33 随机事件的概率
随机事件的概率(古典概型、简单的几何概型、抽样方法)

所以该学校阅读过《西游记》的学生人数为70人, 则该学校阅读过《西游记》的学生人数与
该学校学生总数比值的估计值为:70 0.7.故选C. 100
7.(2018西安八校联考)某班对八校联考成绩进行分析,利用随机 数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号, 然后从随机数表第9行第5列的数开始向右读,则选出的第6个 个体是 ( )
(红,黄),(红,蓝),(红,绿),(红,紫),共4种,
故所求概率P 4 2. 10 5
3.(2018新课标Ⅲ卷)若某群体中的成员只用现金支付的概率为
0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支
第1节 随机事件的概率(古典概型、简单的几何概型、抽样方法)
付的概率为 ( ) 第三组取的数为(10号)36,第四组取的数为(14号)43,
A .2 3
B .3 5
C .2 5
D .1 5
【答案】 B 【解析】由题意,通过列举可知从这5只兔子中随机取出3只的 所有情况数为10, 恰有2只测量过该指标的所有情况数为6.
所以P 6 3.故选B. 10 5
9.(2019新课标Ⅲ卷,文)两位男同学和两位女同学随机排成一列,
则两位女同学相邻的概率是
表第9行第5列的数开始向右读,则选出的第6个个体是 ( )
4.取一根长度为5m的绳子,拉直后在任意位置剪断,那么所得两
段绳子的长度都不小于2m的概率是
()
A .1 5
B .1 3
C .1 4
D .1 2
【 答 案 】 A 【 解 析 】 记 两 段 绳 子 的 长 度 都 不 小 于 2m为 事 件 A, 则 只 能 在 中 间 1m的 绳 子 上 剪 断 ,所 得 两 段 绳 子 的 长 度 才 都 不 小 于 2m,
随机事件的概率

