七年级数学上册 专题训练1 数轴上两点间的距离课件 (
【例题讲解】数轴上两点间距离公式的应用例 完整版课件

例 一个点从数轴上原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看 到终点表示的数是﹣2,已知点A,B是数轴上的点,完成下列各题
(1)如果A表示﹣3,将A向右移动7个单位长度得到点B,那么B表示的数是___4___,A,B
两点间的距离是_7____个单位长度.
Байду номын сангаас
-3
4
A
B
解答 (1)∵﹣3+7=4,
解答 (2) ∵3﹣7+5=1,
1
3
B
A
∴B表示的数为1,A、B两点间的距离为:|3﹣1|=2,
故答案为:1,2;
例 一个点从数轴上原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看 到终点表示的数是﹣2,已知点A,B是数轴上的点,完成下列各题
(3)一般地,如果A表示数a,将A向右移动b个单位长度,再向左移动c个单位长度得到B,那么 B表示的数是_a_+__b_﹣__c_ ,A,B两点间的距离是__|_b_﹣__c_| _个单位长度.(用含a,b,c的式子表示)
∴B表示的数为4,∴A、B两点间的距离为|4﹣(﹣3)|=7,
故答案为:4,7;
例 一个点从数轴上原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看 到终点表示的数是﹣2,已知点A,B是数轴上的点,完成下列各题
(2)如果A表示数3,将A向左移动7个单位长度再向右移动5个单位长度,得到点B,则点B 表示的数为_1_____ ,A,B两点间的距离是_2____个单位长度.
表示的数为___ ,A,B两点间的距离是___个单位长度.
3
B
A
(3)一般地,如果A表示数a,将A向右移动b个单位长度,再向左移动c个单位长度得到B
【例题讲解】数轴上两点间距离公式的应用例 -完整版课件

x -2
-1
0
1
例 同学们都知道,|5﹣(﹣3)|表示5与﹣3的差的绝对值,实际上也可理解为5与﹣3两数在数 轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间 的距离.试探索: (3)请你找出所有符合条件的整数x,使得|x-1|+|x+2|=3.
分析 根据|x-a|+|x-b|的几何意义:数轴上表示数x的点与表示数a、b两点的距离之和.即可解决
解答 当表示x的点在表示﹣2的点与表示1的点之间时如图,距离等于3,符合题意
-2
-1 x 0
1
∴x为-2至1之间的所有整数(包含-2和1), ∴x=﹣2或﹣1或0或1.
本题主要考查如何运用绝对值的几何意义确定数轴上两点间的距离,以及如何由两点间 距离确定数轴上的点的位置.
再见
例 同学们都知道,|5﹣(﹣3)|表示5与﹣3的差的绝对值,实际上也可理解为5与﹣3两数在数
轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间
的距离.试探索:
6个单位长度
(1)求|4﹣(﹣2)|= ___6___ ;
-2
0
4
(2)若|x-(﹣2)|=5,则x= __3_或__﹣__7___ ;
分析 根据|x-a|+|x-b|的几何意义:数轴上表示数x的点与表示数a、b两点的距离之和.即可解决 解答 (3)由题意可知:| x-1 |+|x+2|=3表示数轴上表示x的点到1和﹣2的距离之和为3,
当表示x的点在表示1的点右侧时如图,显然距离大于3,不合题意
-2
-1
0
1x
当表示x的点在表示﹣2的点左侧时如图,距离也大于3,不合题意
Hale Waihona Puke 当表示x的点在表示-2的点右侧,相距5个单位长度时, x=-2+5=3 当表示x的点在表示-2的点左侧,相距5个单位长度时,x=-2-5=﹣7 所以x所表示的数为3或﹣7;
最新人教版七年级数学上册 两点之间的距离课件

练一练
(1) 判 断 : 两 点 之 间 的 距 离 是 指 两 点 之 间 的 线 段 。
( 错)
(2)如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。你的理由是
B.
A
两点之间线段最短
最新人教版初中数学精品课
趣味思考: 有条小河L,点A,B表示在河两岸的两个
线段的性质:两点的所有连线中, 线段最短,简单地说,两点之间线段最短
一天,小丑鱼和它 的朋友在海里游玩, 碰到了凶恶的鲨鱼 NICK,小丑 鱼和它 的朋友为了逃到安 全地带,有三条路 可以选择,你猜它 们将选择哪条路?
连接两点间的线段的长度,叫做这两点的距离。
①
② ③
最新人教版初中数学精品课
安全 的家
村庄,现在要建造一座小桥,请你找出造桥的 位置,使得A,B两村的路程最短,并说明理由。
A
L
桥 B
最新人教版初中数学精品课
问:若要在西湖风 景区建造一个消费 场所,为了方便游 客,要求是到图中 四个红色的旅游区 的距离之和最短, 请问应该建造在何 处?
FC D
EB
如图,线段AB与
线段CD的交点E 为所求的点,即
两A、点8间厘的米距离B是、(2C厘米) C、无法确定
6、已知线段MN,取MN中点P,PN的中 点Q,QN的中点R,由中点的定义可知,
MN = 8 RN。
最新人教版初中数学精品课
今天你收获了吗?相信你 肯定是收获了,因为老师 看到了许多同学很想起来 总结一下!
最新人教版初中数学精品课
谢谢大家! 再见
A
消费场所建在E
点位置最合适。
连接两点间最的新线人段教版的初长中度数,学叫精做品这课两点的距离。
秋人教版七年级数学上册(河南专版)作业课件:专题训练(一) 有理数在数轴上的运用(共18张PPT)

类型四:利用数轴探究问题 15.根据下面给出的数轴,解答下面的问题:
(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数A: __1__;B:__-__2_._5___;
(2)观察数轴,与点A的距离为4的点表示的数是____-__3_或__5____;
(3)若将数轴折叠,使得 A 点与-3 表示的点重合,则 B 点与数___0_.5___ 表示的点重合;
(4)若数轴上 M,N 两点之间的距离为 2 018(M 在 N 的左侧),且 M,N 两点经过(3)中折叠后互相重合,求 M,N 两点表示的数.
