R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2.R x x f ∈<在0)(上恒成立00<∆<⇔且a . 基本题型:【例】 若不等式2kx 2+kx −38<0对一切实数x 都成立,则实数k 的取值范围为 A .(−3,0) B .(−3,0]C .(−∞,0]D .(−∞,−3)∪[0,+∞)【详解】当k =0时,原不等式可化为−38<0,对x ∈R 恒成立;当k ≠0时,原不等式恒成立,需{2k <0Δ=k 2−4×2k ×(−38)<0 ,解得k ∈(−3,0),综上k ∈(−3,0].故选B.【变式训练】 若关于x 的不等式221)(1)201k x k x x x -+-+>++(的解集为R ,则k 的范围为____________. 【详解】因为22131024⎛⎫++=++> ⎪⎝⎭x x x ,所以221)(1)201k x k x x x -+-+>++(等价于21)(1)20(-+-+>k x k x 恒成立,当1k =时,20>成立,当1k ≠时,则()()2101810k k k ->⎧⎪⎨∆=---<⎪⎩ ,解得19k << , 综上:19k ≤<.故答案为:19k ≤<.2 / 13【变式训练】 若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0]B .[-3,0)C .[-3,0]D .(-3,0)【解析】∵2kx 2+kx -38<0为一元二次不等式,∴k ≠0,又2kx 2+kx -38<0对一切实数x 都成立,则必有200k <⎧⎨∆<⎩,解得-3<k <0. 【变式训练】若函数22log (28)y kx kx =-+的定义域为一切实数,则实数k 的取值范围为____________. 【详解】因为函数22log (28)y kx kx =-+的定义域为一切R ,等价于228kx kx -+>0,对任意的实数x 恒成立.当0k =时,80>,符合条件.当0k ≠时,2084320k k k k >⎧⇒<<⎨∆=-<⎩.综上08k ≤<. (二) 一元二次不等式在给定区间上的恒成立或有解问题 设(1)当时,上恒成立 上恒成立(2)当时,上恒成立上恒成立 类型一:构造二次函数分类讨论【例】设函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 【分析】本题可转化为二次函数在闭区间上的最值,也可以通过分类参数求解. 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:2()(0).f x ax bx c a =++≠0>a ],[0)(βα∈>x x f 在,222()00()0.b b ba a af f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<>⎩⎩⎩或或],[0)(βα∈<x x f 在()0,()0.f f αβ<⎧⇔⎨<⎩0<a ],[0)(βα∈>x x f 在()()0,0.f f αβ>⎧⎪⇔⎨>⎪⎩],[0)(βα∈<x x f 在,222()00()0.b b ba aa f f ααββαβ⎧⎧⎧-<≤-≤->⎪⎪⎪⇔⎨⎨⎨⎪⎪⎪>∆<<⎩⎩⎩或或3 / 13令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. (1)当m >0时,g (x )在[1,3]上是增函数,所以g (x )max =g (3)⇒7m -6<0,所以m <67,所以0<m <67;(2)当m =0时,-6<0恒成立;(3)当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)⇒m -6<0,所以m <6,所以m <0. 综上所述,m 的取值范围是{m |m <67}.【变式训练】已知不等式mx 2-2x -m +1<0,是否存在实数m 对所有的实数x ,使不等式恒成立?若存在,求出m 的取值范围;若不存在,请说明理由.【解析】不等式mx 2-2x -m +1<0恒成立,即函数f (x )=mx 2-2x -m +1的图象全部在x 轴下方. 当m =0时,1-2x <0,则x >12,不满足题意;当m ≠0时,f (x )=mx 2-2x -m +1为二次函数,需满足开口向下且方程mx 2-2x -m +1=0无解,即00m <⎧⎨∆<⎩,不等式组的解集为空集,即m 无解.综上可知,不存在这样的m . 类型二:分离参数法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.