概率也是0.25,而一正一反的概率为0.5.上述实验告诉我们,随机试验在一次试验中发生与否是随机的,但随机性中蕴含着规律性.认识了这种随机性中的规律性,就能比较准确的预测随机事件发生的可能性.<3>不一定,买一千次彩票,等于做一千次实验,因为每次实验结果都有随机性,所以买一千张不一定中奖.虽然中奖张数是随机的,但这种随机性中也有规律性.随着实验次数的增加,即随着所买彩票张数的增加,其中中奖彩票所占的比例可能越接近于1/1000.例2:在一场乒乓球比赛前,裁判员利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.答案:这个规则是公平的,因为每个运动员先发球的概率为0.5,即每个运动员取得先发球权的概率是0.5.这个规则是公平的,因为抽签上抛后,红圈朝上与绿圈朝上的概率均是0.5,因此任何一名运动员猜中的概率都是0.5,也就是每个运动员取得先发球权的概率都是0.5.事实上,只能使两个运动员取得先发球权的概率都是0.5的规则都是公平的.例3:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动.由于某种原因,一班必须参加,另外再从二班至十二班中选1个班.有人提议用如下方法:抛掷两枚骰子,得到的点数和诗几,就选几班,你认为这种方法公平吗?答案:这种方法不公平,如课本图标所示,投掷两个骰子总共会产生36种结果,但点数和是2的只有一种,点数和是7的有6种,这样选2班的概率是1/36,选7班的概率是1/6,显然此做法不公平.例4:1.某地气象局预报说,明天本地降水概率为0.7,你认为下列两个解释哪一个能代表气象局的观点?(1)明天本地有0.7的区域下雨,0.3的区域不下雨.(2)明天本地下雨的机会是0.7.2.天气预报说昨天降水概率是0.9,结果根本一点雨也没下,天气预报页太不准确了,学了概率后,你能给出解释吗?答案:(2)是正确的.天气预报的降水是一个随机事件,因此昨天没有下雨并不说明昨天的降水概率为0.9的天气预报是错误的.巩固练习1、先后抛掷两枚质地均匀的硬币.(1)一共可以出现多少种不同的结果?(4种)(2)出现“一枚正面、一枚反面“的结果有几种?(两种)2、判断正误(1)如果一件事情发生的机会只有十万分之一,它就不可能发生(错)(2)如果一件事情发生的概率是0.995,那么它一定发生(错)(3)如果一件事情不是不可能发生,它就必然发生(错)(4)如果一件事情不是必然发生的,那么它就不可能发生(错)3、某种病治愈率是0.3,那么前7个人没有治愈,后3个人就一定治愈吗?总结讲解了几个概率的实例,有助于学生更为全面的理解概率.导入当几个集合是有限集时,常用列举法列出集合中的元素,求集合A∪B和A∩B中的元素个数. A∩B中元素个数即为集合A与B中公共元素的个数.而当A∩B≠φ时,A∪B的元素个数即为A、B中元素的个数减去A∩B中的元素个数.本节要学习的互斥事件和对立事件与集合之间的运算有着密切的联系,学习中要仔细揣摩,认真体会.知识整理<1>什么是包含关系.有什么需要注意的地方?结论:<1>一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B⊇A或者A⊆B.任何事件都不包含的事件成为不可能事件,记作φ注意:①与集合类比,B包含于A,如图②不可能事件记作φ,显然c⊇φ③事件A也包含于事件A,即A⊆A.例如,在掷骰子试验中,{出现1,3,5点}⊆{出现的点数为奇数}<2>什么是相等关系?有哪些需要注意的地方?结论:<2>如果B⊇A且A⊇B,那么称事件A和事件B 是相等的,记作A=B.注意:①两个相等事件A、B总是同时发生或同时不发生.②所谓A=B,就是A、B是同一个事件,有些时候在验证两个事件是否相等时,是非常有用的,在许多情况下,可以说是唯一的方法.<3>什么是并(和)事件?有哪些需要注意的?结论:<3>若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作A∪B(或A+B).注意:①与集合定义类似,如图②事件A与事件B的并事件等于事件B与事件A的并事件,即A∪B=B∪A.③并事件的发生有三层意思:事件A发生,事件B不发生;事件A不发生,事件B发生;事件A、B同时发生,即事件A、B中至少有一个发生.例如,在掷骰子的试验中,事件C1∪C5表示出现1点或5点这个事件,即C1∪C5={出现1点或5点}.<4>什么是交(积)事件?有什么需要注意的?结论:<4>若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).注意:①用集合形式表示如图②事件A与事件B的交事件等于事件B与事件A的交事件,即A∩B=B∩A.例如,在掷骰子的试验中,{出现的点数大于3}∩{出现的点数小于5}={出现的点数为4}.<5>什么是互斥事件?有什么需要注意的?结论:<5>若A∩B为不可能事件,即A∩B= ,那么称事件A与事件B互斥.注意:①A、B互斥是指事件A与事件B在一次试验中不会同时发生.②如果事件A与事件B是互斥事件,那么A与B两事件同时发生的概率为0.③与集合类比,如图所示④推广:如果事件A1,A2,…,A n中的任何两个互斥,就称事件A1,A2,…,A n为彼此互斥事件.例如:在一次投掷骰子的试验中,C1,C2,C3,C4,C5,C6为彼此互斥事件.<6>什么是对立事件?有什么需要注意的?结论:若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B为对立事件.注意:①事件A与事件B对立是指事件A与事件B在一次试验中有且仅有一个发生,事件A在事件B在一次试验中不会同时发生.②对立事件是针对两个事件来说的,一般的说,两个事件对立,则两个事件必是互斥事件;反之,两个事件互斥,则未必是对立事件.③对立事件是一种特护的互斥事件,若事件A与事件B是对立事件,则A与B互斥,且A∪B(或A+B)是必然事件.④从集合角度来看,事件A的对立事件是全集中由事件A所含结果组成的集合的补集.⑤在一次试验中,事件A与它的对立事件只能发生其中一个,并且也必然发生其中之一.<7>概率P(A)的取值范围是什么?结论:<7>由于事件的频数总是小于或等于实验的次数,所以频率在0和1之间,从而任何事件的概率都在0到1之间,即0≤P(A)≤0.注意:必然事件B一定发生,则P(B)=1;不可能事件C一定不发生,因此P(C)=0.<8>概率的加法公式是什么?结论:<8>当事件A与事件B互斥时,A∪B发生的频数等于A发生的频数与B发生的频数之和,从而A∪B的频率f n(A∪B)=f n(A)+f n(B),则概率的加法公式为:P(A∪B)=P(A)+P(B).关于互斥事件我们应注意以下几点:①事件A与事件B互斥,如果没有这一条件,加法公式将不能应用.②如果事件A,B,C,D,…互斥,则P(A+B+C+D+…)=P(A)+P(B)+P(C)+P(D)+…③在求某些稍复杂的事件概率时,可以将其分解成一些概率较易求的彼此互斥事件,化难为易.<9>对立事件的概率公式是什么?结论:<9>若事件A与事件B为对立事件,则A∪B为必然事件,所以P(A∪B)=1,又P(A∪B)=P(A)+P(B),所以P(A)=1-P(B).注意:①公式使用的前提必须是对立事件,否则不能应用此公式.。
人教版高中数学必修三3.随机事件的概率PPT课件(共30)