解:∵M,N 两点之间的距离为 2 018,∴12MN=2 0218=1 009,对折 点为-1,∴点 M 表示的数为-1 010,点 N 表示的数为 1 008
解:如图所示:
用“<”把各数连接起来为:-2.5<-|-2|<0<12<2<-(-3)
5.在所给的数轴上用字母“A,B,C,D,E”分别表示出以下各数: 2.5,4,-3,-112,0,并回答问题:这 5 个数中表示最大数与最小数的两 点之间相距多少个单位?解:(1)如图所示;源自(2)|4|+|-3|=7
人教版
第一章 有理数
专题训练(一) 有理数在数轴上的运用
类型一:有理数与数轴 1.若有理数m>n,在数轴上点M表示数m,点N表示数n,则( A ) A.点M在点N的右边 B.点M在点N的左边 C.点M在原点右边,点N在原点左边 D.点M和点N都在原点右边
2.一只蚂蚁从数轴上的点A出发,爬了6个单位长度到了表示-1的点,
9.在数轴上表示下列各数及它们的相反数:312,-3,0,-1.5. 解:312的相反数是-312,-3 的相反数是 3,0 的相反数是 0,-1.5 的
七年级数学上册专题提分精练数轴上动点相距问题(解析版)

专题07 数轴上动点相距问题1.如图,A 、B 分别为数轴上的两点,点A 对应的数为20-,点B 对应的数80,(1)请直接写出AB 的中点M 对应的数______;(2)现在有一只电子蚂蚁P 从点A 出发,以2个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从点B 出发,以3个单位长度/秒的速度向左运动,设两只电子蚂蚁在数轴上的点C 相遇,请求出点C 对应的数;(3)若当电子蚂蚁P 从点A 出发时,以2个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从点B 出发,以3个单位长度/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?【答案】(1)30(2)20(3)15秒或25秒【解析】【分析】(1)根据数轴上A 、B 两点所表示的数为a 、b ,则AB 的中点所表示的数为2a b +,计算求解即可;(2)方法一:根据路程、速度与时间的关系求出相遇的时间,然后根据数轴上两点的距离求出C 点对应数即可;方法二:由题意知,P 表示为202t -+,Q 表示803t -,则202803t t -+=-,求出t 的值,进而可求C 点对应数;(3)由题意知,第一次相距25个单位长度的时间为()()1002523-÷+(秒);第二次相距25个单位长度时间为()()1002523+÷+(秒).(1)解:AB 的中点M 所对应的数为2080302-+=, 故答案为:30.(2)解:方法一:∵()8020100--=,∴()1002320÷+=(秒),∴2020220-+⨯=,∴C 点对应数为20;方法二:由题意知,P 表示为202t -+,Q 表示803t -,则202803t t -+=-,解得20t =,∴2020220-+⨯=,∴C 点对应数为20.(3)解:由题意知,第一次相距25个单位长度的时间为()()100252315-÷+=(秒); 第二次相距25个单位长度时间为()()100252325+÷+=(秒);∴经过15秒或25秒时,P 、Q 相距25个单位长度.【点睛】本题考查了数轴上的点的表示,数轴上两点之间的距离等知识.解题的关键在于根据题意列方程.2.如图,已知A 、B 、C 是数轴上三点,点B 表示的数为4,8AB =,2BC =.(1)点A 表示的数是______,点C 表示的数是______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 的运动时间为t (0t >)秒.①用含t 的代数式表示:点P 表示的数为______,点Q 表示是数为______;②当1t =时,点P 、Q 之间的距离为______;③当点Q 在C B →上运动时,用含t 的代数式表示点P 、Q 之间的距离;④当点P 、Q 到点C 的距离相等时,直接写出t 的值.【答案】(1)4-,6(2)①42t -+,6t -;②7;③103t -;④t 的值为103或10 【解析】【分析】(1)根据数轴上两点距离=右边的数-左边的数;计算求值即可;(2)①根据数轴上动点的表示:起点所表示的数加上或减去动点运动的距离,向正方向用加,负方向用减;列代数式即可;②t =1时,求出两点所表示的数,再计算两点距离;③用右边的数-左边的数便可解答;④分两种情况:当P ,Q 相遇时;当P 点在C 点右边,Q 点在C 点左边时;根据数轴上两点距离公式列方程求解即可;(1)解:A 点在B 点左边,B 点表示4,AB =8,∴A 点表示的数,4-8=-4;C 点在B 点右边,BC =2,∴C 点表示的数为:4+2=6;(2)解:①P 点向右运动,∴P 点表示的数为-4+2t ;Q 点向左运动,∴Q 点表示的数为6-t ;②t =1时,P 点-2,Q 点5,两点距离=5-(-2)=7;③∵Q 点在右,P 点在左,∴两点距离=6-t -(-4+2t )=10-3t ,④当P ,Q 相遇时,两点到C 点距离相等,此时2t +t =10,解得:t =103, 当P 点在C 点右边,Q 点在C 点左边时,-4+2t -6=6-(6-t ),解得:t =10,∴t 的值为103或10; 【点睛】本题考查了数轴上动点的问题,一元一次方程的应用;掌握数轴上两点距离公式是解题关键.3.如图,,A B 两点在数轴上对应的数分别为,a b ,且点A 在点B 的左边,||5,45a a b =+=,且0ab <.(1)=a ______,b =______;(2)现有一只电子蚂蚁P 从点A 出发,以3个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q 从点B 出发,以2个单位长度/秒的速度向左运动.①设两只电子蚂蚁在数轴上的点相遇,点C 对应的数是_____.②经过多长时间两只电子蚂蚁在数轴上相距20个单位长度?【答案】(1)-5,50(2)①28;②经过7秒或15秒【解析】【分析】(1)根据题意可知a 、b 的符号相反,可得a =−5,根据a +b =45可得b 的值;(2)①设运动时间为t 秒,由题意可得,3t +2t =5+50,解方程可得答案;②根据题意列方程,注意分相遇前和相遇后.(1)解:∵A 、B 两点在数轴上对应的数分别为a ,b ,且点A 在点B 的左边,|a |=5,a +b =45,ab <0, ∴a =−5,b =50,即a 的值是−5,b 的值是50;故答案为:−5,50;(2)解:①设运动时间为t秒,由题意可得,3t+2t=5+50,解得t=11,∴点C对应的数为−5+3×11=28;故答案为:28;②设经过t秒时间两只电子蚂蚁在数轴上相距20个单位长度,相遇前,3t+2t=5+50−20,解得t=7;相遇后,3t+2t=5+50+20,解得t=15;由上可得,经过7秒或15秒的时间两只电子蚂蚁在数轴上相距20个单位长度.【点睛】本题考查一元一次方程的应用,找到等量关系列出方程是解题关键.4.已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)若M、N分别是AP、BP的中点,在点P运动的过程中,线段MN的长度是.(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?