利用分离参数法来确定不等式(,为实参数)恒成立中参数的取值范围的基本步骤:(1)将参数与变量分离,即化为(或)恒成立的形式; (2)求在上的最大(或最小)值;(3)解不等式(或) ,得的取值范围.【例】 已知函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,则实数m 的取值范围为______. 【详解】()()3221143432f x x mx x f x x mx '=-+-∴=-+Q ,因为函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,所以240x mx -+≥在区间[]1,2上恒成立,即min 4(),[1,2]m x x x≤+∈,因为(),0f x λ≥D x ∈λλ()()g f x λ≥()()g f x λ≤()f x x D ∈()max ()g f x λ≥()()min g f x λ≤λ4 / 134y x x =+≥,当且仅当2x =时取等号,所以4y x x =+最小值为4,即4m ≤,故答案为:4m ≤ 【变式训练】已知()22xxf x -=-,若不等式()()230f x ax a f -++>对任意实数[]2,3x ∈恒成立,则实数a 的取值范围是________. 【详解】1()2222xxx x f x -=-=-,因为2xy =与12xy =-均为实数集上的增函数, 所以()f x 为实数集上的增函数,又()22()x xf x f x --=-=-,所以()f x 为实数集上的奇函数,由不等式2()(3)0f x ax a f -++>对任意实数[2,3]x ∈恒成立, 得2()(3)(3)f x ax a f f -+>-=-对任意实数[2,3]x ∈恒成立, 则23x ax a -+>-,即2(1)3x a x -<+在[2,3]x ∈时恒成立,得223(1)2(1)44(1)2111x x x a x x x x +-+-+<==-++---,因为函数4(1)21u x x =-++-在[2,3]上单调递减, 所以4(1)21u x x =-++-的最小值为2226++=,所以6a <, 所以a 的取值范围是(,6)-∞,故答案为:(,6)-∞. 类型三:主参换位——反客为主法【例】(2020·上海中学高一期中)已知二次函数22()42(2)21f x x p x p p =----+,若在区间[1,1]-内至少存在一个实数x 使()0f x >,则实数p 的取值范围是__________. 【答案】3(3,)2-【解析】因为二次函数()f x 在区间[1,1]-内至少存在一个实数x ,使()0f x >的否定是:“函数()f x 在区间[1,1]-内任意实数x ,使()0f x ≤”,所以(1)0(1)0≤-⎨≤⎧⎩f f ,即2242(2)21042(2)210----+≤+---+≤⎧⎨⎩p p p p p p ,整理得222390210+-≥-⎧⎩-⎨≥p p p p ,解得32p ≥或3p ≤-,所以二次函数在区间[1,1]-内至少存在一个实数x ,使()0f x >的实数p 的取值范围是3(3,)2-.5 / 13【变式训练】已知函数若对于任意,都有成立,则实数的取值范围是 .【解析】由题意可得()0f x <对于[,1]x m m ∈+上恒成立,即22()210(1)230f m m f m m m ⎧=-<⎨+=+<⎩,解得0m <<. 【变式训练】对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,求x 的取值范围. 【解析】由f(x)=x 2+(m -4)x +4-2m =(x -2)m +x 2-4x +4,令g (m )=(x -2)m +x 2-4x +4, 则原问题转化为关于m 的一次函数问题.由题意知在[-1,1]上,g(m)的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0,解得x<1或x>3. 故当x 的取值范围是(-∞,1)∴(3,+∞)时,对任意的m∴[-1,1],函数f(x)的值恒大于零. (三) ()()20a f x bf x c ++>⎡⎤⎣⎦ 恒成立问题形如()()20a f x bf x c ++>⎡⎤⎣⎦的不等式恒成立问题,可设()t f x =,转化为一元二次不等式,但要注意()t f x =的范围.【例】(2019·湖南茶陵三中高一期中)函数12()2x x m f x n+-=+是R 上的奇函数,m 、n 是常数.(1)求m ,n 的值;(2)判断()f x 的单调性并证明; (3)不等式()()33920xxx f k f ⋅+--<对任意R x ∈恒成立,求实数k 的取值范围.