八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币
高一数学必修课件随机事件的概率

主要在于样本点发生的可能性是否相等。在古典概型中,每个样本点发 生的可能性相等;而在几何概型中,样本点发生的可能性与其几何度量 成比例。
02
条件概率与独立性
Chapter
条件概率定义及计算
1 2 3
条件概率的定义
在事件A发生的条件下,事件B发生的概率,记 作P(B|A)。
样本空间
在一定条件下,并不总是出现,或者 并不总是以确定的方式出现的现象。
随机现象所有基本结果组成的集合。
随机事件
随机现象的某些基本结果组成的集合 。
概率定义及性质
概率定义
非负性
对于给定的随机事件A,如果随着试验次数 的增加,事件A发生的频率f_n(A)稳定于某 个常数p,则称p为事件A的概率,记为 P(A)=p。
的盈利能力和偿付能力。
赔款计算
在保险事故发生时,依据保险合 同和精算原理,计算应赔付的金
额。
THANKS
感谢观看
协方差和相关系数简介
协方差性质
若两个随机变量的变化趋势一致,则协方差为正;若变化趋势相反,则协方差为 负;若变化趋势无关,则协方差为0。
协方差和相关系数简介
独立随机变量的协方差为0。
相关系数定义:相关系数是协方差与两个随机变量标准差乘积的比值,用于消除量纲影响,更准确地反映两个随机变量的线 性相关程度。
对于任何事件A,有P(A)≥0。
规范性
可加性
对于必然事件S,有P(S)=1。
对于任意两个互斥事件A和B,有 P(A∪B)=P(A)+P(B)。
古典概型与几何概型
01
古典概型
如果每个样本点发生的可能性相等,则称这种概率模型为古典概率模型
311随机事件的概率(教学案)

§.随机事件的概率一、教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。
随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.二、教学目标2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
三、教学重点难点难点:随机事件发生存在的统计规律性.四、学情分析求随机事件的概率主要要用到排列、组合知识,学生没有根底,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率〞这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
五、教学方法1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性2.学案导学:见后面的学案。
3.新授课教学根本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备多媒体课件,硬币数枚七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
〔二〕情景导入、展示目标日常生活中,有些问题是能够准确答复的.例如,明天太阳一定从东方升起吗明天上午第一节课一定是八点钟上课吗等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确答复的.例如,你明天什么时间来到学校明天中午12:10有多少人在学校食堂用餐你购置的本期福利彩票是否能中奖等等,这些问题的结果都具有偶然性和不确定性设计意图:步步导入,吸引学生的注意力,明确学习目标。
随机事件的概率

随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。
生活中的许多事情都是随机事件,无法预测和控制。
我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。
一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。
概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。
概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。
二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。
例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。
2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。
例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。
3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。
这种概率是主观的,因为它依赖于个人的判断和看法。
三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。
例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。
赌徒可以根据每个数字出现的概率来决定下注的策略。
2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。
保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。
例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。
3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。
概率论中的随机事件及概率的定义及计算

概率论中的随机事件及概率的定义及计算在概率论中,随机事件是指一个结果是不确定的事件,例如掷骰子的结果、抽奖的结果、病人是否能成功治愈等。
通过对随机事件的概率进行计算,我们可以预测它们发生的可能性大小,从而对未来的结果进行预测和控制。
随机事件的概率定义在概率论中,随机事件的概率定义为该事件在所有可能结果中出现的比例。
例如,在掷一次骰子时,获得6面的概率为1/6,因为6面是6个可能结果中的一个。
概率的计算方法一般来说,概率的计算方法有两种:相对频率方法和古典概型方法。
1. 相对频率方法相对频率方法是指通过实验来计算概率。
具体来说,我们可以对随机事件进行多次实验,然后统计该事件发生的次数与实验总次数之比。
例如,如果我们想要计算投掷骰子获得6面的概率,我们可以对骰子进行大量实验,并记录6面出现的次数。
然后,我们可以计算该事件发生的次数与实验总次数之比,即得到6面出现的概率。
2. 古典概型方法古典概型方法是指对于已知的固定有限集合,每个结果的概率相等时,对随机事件进行计算。
例如,对于投掷一枚骰子的情况,我们可以通过以下公式计算获得特定面的概率:P(E) = n(E) / n(S)其中,n(E)是事件E中有利结果的数量,n(S)是样本空间中的所有结果数。
概率的性质在概率论中,概率具有以下几个重要的性质:1. 非负性:概率是非负的,即概率不会小于零。
2. 正则性:所有可能事件的概率之和等于1。
3. 加法性:对于两个不相交事件A和B,它们的概率之和等于它们的并集的概率。
4. 乘法性:对于两个事件A和B,它们的联合概率等于它们各自的概率的积。
总结概率论是应用广泛的一门学科,在许多领域都有着重要的应用,例如统计学、经济学、金融学等。
随机事件及概率的定义和计算方法是概率论中最基础的概念,建立了整个概率论体系的基础。
了解概率论的基本概念和方法,可以帮助我们更好地理解和应用它们,在实际应用中更加准确地估计未来的结果和降低风险。
概率论随机事件公式