【答案】(1)-14,8-5t(2)11(3)2.5或3秒时P、Q之间的距离恰好等于2【解析】【分析】(1)根据点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,即得点B表示的数为﹣14,由动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t,可得点P表示的数为8﹣5t;(2)根据M、N分别是AP、BP的中点,知M表示的数是8﹣52t,N表示的数是﹣3﹣52t,即得MN为11;(3)点Q表示的数是﹣14+3t,可得|(﹣14+3t)﹣(8﹣5t)|=2,即可解得t=3或t=52.(1)解:(1)∵点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,∴点B表示的数为﹣14,∵动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t ,∴点P 表示的数为8﹣5t ,故答案为:﹣14,8﹣5t ;(2)解:∵M 、N 分别是AP 、BP 的中点,∴M 表示的数是8(85)2t +-=8﹣52t ,N 表示的数是14(85)2t -+-=﹣3﹣52t , ∴MN =(8﹣52t )﹣(﹣3﹣52t )=11, 故答案为:11;(3)解:点Q 表示的数是﹣14+3t ,根据题意得:|(﹣14+3t )﹣(8﹣5t )|=2,∴|8t ﹣22|=2,∴8t ﹣22=2或8t ﹣22=﹣2,解得t =3或t =52, 答:点P 、Q 同时出发,3秒或52秒时,P 、Q 之间的距离恰好等于2. 【点睛】本题考查了数轴动点问题以及利用一元一次方程解决实际问题,解题的关键是用含t 的代数式表示点运动后表示的数.5.综合与实践:A 、B 、C 三点在数轴上的位置如图所示,点C 表示的数为6,BC =4,AB =12.(1)数轴上点A 表示的数为 ,点B 表示的数为 ;(2)动点P ,Q 同时从A ,C 出发,点P 以每秒4个单位长度的速度沿数轴向右匀速运动.点Q 以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t (t >0)秒; ①求数轴上点P ,Q 表示的数(用含t 的式子表示);②t 为何值时,P ,Q 两点重合;③请直接写出t 为何值时,P ,Q 两点相距5个单位长度.【答案】(1)10-;2(2)①104t -+;62t +;②8;③112或212【解析】【分析】(1)先根据点C 表示的数为6,BC =4,表示出点B ,然后根据AB =12,表示出点A 即可;(2)①求出AP ,CQ ,根据A 、C 表示的数求出P 、Q 表示的数即可;②根据在时间t 内,P 运动的长度-Q 运动的长度=AC 的长,列出方程,解方程即可; ③利用“点P ,Q 相距5个单位长度”列出关于t 的方程,并解答即可.(1)点C 对应的数为6,4BC =,∴点B 表示的数是642-=,12AB =,∴点A 表示的数是21210-=-,故答案是:-10;2.(2)①由题意得:4AP t =,2CQ t =,如图所示:在数轴上点P 表示的数是104t -+,在数轴上点Q 表示的数是62t +;②当点P ,Q 重合时,4216t t -=,解得:8t =;③当点P ,Q 相距6个单位长度,P在Q的左侧时:42165t t -=-, 解得112t =, P在Q的右侧时:42165t t -=+, 解得212t =, 综上分析可知,当112t =或212t =时,点P ,Q 相距5个单位长度. 【点睛】本题考查了一元一次方程的应用,找出等量关系,列出方程是解题的关键.6.如图,已知在原点为O 的数轴上三个点A 、B 、C ,20cm OA AB BC ===,动点P 从点O 出发向右以每秒2cm 的速度匀速运动;同时,动点Q 从点C 出发向左以每秒cm a 的速度匀速运动.设运动时间为t 秒.(1)当点P 从点O 运动到点C 时,求t 的值;(2)若3a =,那么经过多长时间P ,Q 两点相距20cm ?(3)当40cm PA PB +=,10cm QB QC -=时,求a 的值.【答案】(1)30t =(2)8t =和16(3)1或3或15或35【解析】【分析】(1)由OA =AB =BC =20cm ,得OC =60cm ,即可求出点P 从点O 运动到点C 的时间;(2)当a =3时,PO =2t ,QC =3t ,根据点P ,Q 两点相距20cm ,分两种情况分别计算即可求得;(3)分三种情况:①点P 在OA 上时,由P A +PB =40cm ,可得t ,当QB >QC 时,可得a =1;当QB <QC 时,可得a =3;②当点P 在AB 上时,P A =2t -20,PB =40-2t ,故这种情况不存在;③当点P 在点B 右侧时,可得t ,当QB >QC 时,可得a =15,当QB <QC 时,可得a =35. (1)解:由题意知:60OC =,当点P 运动到点C 时,60230t =÷=(秒);(2)解:①当点P 、Q 还没有相遇时,236020t t +=-,解得8t =②当点P 、Q 相遇后,2360t t +=,解得16t =∴8t =和16时,点P ,Q 两点相距20cm ;(3)解:当40cm PA PB +=,10cm QB QC -=时,①当点Р在OA 之间,202PA t =-,402PB t =-,60440PA PB t +=-=,解得5t =;当点Q 在点B 、C 之间时,QB =20-5a ,QC =5a ,当QB QC >,205510a a --=,解得1a =;当QB QC <,520510a a -+=,解得3a =;当点Q 在点B 左侧时,QB =5a -20,QC =5a ,QC -QB =20,故不存在这种情况;②当点P 在AB 之间,220PA t =-,402PB t =-,20PA PB +=与40PA PB +=矛盾, 故不存在满足条件的点P ;③当点P 在点B 右侧,220PA t =-,240PB t =-,46040PA PB t +=-=,解得25t =,QB =20-25a ,QC =25a ,当QB QC >,20252510a a --=,解得15a =, 当QB QC <,25202510a a -+=,35a =, 综上,a 的值为1或3或15或35. 【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,列代数式,解题的关键是读懂题意,用含t 的代数式表示出相关线段的长.7.如图,O 为原点,在数轴上点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足22(3)0a a b +++=.(1)a =________,b =__________.(2)若点P 从点A 出发,以每秒1个单位长度的速度沿数轴向右匀速运动,设运动的时间为t 秒.①当点P 运动到线段OB 上,且PO =2PB 时,求t 的值.②若点P 从点A 出发,同时,另一动点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,到达点O 后立即原速返回向右匀速运动,当PQ =1时,求t 的值.【答案】(1)2-,6(2)①6;②173t =,23t =,35t = 【解析】【分析】(1)根据绝对值的非负性、平方的非负性解题;(2)①由PO =2PB 列方程解题;②分两种情况讨论:点Q 到达原点之前PQ =1,或点Q 到达原点返回之后PQ =1,根据题意列方程解题即可.(1) 解:22(3)0a a b +++=2030a a b ∴+=+=,2,6a b ∴=-=故答案为:-2,6.