【分析】(1)依题意()f x 时R 上的奇函数,则采用特殊值法,(0)0(1)(1)f f f =⎧⎨-=-⎩即可求出参数的值;(2)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可; (3)根据函数的奇偶性和单调性将函数不等式转化为自变量的不等式,即()23(1)320xx k -+⋅+>对任意R x ∈恒成立,令3(0)x t t =>,即2(1)20t k t -++>,对0t >恒成立,令2()(1)2g t t k t =-++,根据二次函数的性质分析可得;,1)(2-+=mx x x f ]1,[+∈m m x 0)(<x f m6 / 13【详解】(1)∴12()2x x mf x n +-=+是R 上的奇函数,∴(0)0(1)(1)f f f =⎧⎨-=-⎩∴12m n =⎧⎨=⎩ ∴12111()22221x x xf x +-==-++. (2)()f x 在R 上递增证明:设12,x x R ∈,且12x x <,则()()()()121212121111222212212121x x x x x x f x f x --=--+=++++,∴12x x <∴12220x x -<又1210x +>,2210x +>,∴()()120f x f x -<,即()()12f x f x <,∴()f x 是R 上的增函数.(3)由题意得:()()()3392932xxx x x f k f f ⋅<---=-+对任意x ∈R 恒成立又()f x 是R 上的增函数,∴3932x x x k ⋅<-+即()23(1)320xx k -+⋅+>对任意x ∈R 恒成立,令3(0)xt t =>,即2(1)20t k t -++>,对0t >恒成立,令2()(1)2g t t k t =-++,对称轴为12k t +=, (1)当102k +≤即1k ≤-时,()g t 在(0,)+∞为增函数,∴()(0)20g t g >=>成立,∴1k ≤-符合, (2)当102k +>即1k >-时,()g t 在10,2k +⎛⎫ ⎪⎝⎭为减,1,2k +⎛⎫+∞⎪⎝⎭为增, ∴22min 1(1)(1)()20242k k k g t g +++⎛⎫==-+> ⎪⎝⎭,解得11k -<<,∴11k -<<. 综上实数k的取值范围为1k <.【变式训练】若关于x 的不等式cos2sin 0x x a ++<恒成立,则实数a 的取值范围是 . 【分析】把不等式转化为关于sin x 的一元二次不等式.【解析】2211cos 2sin 12sin sin 2sin 48x x a x x a x a ⎛⎫++=-++=--++ ⎪⎝⎭,当1sin 4x =时cos2sin x x a ++取得最小值18a +,所以实数a 的取值范围是1,8⎛⎫-∞- ⎪⎝⎭.7 / 13【变式训练】设b ∈R ,若函数f (x )=4x −2x+1+b 在[−1,1]上的最大值是3,则其在[−1,1]上的最小值是( )A .2B .1C .0D .−1【解析】f (x )=4x −2x+1+b =(2x )2−2⋅2x +b.设2x =t,则f (x )=t 2−2t +b =(t −1)2+b −1. 因为x ∈[−1,1],所以t ∈[12,2].当t =1时,f (x )min =f (1)=b −1;当t =2时,f (x )max =3,即1+b −1=3,b =3.于是f (x )min =2.故选A. (四)、其它函数:对于二次函数)0(0)(2≠>++=a c bx ax x f 有: (1)()()max x f a x f a ≥⇔≥恒成立; (2)()()min x f a x f a ≤⇔≤恒成立;(3)恒成立(注:若的最小值不存在,则恒成立的下界大于0);恒成立(注:若的最大值不存在,则恒成立的上界小于0).【例】 不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为_________. 【分析】根据二次不等式的恒成立问题,先求解不等式左边的最小值,再求解二次不等式即可.【详解】因为()2225144x x x -+=-+≥,故243a a ≥-恒成立.即()()2340140a a a a --≤⇒+-≤,解得14a -≤≤.实数a 的取值范围为[]1,4-.故答案为:[]1,4-【例】(2019·甘肃高二期末(理))若关于x 的不等式24x x m -≥对任意[0,1]x ∈恒成立,则实数m 的取值范围是 .【解析】设24,24y x x y x '=-=-,令0y '=,得 2.x =∴24y x x =-在(),2-∞上是减函数,即在[]0,1x ∈上也是减函数,2min 143,3y m ∴=-=-∴≤-.【变式训练】【2019天津市和平区高三第二次质量调查】若不等式−x 2+2x +3≤21−3a 对任意实数x 都成立,则实数a 的最大值为________.【解析】设f(x)=−x 2+2x +3,不等式−x 2+2x +3≤21−3a 对任意实数x 都成立,只需满足f(x)max ≤()0f x >⇔min ()0f x >()f x ()0f x >⇔()f x ()0f x <⇔max ()0f x <()f x ()0f x <⇔()f x8 / 1321−3a ,即可.f(x)=−x 2+2x +3=−(x −1)2+4⇒f(x)max =4,所以有 4≤21−3a ⇒a ≤−13,因此实数a 的最大值为−13.三、跟踪训练1、(2020·福建厦门高二月考(理))已知函数3211()4332f x x mx x =-+-在区间[]1,2上是增函数,实数m 的取值范围为( )A .45m ≤≤B .24m ≤≤C .4m <D .4m ≤【分析】求出3211()4332f x x mx x =-+-导函数,利用函数的单调性,推出4m x x ≤+不等式,利用基本不等式求解函数的最值,即可求得答案. 【详解】Q 函数3211()4332f x x mx x =-+-,∴2()4f x x mx '=-+, Q 函数3211()4332f x x mx x =-+-在区间上[1,2]是增函数,可得240x mx -+≥,在区间上[1,2]恒成立, 即:4,m x x ≤+在区间上[1,2]恒成立,Q 44x x +≥=,当且仅当2x =时取等号,可得4m ≤. 2.己知f(x)=x 2+2x +1+a ,∀x ∈R ,f(f(x))≥0恒成立,则实数a 的取值范围为( ) A .[√5−12,+∞] B .[√5−32,+∞] C .[−1,+∞) D .[0,+∞)【解析】设t =f(x)=(x +1)2+a ≥a ,∴f(t)≥0对任意t ≥a 恒成立,即(t +1)2+a ≥0对任意t ∈[a,+∞)都成立,当a ≤−1时f(t)min =f(−1)=a ,则a +a ≥0即a ≥0与讨论a ≤−1矛盾,当a >−1时,f(t)min =f(a)=a 2+3a +1,则a 2+3a +1≥0,解得a ≥√5−32,故选B .3、若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是( ) A .(],1-∞ B .(),1-∞ C .(],2-∞ D .(),2-∞【解析】【分析】求()2f'x 6x 6mx 6=-+,根据题意可知()f'x 0≥在()1,∞+上恒成立,可设()2g x 6x 6mx 6=-+,法一:讨论V 的取值,从而判断()g x 0≥是否在()1,∞+上恒成立:0≤V 时,容易求出2m 2-≤≤,显然满足()g x 0≥;0V >时,得到关于m 的不等式组,这样求出m 的范围,和前面求出的m 范围求并集即可,法二:分离参数,求出m 的范围即可.9 / 13【详解】()2f'x 6x 6mx 6=-+;由已知条件知()x 1,∞∈+时,()f'x 0≥恒成立;设()2g x 6x 6mx 6=-+,则()g x 0≥在()1,∞+上恒成立;法一:()1若()236m 40=-≤V ,即2m 2-≤≤,满足()g x 0≥在()1,∞+上恒成立;()2若()236m 40=->V ,即m 2<-,或m 2>,则需()m 121660g m ⎧<⎪⎨⎪=-≥⎩解得m 2≤; m 2∴<-,∴综上得m 2≤, ∴实数m 的取值范围是(],2∞-;法二:问题转化为1m x x ≤+在()1,∞+恒成立,而函数1y x 2x=+≥,故m 2≤;故选C . 4、已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是( ) A .-1<b <0 B .b >2 C .b <-1或b >2D .不能确定【解析】由f (1-x )=f (1+x )知f (x )图象的对称轴为直线x =1,则有a2=1,故a =2.,由f (x )的图象可知f (x )在[-1,1]上为增函数.∴x ∈[-1,1]时,f (x )min =f (-1)=-1-2+b 2-b +1=b 2-b -2,令b 2-b -2>0,解得b <-1或b >2.5.已知f (x )=m (x −2m )(x +m +3),g (x )=4x −2,若对任意x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是( )A .(−72,+∞) B .