(2)①根据题意得,PO =2PB[]2026(2)t t ∴-+-=--+21242t t ∴-+=+-318t ∴=6t ∴=②分两种情况讨论:第一种情况:点Q 到达原点之前PQ =1,点P 表示的数为:2t -+,点Q 表示的数为:62t -=62(2)1PQ t t ---+=6221t t ∴-+-=381t ∴-+=381t ∴-+=±127,33t t ∴== 第二种情况:点Q 到达原点返回之后PQ =1,点P 与点Q 相遇时,即622t t -=-+,83t ∴= 此时点P 、Q 表示的数均为23,此时点Q 到达原点还需要221123323÷=⨯=秒, 当点Q 在原点时,点P 表示数2211333t +=+= 当点Q 由原点返回,向右匀速运动时,PQ =1121t t ∴+-=11t ∴-=±342,0t t ∴==(舍去)即当点Q 到达原点返回之后PQ =1,812533t =++= 综上所述,当PQ =1时,173t =,23t =,35t =. 【点睛】 本题考查数轴上的动点、一元一次方程的应用、绝对值的非负性等知识,掌握相关知识是解题关键.8.如图,已知数轴上三点A ,B ,C 对应的数分别为1-,3,5,点P 为数轴上一动点,其对应的数为x .(1)若点P 是线段AC 的中点,则x =________,BP =________;(2)若8AP CP +=,求x 的值;(3)若点P ,点Q 两个动点分别以2个单位长度/秒和1个单位长度/秒的速度同时从点A ,点B 出发,沿数轴的正方向运动,运动时间为t 秒.当t 的值是多少时2PQ =?【答案】(1)2,1(2)-2或6(3)2或6【解析】【分析】(1)根据中点计算公式,即可得出x 的值,进而可得BP 的长;(2) 此小题需分情况讨论,AC 之间距离为6,不存在8AP CP +=的情况,故对在A 点左侧,C 点右侧进行讨论即可得出x 的值;(3)根据一元一次方程应用题中的路程问题进行分析,需要注意的是有两种情况进行逐个分析即可.(1)解,由题意得x =15=22-+, ∴BP =3-2=1,故答案为:2;1.(2)①若P 点在A 的左侧,则()()158x x --+-=,解得:x =-2;②若P 点在C 的右侧,则()()158x x ++-=,解得:x =6;③AC 之间距离为6,不存在8AP CP +=的情况.综上所述,x 的值为-2或6时,8AP CP +=.(3)①若P 点在Q 的左侧,则422t t +-=,解得:t =2;②若P 点在Q 的右侧,则()242t t -+=,解得:t =6;综上所述,t 的值为2或6时,2PQ =.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 9.如图,点A ,B ,C 在数轴上对应数为a ,b ,c .(1)化简a b c b -+-;(2)若B ,C 间距离BC =10,AC =3AB ,且b +c =0,试确定a ,b ,c 的值,并在数轴上画出原点O ;(3)在(2)的条件下,动点P ,Q 分别同时都从A 点C 点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C 移动,点Q 以每秒0.5个单位长度的速度向终点A 移动;设点P ,Q 移动的时间为t 秒,试求t 为多少秒时P ,Q 两点间的距离为6.【答案】(1)c a -(2)10a =-,5b =-,5c =,见解析(3)6秒或14秒【解析】【分析】(1)根据数轴可得c >b >a ,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)根据P ,Q 两点间的距离为,列出方程计算即可求解.(1)解:∵c >b >a ,∴a -b <0,c -b >0, ∴a b c b -+-=b -a +c -b =c -a ;(2)解:原点位置如图:∵BC =10,∴c -b =10,又∵b +c =0,∴c =5,b =-5,又∵BC =10,AC =3AB ,∴BC =2AB =10,∴AB =5,∴b -a =5,∴a =-10;(3)解:∵AC =15,最短运动时间15÷1=15秒,运动t 秒后,点P ,Q 对应的点在数轴上所对的数为P :-10+t ,Q :5-0.5t ,若P ,Q 两点间的距离为6,则有|-10+t -(5-0.5t )|=6,解得t =6或t =14,均小于15秒,∴点P ,Q 移动6秒或14秒时,P ,Q 两点间的距离为6.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键,本题属于中档题,难度不大,但解题过程稍显繁琐,细心仔细是得分的关键.10.已知a 、b 分别对应着数轴上的A 、B 两点,且满足2|4|(4)0a b a -+-=.(1)填空:=a __________,b =____________.(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动.试求运动时间t (秒)为多少时,点P 到点A 的距离恰好是点P 到点B 距离的2倍;(3)设数轴上30的位置上的点为点C P 、Q 分别以每秒3个单位长度从点A 出发、每秒1个单位长度从点B 出发的速度向C 点运动,它们同时出发且各自到达点C 后停止运动.当P 、Q 两点之间的距离为4个单位长度时,试求出点Q 的运动时间.【答案】(1)4;16(2)8秒或83秒 (3)4秒或8秒或10秒【解析】【分析】(1)利用绝对值和偶次方的非负性求出a ,b 的值即可解决问题;(2)利用2PA PB =构建方程即可解决问题;(3)分情形分别构建方程即可解决问题.(1)解:∵a ,b 满足()2440a b a -+-=,∴40a -=,40a b -=,∴4a =,416b a ==,故答案为:4;16.(2)解:设运动时间为t 秒,则点P 表示的数为:34t +,∵2PA PB =, ∴34423416t t +-=+-,∴()32312t t =-或()32312t t =--,解得8t =或83t =, ∴运动时间为8或83秒时, 点P 到点A 的距离恰好是点P 到点B 距离的2倍.(3)解:设运动时间为t 秒,当点P 在到达点C 前,则点P 表示的数为:34t +,点Q 表示的数为:16t +,点P 未到达C 时,保证P 、Q 两点之间的距离为4个单位长度,即()16344t t +-+=, 即2124t -+=,得2124t -+=或2124t -=解得4t =或8,当P 到达C 时,点P 与点C 重合,∴4CQ PQ ==,∴3041610BQ =--=, ∴10101Q BQ t v ===, 综上所述:当P 、Q 两点之间的距离为4个单位长度时,点Q 的运动时间为4秒或8秒或10秒.【点睛】本题考察了数轴,两点间的距离,行程问题,一元一次方程的应用等知识,解题的关键是学会构建方程解决问题,学会用分类的思想思考问题.11.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD .(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)【答案】(1)-14(2)①两点第一次相遇时,与点B 的距离是3个单位长度;②3.5s ,4.5s ,5s ,7s【解析】【分析】(1)根据2CD =,7AC CD 求出AC =14,即可得到答案;(2)①设运动时间为x 秒.由题意列方程316x x +=,求出x 值,再计算BP 或BQ 即可得到距离;②分四种情况:当两点没有相遇时,当两点第一次相遇后, 当点P 到达点C 返回且未追上点Q 时,当点P 追上点Q 后,分别列方程求解.(1)解:∵2CD =,7AC CD .∴AC =14,∵点C 为原点,∴点A 表示的数是-14,故答案为:-14;(2)解:①设运动时间为x 秒.由题意得316x x +=,解得4x =,∵AB =14-5=9,∴3493BP AP AB =-=⨯-=,答:两点第一次相遇时,与点B 的距离是3个单位长度.