(−∞,14) C .(−72,0) D .(0,14) 【解析】∴g (x )=4x ﹣2,当x<12时,g (x )<0恒成立,当x ≥12时,g (x )≥0,又∴∴x ∴R ,f (x )<0或g (x )<0,∴f (x )=m (x ﹣2m )(x +m +3)<0在x ≥12时恒成立,即m (x ﹣2m )(x +m +3)<0在x ≥12时恒成立, 则二次函数y =m (x ﹣2m )(x +m +3)图象开口只能向下,且与x 轴交点都在(12,0)的左侧,10 / 13∴{ m <0−m −3<122m <12 ,即{m <0m >−72m <14 ,解得−72<m <0,∴实数m 的取值范围是:(−72,0).故选C . 6.【河南省郑州市2019年高三第二次质量检测】已知平面向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=2,|a ⃑−b ⃑⃑|=√7,若对于任意实数k ,不等式|ka ⃑+tb ⃑⃑|>1恒成立,则实数t 的取值范围是( ) A .(−∞,−√3)∪(√3,+∞) B .(−∞,−√33)∪(√33,+∞) C .(√3,+∞) D .(√33,+∞) 【解析】设向量a →,b →的夹角为θ,|a ⃑|=1,|b ⃑⃑|=2,|a ⃑−b⃑⃑|=√7, 则(a ⃑−b ⃑⃑)2=a ⃑2+b ⃑⃑2−2a ⃑∙b ⃑⃑=1+4-2×1×2×cosθ=7,∴cosθ=−12,∴θ=120°,∴a ⃑∙b⃑⃑=−1, 又|ka ⃑+tb ⃑⃑|>1,∴(ka ⃑+tb ⃑⃑)2>1,即k 2a ⃑2+t 2b ⃑⃑2+2kta ⃑∙b ⃑⃑=k 2+4t 2−2kt >1对于任意实数k 恒成立,∴k 2−2kt +4t 2−1>0对于任意实数k 恒成立,∴∆=(2t )2-4(4t 2−1)<0,∴t<−√33或t>√33,故选B .7.【江西省宜丰中学2019届高三第二次月考】在R 上定义运算⊗:x ⊗y =x(1−y),若不等式(x −a)⊗(x +a)<1对任意实数x 恒成立,则实数a 的取值范围为 ( )A .−1<a <1B .−12<a <32C .−32<a <12D .0<a <2【解析】根据题设新定义的运算,可得(x −a)⊗(x +a)=(x −a )(1−x −a ),所以(x −a)⊗(x +a)<1可转化为(x −a )(1−x −a )<1,即x 2−x +(1−a 2+a )>0恒成立,根据二次函数的性质可知Δ=1−4(1−a 2+a )<0,解得−12<a <32,故选B.8.【山东省滨州市2019届高三期中】若对于任意的x >0,不等式mx ≤x 2+2x+4恒成立,则实数m 的取值范围为( )A .(﹣∞,4]B .(﹣∞,6]C .[﹣2,6]D .[6,+∞)【解析】当x >0时,mx ≤x 2+2x +4∴m ≤x +4x+2对任意实数x >0恒成立,令f (x )=x +4x+2,则m ≤f (x )min ,∴f (x )=x +4x+2≥2√x ⋅4x+2=6,∴m ≤6.故选B .9.【宁夏银川一中2018届高三第二次模拟】已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是A .[1,+∞)B .[−1,4)C .[−1,+∞)D .[−1,6]11 / 13【解析】不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥yx −2(y x )2,对于x ∈[1,2],y ∈[2,3]恒成立,令t =yx ,则1≤t ≤3,∴a ≥t −2t 2在[1,3]上恒成立,∵y =−2t 2+t =−2(t −14)2+18,∴t =1时,y max =−1,∴a ≥−1,a 的取值范围是[−1,+∞),故选C.10、若关于x 的二次不等式01)1(2<-+-+a x a ax 恒成立,则实数a 的取值范围是________. 【分析】利用a 的符号及判别式求解.【解析】由题意知,01)1(2<-+-+a x a ax 恒成立,所以⇔⎩⎨⎧<∆<00a ⎩⎨⎧<---<0)1(4)1(02a a a a ⇔⎩⎨⎧>--<012302a a a ⇔⎪⎩⎪⎨⎧-<><3110a a a 或⇔31-<a . ∴a 的取值范围是⎪⎭⎫ ⎝⎛-∞-31, 11. 不等式(acos 2x −3)sinx ≥−3对∀x ∈R 恒成立,则实数a 的取值范围是________.【解析】令sin =t,−1≤t ≤1,则原函数化为g (t )=(−at 2+a −3)t ,即g (t )=−at 3+(a −3)t , 由−at 3+(a −3)t ≥−3,−at (t 2−1)−3(t −1)≥0,(t −1)(−at (t +1)−3)≥0及t −1≤0知, −at (t +1)−3≤0,即a (t 2+t )≥−3,当t =0,−1时(1)总成立,对0<t ≤1,0<t 2+t ≤2,a ≥(−3t 2+t )max=−32;对−1<t <0,−14≤t 2+t <0,a ≤(−3t 2+t)min=12,从而可知−32≤a ≤12,故答案为[−32,12].12. 若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立,则实数k 的取值范围为______. 【解析】若不等式kx +3k > |x 2−4x −5|对x ∈[−1,5]恒成立, 则直线y =k (x +3)在y =|x 2−4x −5|, x ∈[−1,5]图象的上方,如图:联立:{y =k (x +3)y =5+4x −x2 ,可得x 2+(k −4)x +3k −5=012 / 13令∆=(k −4)2−4(3k −5)=0,k =2或18(舍去) ∴k >2,故答案为:k >213、 设函数2()2f x mx mx =--(1)若对于一切实数()0f x <恒成立,求m 的取值范围;(2)若对于[1,3],()2(1)x f x m x ∈>-+-恒成立,求m 的取值范围.【分析】(1)由不等式220mx mx --<恒成立,结合二次函数的性质,分类讨论,即可求解; (2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,整理得只需221xm x x >-+恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式220mx mx --<恒成立,∴当0m =时,显然20-<成立,所以0m =时,不等式220mx mx --<恒成立;∴当0m ≠时,只需2080m m m <⎧⎨∆=+<⎩,解得80m -<<, 综上所述,实数m 的取值范围为(8,0]-.(2)要使对于[1,3],()2(1)x f x m x ∈>-+-恒成立,只需22mx mx m x -+>恒成立,只需()212m x x x -+>,又因为22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,只需221x m x x >-+,令222211111x y x x x x x x ===-+-++-,则只需max m y >即可,因为12x x +>=,当且仅当1x x =,即1x =时等式成立; 因为[1,3]x ∈,所以max 2y =,所以2m >.14.(2019·江苏南通一中高一期末)已知a ∴R ,函数f (x )=x 2﹣2ax +5. (1)若a >1,且函数f (x )的定义域和值域均为[1,a ],求实数a 的值; (2)若不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立,求实数a 的取值范围. 【分析】(1)根据f (x )的图象开口向上,对称轴为x =a >1,知f (x )在[1,a ]上单调递减,所以f (1)=a 求解即可.13 / 13(2)将不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立,去绝对值转化为a 2512x x -≥且a 2512x x+≤在 x ∴[13,12]恒成立,分别令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∴[13,12],用二次函数求其最大值,令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∴[13,12],求其最小值即可. 【详解】(1)∴f (x )的图象开口向上,对称轴为x =a >1,∴f (x )在[1,a ]上单调递减, ∴f (1)=a ,即6﹣2a =a ,解得a =2..(2)不等式x |f (x )﹣x 2|≤1对x ∴[13,12]恒成立, 即x |2ax ﹣5|≤1对x ∴[13,12]恒成立, 故a 2512x x -≥且a 2512x x +≤在x ∴[13,12]恒成立,令g (x )2251115252228-⎛⎫==--+ ⎪⎝⎭x x x ,x ∴[13,12],所以g (x )max =g (25)258=, 所以258a ≥.令h (x )2251115252228+⎛⎫==+- ⎪⎝⎭x x x ,x ∴[13,12], 所以h (x )min =h (12)=7,所以7a ≤.综上:2578a ≤≤.。