②当两点没有相遇时,3162t t +=-,解得t =3.5;当两点第一次相遇后,3162t t +=+,解得t =4.5;当点P 到达点C 返回且未追上点Q 时,31422t t -+=-,解得t =5;当点P 追上点Q 后,31422t t --=-,解得t =7;故t 为3.5s ,4.5s ,5s ,7s 时,PQ 的值为2.【点睛】此题考查了数值上的动点问题,数轴上两点之间的距离,一元一次方程与动点问题,正确理解题意列出一元一次方程求解是解题的关键.12.已知如图,在数轴上有A ,B 两点,所表示的数分别为10-,4-,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,如果设运动时间为t 秒,解答下列问题:(1)运动前线段AB 的长为 ;运动1秒后线段AB 的长为 ;(2)运动t 秒后,点A ,点B 在数轴上表示的数分别为 和 ;(用含t 的代数式表示)(3)求t 为何值时,点A 与点B 恰好重合;(4)在上述运动的过程中,是否存在某一时刻t ,使得线段AB 的长为5,若存在,求t 的值;若不存在,请说明理由.【答案】(1)6;4(2)510t -;34t -(3)3t = (4)12t =或112t = 【解析】【分析】(1)根据数轴上两点间的距离等于右边的数减去左边的数求出AB 的长,且求出1秒后AB 的长即可;(2)根据路程=时间×速度分别表示出A ,B 运动的距离,用原来表示的是加上运动的距离,即可表示出A ,B 表示的数;(3)根据A ,B 表示的数相同列出方程,求出方程的解即可得到t 的值;(4)存在,分两种情况分别求出t 的值即可.(1)解:运动前线段AB 的长为(﹣4)﹣(﹣10)=6;运动1秒后线段AB 的长为(﹣1)﹣(﹣5)=4;故答案为:6;4.(2)解:运动t 秒后,用t 表示A ,B 分别为5t ﹣10,3t ﹣4;故答案为:5t ﹣10,3t ﹣4.(3)解:根据题意得:5t ﹣10=3t ﹣4,解得:3t =;答:当3t =时,点A 与点B 恰好重合.(4)解: 存在.当A 没追上B 时,可得由题意:()()345105t t ---= , 解得:12t =; 当A ,B 错开后,可得()()510345t t ---=, 解得:112t =, ∴t 的值为12或112秒时,线段AB 的长为5. 【点睛】 此题考查了一元一次方程的应用,数轴以及两点间的距离,弄清题意是解本题的关键. 13.已知数轴上三点A ,B ,C 表示的数分别为-12,-5,5,点P ,Q 分别从A ,C 两点同时相向而行,点P 的速度为4个单位/秒,点Q 的速度为6个单位/秒.(1)问P ,Q(2)设点P 运动时间为(s)t ,当2QB BP =时,求t 的值;(3)当点P 到A 、B 、C 的距离和为20个单位时,点P 调头返回.速度不变,问点P ,Q 还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【答案】(1)-5.2(2)2或127(3)点P 、Q 能相遇,相遇点对应的数为22-,理由见解析【解析】【分析】(1)根据题意可得AC =5-(-12)=17,从而得到运动1.7 秒时,点P ,Q 相遇,即可求解;(2)根据题意可得AB =7,BC =10,点P 需要74 秒到达点B ,点Q 需要10563= 秒到达点B ,然后分三种情讨论,即可求解;(3)设P 运动x 秒到A ,B ,C 距离和为20,继续运动y 秒后P ,Q 相遇,然后分两种情况:当P 在AB 之间时,当P 在BC 之间时,即可求解.(1)解:根据题意得:AC =5-(-12)=17, ∴运动17 1.746=+ 秒时,点P ,Q 相遇, 此时点P 运动4 1.7 6.8⨯= 个单位,∴P ,Q 在数轴上的12 6.8 5.2-+=- 对应的点相遇;(2)解:根据题意得:AB =7,BC =10,点P 需要74 秒到达点B ,点Q 需要10563= 秒到达点B , 当503t << 时,106QB t =- ,74BP t =- , ∵2QB BP =,∴()106274t t -=- ,解得:2t = ,不合题意,舍去; 当5734t ≤< 时,610QB t =- ,74BP t =- , ∵2QB BP =,∴()610274t t -=- , 解得:127t =; 当74t ≥ 时, ∵2QB BP =,∴()610247t t -=- ,解得:2t = ;综上所述,当2QB BP =时,t 的值为2或127(3)解:点P 、Q 能相遇,相遇点对应的数为22-,理由如下:设P 运动x 秒到A ,B ,C 距离和为20,继续运动y 秒后P ,Q 相遇,当P 在AB 之间时,到A ,B ,C 距离和为20,717420x +-=,解得:1x =,∴此时点P 对应的数为-8,根据题意得:()56184y y -+=--,解得: 3.5y =,∴点P 、Q 的相遇点对应的数为84 3.522--⨯=-;当P 在BC 之间时,到A ,B ,C 距离和为20,174720x +-=,解得: 2.5x =,∴此时点P 对应的数为124 2.52-+⨯=- ,根据题意得:()56 2.524y y -+=--,解得:4y =-不符合题意,舍去,∴点P 、Q 能相遇,相遇点对应的数为22-.【点睛】本题主要考查了数轴上两点间的距离,动点问题,利用分类讨论思想解答是解题的关键. 14.如图,已知数轴上点A 表示的数为6,点B 是数轴上在点A 左侧的一点,且A ,B 两点间的距离为10,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴向左匀速运动.(1)数轴上点B 表示的数是______;(2)运动1秒时,点P 表示的数是______;(3)动点Q 从点B 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P ,Q 同时出发,请完成填空:①当点P 运动______秒时,点P 与点Q 相遇;②当点P 运动______秒时,点P 与点Q 的距离为8个单位长度.【答案】(1)4-(2)0(3)①5;②1或9【解析】【分析】(1)点向左移动时,用点表示的数减去移动的距离,即可得到移动后点表示的数,利用点移动规律解答;(2)用6减去点P 移动的距离即可得到点P 表示的数;(3)①设点P 运动t 秒时,列方程6-6t =-4-4t ,求解即可;②设点P 运动x 秒时,点P 与点Q 间的距离为8个单位长度,根据当Q 在P 点左边时,当P 在Q 的左边时,分别列方程求解.(1)解:点B表示的数为6-10=-4,故答案为:-4;(2)解:点P表示的数为6160-⨯=,故答案为:0;(3)解:①设点P运动t秒时,由题意得:6-6t=-4-4t,解得:t=5,∴当点P运动5秒时,点P与点Q相遇,故答案为:5;②设点P运动x秒时,点P与点Q间的距离为8个单位长度,由题意得:当Q在P点左边时,4x+10-6x=8,解得:x=1,当P在Q的左边时,6x-(4x+10)=8,解得:x=9.故答案为:1或9.【点睛】此题考查数轴上两点之间的距离,数轴上动点问题,动点与一元一次方程,正确理解点的运动及表示点运动前后的数是解题的关键.15.如图,数轴上点A表示-10,点O表示0,点B表示10,点C表示18.动点P从点A 出发,以2单位/秒的速度沿着数轴的正方向运动;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动.当点Р到达点C时,两点都停止运动.设点P运动的时间为t(秒).(1)点A和点C在数轴上相距_____________个单位.(2)当3t=时,求点P与点Q的距离.(3)求P、Q两点相遇时t的值.(4)当线段PO与线段QB的长度相等时,直接写出t的值.