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题

浅析“有解”与“恒成立”问题作者:邓卫和来源:《中学课程辅导高考版·教师版》2014年第24期摘要:在近年的高考中经常出现“有解”与“恒成立”问题,许多同学混淆了这两个概念,在解题时出错。

现对这两个概念进行阐述:“有解”是指“至少有一个满足条件的值使式子成立,则称该问题有解”。

“恒成立”是指“在某一范围内所有的变量值都使该问题成立,则称该问题恒成立”。

本文现通过具体问题进行阐述。

关键词:“有解”;“恒成立”;例析中图分类号:G427文献标识码:A ; ; 文章编号:1992-7711(2014)24-125-1一、有解问题例1方程x2-a|x|+4=0在x∈[-2,2]上有解,求a的范围。

分析:方程x2-a|x|+4=0在x∈[-2,2]上有解,可能有一解,也可能有两解,讨论比较复杂。

可通过分离变量a,转化为求函数的值域来解。

解:x2-a|x|+4=0当x=0时,方程不成立,因此x≠0故方程两边同除以|x|得a=|x|+4|x|≥2|x|·4|x|=4(当且仅当|x|=2时取到“=”)此时x=±2∈[-2,2],所以:当a≥4时该方程x2-a|x|+4=0在x∈[-2,2]上有解。

点评:本题通过“分离变量a”求值域,方法简单易行,在以后的学习中经常用到这一方法。

例2(2013重庆.理.16)若关于x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是。

分析:要使|x-5|+|x+3|<a无解,只要求|x-5|+|x+3|<a有解时实数a的范围,然后求a的补集即可。

要使|x-5|+|x+3|<a有解,则至少有一个或一个以上的x值使要|x-5|+|x+3|<a成立,因此,只要求a大于代数式|x-5|+|x+3|的最小值。

解:函数y=|x-5|+|x+3|=2-2xx≤-38-3<x<52x-2x≥5由此可知,该函数的值域为[8,+∞),因此:当a>8时,不等式|x-5|+|x+3|<a有解。

数学中恒成立与有解问题

数学中恒成立与有解问题

数学中的恒成立与有解问题一、恒成立问题若不等式 f x A 在区间 D 上恒成立 , 则等价于在区间 D 上 f x若不等式 f xB 在区间 D 上恒成立 , 则等价于在区间D 上 f x minmaxAB常用方法1、分别变量法;2、数形结合法;3、利用函数的性质;4、改正主元等;1、由二次函数的性质求参数的取值范围例题 1. 若关于 x 的不等式 ax 22x2 0 在 R 上恒成立 , 求实数 a 的取值范围 .解题思路 :结合二次函数的图象求解解析:当 a0 时 , 不等式 2x2 0 解集不为 R , 故 a 0 不满足题意 ;当 a0 时 , 要使原不等式解集为a 0, 解得a1R , 只要4 2a 0 222综上 , 所求实数 a 的取值范围为 ( 1,)22、转变成二次函数的最值求参数的取值范围例题 2:已知二次函数满足 f (0) 1,而且 f ( x 1) f ( x) 2x ,请解决以下问题( 1) 求二次函数的解析式。

,求 m 的取值范围。

( 2) 若 f (x) 2x m 在区间 [ 1,1] 上恒成立解题思路 :先分别系数 , 再由二次函数最值确定取值范围.解析: (1)设 f ( x)ax 2 bx c(a 0) .由 f (0)1 得 c 1,故 f ( x) ax2 bx 1.∵ f ( x 1) f ( x)2x ∴ a( x1)2 b( x 1)1 (ax2 bx 1) 2x即 2axa b 2x ,因此 2a 2, a b 0 ,解得 a 1,b1 ∴ f ( x)x 2x 1(2)由 (1) 知 x 2x 12x m 在 [ 1,1]恒成立 ,即 m x 2 3x 1 在 [ 1,1] 恒成立 .令 g( x)x 23x 1 (x 3)2 5 , 则 g(x) 在 [ 1,1] 上单调递减 . 因此 g(x) 在 [ 1,1] 上的最小值为g(1)1 .2 ( 4 , 1) .m 的取值范围是因此 规律总结 :m f (x) 对所有 x R 恒成立 , 则 m [ f (x)]min ; m f ( x) 对所有 x R 恒成立 , 则 m [ f (x)]max ;注意参数的端点值能否取到需检验。

数学中的恒成立与有解问题

数学中的恒成立与有解问题

数学中的恒成立与有解问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数学中的恒成立与有解问题一、恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <常用方法1、分离变量法;2、数形结合法;3、利用函数的性质;4、变更主元等;1、由二次函数的性质求参数的取值范围例题1.若关于x 的不等式2220ax x ++>在R 上恒成立,求实数a 的取值范围. 解题思路:结合二次函数的图象求解解析:当0a =时,不等式220x +>解集不为R ,故0a =不满足题意;当0a ≠时,要使原不等式解集为R ,只需202420a a >⎧⎨-⨯<⎩,解得12a >综上,所求实数a 的取值范围为1(,)2+∞2、转化为二次函数的最值求参数的取值范围例题2:已知二次函数满足(0)1f =,而且(1)()2f x f x x +-=,请解决下列问题 (1) 求二次函数的解析式。

(2) 若()2f x x m >+在区间[1,1]-上恒成立 ,求m 的取值范围。

解题思路:先分离系数,再由二次函数最值确定取值范围.解析:(1)设2()(0)f x ax bx c a =++≠.由(0)1f =得1c =,故2()1f x ax bx =++.∵(1)()2f x f x x +-= ∴22(1)(1)1(1)2a x b x ax bx x ++++-++=即22ax a b x ++=,所以22,0a a b =+=,解得1,1a b ==- ∴2()1f x x x =-+ (2)由(1)知212x x x m -+>+在[1,1]-恒成立,即231m x x <-+在[1,1]-恒成立.令2235()31()24g x x x x =-+=--,则()g x 在[1,1]-上单调递减.所以()g x 在[1,1]-上的最小值为(1)1g =-.所以m 的取值范围是(,1)-∞-.规律总结:()m f x ≤对一切x R ∈恒成立,则min [()]m f x ≤;()m f x ≥对一切x R ∈恒成立,则max [()]m f x ≥;注意参数的端点值能否取到需检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档