【答案】(1)28;(2)19;(3)283;(4)2或6【解析】【分析】(1)利用两点之间的距离公式求解即可;(2)当3t =时,分别表示出点点P 、点Q 的数,然后用两点之间的距离公式求解即可; (3)利用总路程÷总速度即可得出答案;(4)分点Q 在点B 的左边和点Q 在点B 的右边,分别列出等式求解即可.【详解】(1)18-(﹣10)=28,故答案为:28;(2)当3t =时,点P 表示的数为:10234-+⨯=-;点Q 表示的数为:18315-=;此时,()15419PQ =--=;(3)()181028--=;123+=;282833÷=, ∴P 、Q 两点相遇时,t 的值为283; (4)当点Q 在点B 的左边时:PO =﹣10+2t ,QB =18-t -10=8-t ,当PO =QB ,即﹣10+2t =8-t ,解得:t =6,当点Q 在点B 的左边时:PO =﹣10+2t ,QB =t -8,当PO =QB ,即﹣10+2t =t -8,解得:t =2,∴当时间为2秒或6秒时, PO =QB .【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用,易错点是分类计算时不重不漏. 16.如图:在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,b 满足|a +3|+(b ﹣9)2=0,c =1.(1)a = ,b = ;(2)点P 为数轴上一动点,其对应的数为x ,则当x 时,代数式|x ﹣a |﹣|x ﹣b |取得最大值,最大值为 ;(3)点P 从点A 处以1个单位/秒的速度向左运动;同时点Q 从点B 处以2个单位/秒的速度也向左运动,在点Q 到达点C 后,以原来的速度向相反的方向运动,设运动的时间为t (t ≤8)秒,求第几秒时,点P 、Q 之间的距离是点B 、Q 之问距离的2倍?【答案】(1)﹣3,9;(2)≥9,12;(3)125秒或367秒.【解析】【分析】(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.【详解】解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,∴|a+3|=0,(b﹣9)2=0,∴a=﹣3,b=9,故答案为:﹣3,9.(2)∵a=﹣3,b=9,∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,∵﹣12≤2x﹣6<12,∴﹣12≤|x+3|﹣|x﹣9|<12;当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,综上所述,|x+3|﹣|x﹣9|的最大值为12,故答案为:≥9,12.(3)∵点C表示的数是1,点B表示的数是9,∴B、C两点之间的距离是9﹣1=8,当点Q与点C重合时,则2t=8,解得t=4,当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,解得t=125;当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,∵1+(2t﹣8)=2t﹣7,∴点Q表示的数是2t﹣7,根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),解得t=367,综上所述,第125秒或第367秒,点P、Q之间的距离是点B、Q之间距离的2倍.【点睛】本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.17.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P、Q 同时出发,点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至点C需要多少时间?(2)求P、Q两点相遇时,t的值和相遇点M所对应的数.【答案】(1)动点P从点A运动至点C需要19秒;(2)P、Q两点相遇时,t的值为313秒,相遇点M所对应的数是163.【解析】【分析】(1)由路程、速度、时间三者关系分三段求出各段时间,再相加求出总时间为19秒;(2)由路程、速度、时间三者关系求出P、Q两点相遇的时间为313秒,确定相遇点M对应的数是163.(1)解:由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO段时间为102=5,OB段时间为101=10,BC段时间为82=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),答:动点P从点A运动至点C需要19秒;(2)解:点Q经过8秒后从点B运动到OB段,而点P经过5秒后从点A运动到OB段,经过3秒后还在OB段,∴P、Q两点在OB段相遇,设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y=73,∴P、Q两点相遇时经过的时间为8+73=313(秒),此时相遇点M在“折线数轴”上所对应的数是为3+73=163;答:P、Q两点相遇时,t的值为313秒,相遇点M所对应的数是163.【点睛】本题综合考查了数轴与有理数的关系,一元一次方程在数轴上的应用,路程、速度、时间三者的关系等相关知识点,重点掌握一元一次方程的应用.18.数轴上点A表示-8,点B表示6,点C表示12,点D表示18.如图,将数轴在原点O 和点B,C处各折一下,得到一条“折线数轴”.在“折线数轴”上,把两点所对应的两数之差的绝对值叫这两点间的和谐距离.例如,点A和点D在折线数轴上的和谐距离为81826--=个单位长度.动点M从点A出发,以4个单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点C 期间速度变为原来的一半,过点C后继续以原来的速度向终点D运动;点M从点A出发的同时,点N从点D出发,一直以3个单位/秒的速度沿着“折线数轴”负方向向终点A运动.其中一点到达终点时,两点都停止运动.设运动的时间为t秒.。
人教版七年级数学上册 第三章 运用一元一次方程解决 数轴上两点间距离问题 专题训练(含答案)

数轴上两点间距离 专题训练〖规律归纳〗数轴上点A 表示的数是a ,点B 表示的数是b ,则: ①到点A 与点B 的距离相等(即线段AB 的中点)的点表示的数是a+b 2;②若能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为:大数减小数; ③若不能明确点A 与点B 的位置关系,则点A 与点B 的距离(即线段AB 的长)为|a −b |或|b −a | 例1.【思考】数轴上,点C 是线段AB 的中点,请填写下列表格: 【发现】通过表格可以得到,数轴上一条线段的中点表示的数是这两条线段端点表示的数的 ; 【表达】若数轴上A 、B 两点表示的数分别为m 、n ,则线段AB 的中点表示的数是 ;【应用】如图,数轴上点A 、C 、B 表示的数分别为﹣2x 、13x ﹣4、1,且点C 是线段AB 的中点,求x 的值.练习:如图,点A ,B 在数轴上表示的数分别为﹣2与+6,动点P 从点A 出发,沿A →B 以每秒2个 单位长度的速度向终点B 运动,同时,动点Q 从点B 出发,沿B →A 以每秒4个单位长度的速度向 终点A 运动,当一个点到达时,另一点也随之停止运动. (1)当Q 为AB 的中点时,求线段PQ 的长; (2)当Q 为PB 的中点时,求点P 表示的数.例2.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为﹣5,b ,4.某同学将 刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻 度5.4cm .(1)在图1的数轴上, AC = 个长度单位;数轴上的一个长度单位对应刻度尺上的 cm ; (2)求数轴上点B 所对应的数b ;(3)在图1的数轴上,点Q 是线段AB 上一点,满足AQ =2QB ,求点Q 所表示的数.练习:在数轴上,点A 代表的数是﹣12,点B 代表的数是2,AB 代表点A 与点B 之间的距离. (1)①AB = ;②若点P 为数轴上点A 与B 之间的一个点,且AP =6,则BP = ; ③若点P 为数轴上一点,且BP =2,则AP = .(2)若C 点为数轴上一点,且点C 到点A 点的距离与点C 到点B 的距离的和是35,求C 点表示的数.(3)若P 从点A 出发,Q 从原点出发,M 从点B 出发,且P 、Q 、M 同时向数轴负方向运动,P 点的运动速度是每秒6个单位长度,Q 点的运动速度是每秒8个单位长度,M 点的运动速度是每秒2个单位长度,当P 、Q 、M 同时向数轴负方向运动过程中,当其中一个点与另外两个点的距离相等时,求这时三个点表示的数各是多少?A 点表示的数B 点表示的数C 点表示的数2 6 ﹣1﹣5 ﹣31例3.(1)在数轴上标出数﹣4.5,﹣2,1,3.5所对应的点A,B,C,D;(2)C,D两点间距离=;B,C两点间距离=;(3)数轴上有两点M,N,点M对应的数为a,点N对应的数为b,那么M,N两点之间的距离=;(4)若动点P,Q分别从点B,C同时出发,沿数轴负方向运动;已知点P的速度是每秒1个单位长度,点Q的速度是每秒2个单位长度,问①t为何值时P,Q两点重合?②t为何值时P,Q两点之间的距离为1?练习:如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC=2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?〖尝试反馈〗1.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t的值;若不存在,请说明理由.2.如图,已知数轴上点A,O,B对应的数分别为﹣2,0,6,点P是数轴上的一个动点.(1)设点P对应的数为x.①若点P到点A和点B的距离相等,则x的值是;②若点P在点A的左侧,则PA=,PB=(用含x的式子表示);(2)若点P以每秒1个单位长度的速度从点O向右运动,同时点A以每秒3个单位长度的速度向左运动,点B以每秒12个单位长度的速度向右运动,在运动过程中,点M和点N分别是AP 和OB的中点,设运动时间为t.求MN的长(用含t的式子表示);3.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.4.如图,A、B分别为数轴上的两点,A点对应的数为﹣5,B点对应的数为55,现有一动点P以6个单位/秒的速度从B点出发,同时另一动点Q恰好以4个单位/秒的速度从A点出发:(1)若P向左运动,同时Q向右运动,在数轴上的C点相遇,求C点对应的数.(2)若P向左运动,同时Q向左运动,在数轴上的D点相遇,求D点对应的数.(3)若P向左运动,同时Q向右运动,当P与Q之间的距离为20个单位长度时,求此时Q点所对应的数.5.已知M、N在数轴上,M对应的数是﹣3,点N在M的右边,且距M点4个单位长度,点P、Q 是数轴上两个动点;(1)直接写出点N所对应的数;(2)当点P到点M、N的距离之和是5个单位时,点P所对应的数是多少?(3)如果P、Q分别从点M、N出发,均沿数轴向左运动,点P每秒走2个单位长度,先出发5秒钟,点Q每秒走3个单位长度,当P、Q两点相距2个单位长度时,点P、Q对应的数各是多少?6.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.7.已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.8.如图,在数轴上A点表示数a,B点表示数b,且a、b满足|a+12|+(b﹣6)2=0.(1)求A、B两点之间的距离;(2)点C、D在线段AB上,AC为14个单位长度,BD为8个单位长度,求线段CD的长;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动,求经过几秒,点P、点Q到点C的距离相等.参考答案例1.(1)4,﹣3,﹣1;(2)和的一半;(3)n+m 2;(4)由题意得,−2x+12=13x −4,解得:x =278.练习:(1)PQ =2﹣0=2,(2)设点Q 移动的时间为t 秒,则移动后点Q 所表示的数为6﹣4t ,移动后点P 所表示的数为﹣2+2t , 当Q 为PB 的中点时,有−2+2t+62=6−4t ,解得,t =45,此时.点P 为﹣2+2×45=﹣25.例2:(1)9;0.6.(2)点B 所对应的数b 为﹣2;(3)设点Q 所表示的数是x ,依题意有 x ﹣(﹣5)=2(﹣2﹣x ),解得x =﹣3.故点Q 所表示的数是﹣3. 练习:(1)①14.②BP =AB ﹣AP =14﹣6=8.③P 在数轴上点A 与B 之间时,AP =AB ﹣BP =14﹣2=12;当P 不在数轴上点A 与B 之间时,因为AB =14,所以P 只能在B 右侧,此时BP =2,AP =AB+BP =14+2=16.(2)假设C 为x ,当C 在A 左侧时,AC =﹣12﹣x ,BC =2﹣x ,AC+BC =35,解得x =−452; 当C 在B 右侧时,AC =x ﹣(﹣12),BC =x ﹣2,AC+BC =35,解得x =252.(3)设经过时间T 秒,则P 点坐标为﹣12﹣6T ,Q 点坐标为﹣8T ,M 点坐标为2﹣2T .当Q 在P 和M 的正中间,即Q 为PM 的中点时,2(﹣8T )=(﹣12﹣6T )+(2﹣2T ),解得T =54s .当P 在Q 和M 的正中间,即P 为QM 的中点时,2(﹣12﹣6T )=(﹣8T )+(2﹣2T ),解得T =﹣13<0,不合题意,舍掉.当PQ 重合时,即M 到P 、Q 距离相等时,此时MP =MQ , ∴﹣12﹣6T =﹣8T ,∴T =6s .因此,当T =54秒时,此时,M =﹣12,Q =﹣10,P =﹣392. 当T =6秒时,此时,M =﹣10,Q =﹣48,P =﹣48. 例3:(1)如图所示:(2)CD =3.5﹣1=2.5,BC =1﹣(﹣2)=3;(3)MN =|a ﹣b|;(4)①依题意有2t ﹣t =3,解得t =3.故t 为3秒时P ,Q 两点重合;②依题意有2t ﹣t =3﹣1,解得t =2;或2t ﹣t =3+1,解得t =4.故t 为2秒或4秒时P ,Q 两点之间的距离为1.故答案为:2.5,3;|a ﹣b|. 练习:(1)∵AB =6,BC =2,∴点A 对应的数是1﹣6=﹣5,点C 对应的数是1+2=3.(2)∵动点P 、Q 分别同时从A 、C 出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动, ∴点P 对应的数是﹣5+2t ,点Q 对应的数是3+t ;(3)①当点P 与点Q 在原点两侧时,若OP =OQ ,则5﹣2t =3+t ,解得:t =23;②当点P 与点Q 在同侧时,若OP =OQ ,则﹣5+2t =3+t ,解得:t =8,当t 为23或8时,OP =OQ . 〖尝试反馈〗1.(1)6,4.(2)5t ,3t .(3)由题意:(5﹣3)t =6,∴t =3. (4)由题意:6+3t ﹣5t =5或5t ﹣(6+3t )=5,解得t =12或112, 2.(1)①−2+62=2,②根据数轴上两点之间距离的计算公式得:﹣2﹣x ,6﹣x ;(2)①移动后,点A 表示的数为﹣2﹣3t ,点B 表示的数为6+12t ,点P 表示的数为t , ∵点M 是AP 的中点,∴点M 在数轴上所表示的数为−2−3t+t2=−1−t ;∵点N 是OB 的中点,∴点N 在数轴上所表示的数为6+12t+02=3+6t ;∴MN =3+6t ﹣(﹣1﹣t )=4+7t .3.(1)根据题意得2t+t =28,解得t =283,∴AM =563>10,∴M 在O 右侧,且OM =563﹣10=263,∴当t =283时,P 、Q 两点相遇,相遇点M 所对应的数是263; (2)由题意得,t 的值大于0且小于7.若点P 在O 左边,则10﹣2t =7﹣t ,解得t =3.若点P 在O 右边,则2t ﹣10=7﹣t ,解得t =173. (3)∵N 是AP 的中点,∴AN =PN =12AP =t ,∴CN =AC ﹣AN =28﹣t ,PC =28﹣AP =28﹣2t , 2CN ﹣PC =2(28﹣t )﹣(28﹣2t )=28.4.(1)C 点对应的数为﹣5+4×6=19,(2)点D 对应的数为﹣5﹣4×30=﹣125,(3)①相遇前PQ=20时,设运动时间为a秒,4a+6a=55﹣(﹣5)﹣20,解得:a=4,因此Q点对应的数为﹣5+4×4=11,②相遇后PQ=20时,设运动时间为b秒,4b+6b=55﹣(﹣5)+20,解得:b=8,因此C点对应的数为﹣5+4×8=27,故Q点对应的数为11或27.5.(1)点N所对应的数是1;(2)点P所对应的数是﹣3.5或1.5.(3)①点P在点Q的左边:(4+2×5﹣2)÷(3﹣2)=12(秒),点P对应的数是﹣3﹣5×2﹣12×2=﹣37,点Q对应的数是﹣37+2=﹣35;②点P在点Q的右边:(4+2×5+2)÷(3﹣2)=16(秒);点P对应的数是﹣3﹣5×2﹣16×2=﹣45,点Q对应的数是﹣45﹣2=﹣47.6.(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.综上所述 m=8或﹣40.7.(1)MN的长为3﹣(﹣1)=4;(2)根据题意得:x﹣(﹣1)=3﹣x,解得:x=1;(3)①当点P在点M的左侧时.根据题意得:﹣1﹣x+3﹣x=8.解得:x=﹣3.②P在点M和点N之间时,则x﹣(﹣1)+3﹣x=8,方程无解,即点P不可能在点M和点N之间.③点P在点N的右侧时,x﹣(﹣1)+x﹣3=8.解得:x=5.∴x的值是﹣3或5;(4)设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=23,符合题意.综上所述,t的值为23或4.8.(1)∵|a+12|+(b﹣6)2=0.∴a+12=0,b﹣6=0,即:a=﹣12,b=6;∴AB=6﹣(﹣12)=18;(2)点C、D在线段AB上,∵AB=18,AC=14,BD=8,∴BC=18﹣14=4,CD=BD﹣BC=8﹣4=4;(3)设经过t秒,点P、Q到点C的距离相等,AD=AB﹣BD=18﹣8=10,AP=3t,DQ=2t,①当点P、Q重合时,AP﹣DQ=AD,即:3t﹣2t=10,解得,t=10,②当点C是PQ的中点时,有CP=CQ,即,AC﹣AP=DQ﹣DC,14﹣3t=2t﹣4,解得,t=185,答:经过185或10秒,点P、点Q到点C的距离相等.。
七年级数学上册数轴上的动点问题专题训练(一)

七年级数学上册数轴上的动点问题专题训练(一)七年级数学上册数轴上的动点问题专题训练(一)前言:数轴上的动点问题离不开数轴上两点之间的距离。
为了便于我们对这类问题的分析,不妨先明确以下几个问题:1.数轴上两点间的距离,即为这两点所对应的坐标差,用右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表示的数-左边点表示的数。
2.点在数轴上运动时,由于数轴向右的方向为正方向,因此向右运动的速度看作正速度,而向左运动的速度看作负速度。
在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即一个点表示的数为a,向左运动b个单位后表示的数为a-b,向右运动b个单位后所表示的数为a+b。
3.数轴是数形结合的产物,分析数轴上点的运动要结合图形进行分析。
在数轴上运动形成的路径可看作数轴上线段的和差关系。
一、基础能力过关测试1.数轴上表示-5的点离原点的距离是5个单位长度,数轴上离原点6个单位长度的点有两个,它们表示的数是1和-1.2.数轴上的A点与表示-3的点距离4个单位长度,则A 点表示的数为-7.3.数轴上A、B两点离原点的距离分别为2和3,则AB 间距离是5.4.点A、B在数轴上对应的数分别是m、n,(n在m的右边)。
则AB间距离是n-m。
5.数轴上表示x和-2的两点间距离是|x+2|。
若|x+2|=5,则x=3或x=-7.6.若|a|=|b|,则a、b的关系是a=b或a=-b。
若|x−3|=|4−2x|,则x=2或x=5.7.若点A、点B表示的数分别是-2、6,则AB的中点为2.若点A、点B表示的数分别是a、b,则AB的中点为(a+b)/2.二、例题解析例1】如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发,向数轴正方向运动,A的速度为a个单位长度/秒,B的速度为b个单位长度/秒,且a、b满足(a^2)2<b^2<5a^21)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动到3秒时的位置;2)若A、B两点在(1)中的位置,在数轴上存在一点C,且AC=2BC,求C点对应的数;3)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒时,原点恰好在两个动点的正中间;4)若A、B两点从(1)中的位置同时按原速度向数轴负方向运动,问几秒后点A和点B相距2个单位长度;例2】已知数轴上有A、B两点,分别表示的数为-40和20.点A 以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动,设运动时间为t秒(t>0)。
数轴同步课件七年级数学人教版上册

-4.8 -3
01
3
7.5
10
共同点:图1.2-1和图1.2-2都把 5
正数、0 、负数用一条直线上 0
的点表示出来了.
-5
-10
鸟不展翅膀难高一飞。 般地,在数学中人们用画图把数“直观化”.
人鱼不跳通可 龙以门常有往傲上气游用,。但一不可以条无傲直骨 线上的点表示数,这条直线叫做数轴
海纳百川有容乃大壁立千仞无欲则刚
相遇时间=24÷(1+2)=8
向,从原点向左(或下)为负方向; 顶天立地奇男子,要把乾坤扭转来。
男儿不展同云志,空负天生八尺躯。
4
D.
(3)数轴上的点表示的数从左向右,逐渐变大; 有志的人战天斗地,无志的人怨天恨地。
2-2的温度计可以看作表示正数、0 、负数的直线吗?它和图1. 一共运动6个单位长度。
﹣a<a<1
(1)数轴是一条特殊的直线; a<﹣a<1
B.
5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.
在一条东西向的马路上,有一个汽车站,汽车站东3m和7.
③ 选取适当长度为单位长度。
(2)通常规定直线上从原点向右(或上)为正方 A、B、C三点在数轴上,A表示的数为-10,B表示的数为14,点C在A与B之间,且AC=BC.
下列图形哪些是数轴,哪些不是,为什么?
(A) (B) (C) (D) (E) (F)
-2 -1 0 1 2 -2 -1 1 2
0 -2 -1 0 1 2
-2 -1 0 1 2
-1 -2 0 1 2
议一议:
3
2
3.5
-4 -3 -2 -1 0 1 2 3 4
1、如何用数轴上的点来表示分数或小数?