概率论随机事件公式
概率论是研究随机事件的一门学科,它主要研究其中一事件发生的可能性。
在概率论中,我们使用一些公式来计算随机事件的概率。
接下来,我将详细介绍一些常见的概率公式。
1.事件的概率公式:对于一个随机事件A,它的概率(记为P(A))可以通过以下公式计算:
P(A)=N(A)/N(S)
其中,N(A)表示事件A发生的次数,N(S)表示样本空间中所有可能事件发生的次数。
2.互斥事件的概率公式:如果事件A和事件B是互斥的(即它们不能同时发生),那么它们的概率可以通过以下公式计算:
P(A或B)=P(A)+P(B)
这是因为互斥事件的概率是可以累加的。
3.非互斥事件的概率公式:如果事件A和事件B不是互斥的,那么它们的概率可以通过以下公式计算:
P(A或B)=P(A)+P(B)-P(A和B)
这个公式被称为加法法则,并且可以使用类似的方法扩展到更多的事件上。
4.条件概率公式:条件概率是指在事件B已经发生的条件下,事件A 发生的概率。
它可以通过以下公式计算:
P(A,B)=P(A和B)/P(B)
其中,P(A和B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。
5.乘法法则:乘法法则是计算多个事件同时发生的概率的方法。
对于两个事件A和B,它们同时发生的概率可以通过以下公式计算:P(A和B)=P(A)*P(B,A)
其中,P(A)表示事件A发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
以上是概率论中一些常见的随机事件公式。
通过使用这些公式,我们可以计算出事件发生的概率,从而更好地理解和应用概率论的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.(2014· 济南)学校新开设了航模、彩绘、泥塑三个社团 , 如果征征、舟舟两名同学每人随机选择参加其中一个社
(C ) 团,那么征征和舟舟选到同一社团的概率为
2 A.3 1 B.2 1 C.3 1 D.4
5.(2014· 贺州)A,B,C,D 四名选手参加 50 米决赛, 赛场共设 1,2,3,4 四条跑道,选手以随机抽签的方式
8 2 1 1 ∴两次摸到的球中有 个绿球和 个红球的概率是12=3
【点评】 用树状图或列表的方法来求事件的概率是: ①
要认真弄清题意, 分清是“一步实验”还是“两步或两步 以上实验”; ②要在所有等可能的结果中, 仔细筛选出适 合题意的结果个数 , 代入 “P(A) =
事件A发生的可能的结果总数 ”中求出概率,谨防出错. 所有可能的结果总数
决定各自的跑道,若 A 首先抽签,则 A 抽到 1 号跑道的
概率是( D ) A.1 1 B.2 1 C.3 1 D.4
判断事件的类型
【例1】 (2014·聊城)下列说法中不正确的是( C ) A.抛掷一枚硬币,硬币落地时正面朝上是随机事件
B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球
是必然事件 C.任意打开七年级下册数学教科书,正好是97页是确定事 件 D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜
4.(2013· 内江)同时抛掷 A,B 两个均匀的小立方体(每个 面上分别标有数字 1,2,3,4,5,6),设两立方体朝上 的数字分别为 x,y,并以此确定点 P(x,y),那么点 P 落
2 在抛物线 y=-x +3x 上的概率为( A )
1 A.18
1 B.12
1 C.9
1 D.6
5.(2013·资阳)在一个不透明的盒子里,装有4个
有数字“2,3,4”,第二组卡片上分别写有数字“3
,4,5”,现从每组卡片中各随机抽出一张,用抽取
的第一组卡片上的数字减去抽取的第二组卡片上的
2 为____ . 3
(2)(2014· 深圳)袋子里有 4 个球,标有 2,3,4,5,先抽 取一个并记住 ,放回,然后再抽取一个 ,所抽取的两个
球数字之和大于 6 的概率是( C )
1 A.2 7 B.12 5 C.8 3 D.4
用列表法与树状图求概率来解决问题 【例3】 (2014·武汉)袋中装有大小相同的2个红 球和2个绿球. (1)先从袋中摸出1个球后放回,混合均匀后再摸出
“公平”游戏 游戏是否公平问题,可以采用列表法或画树状图表 示所有结果,计算出双方获胜的概率,然后进行比 较,不能仅凭印象下结论,要用数字说话,还要学
会改变规则,使游戏变公平.
1.(2014·黔南州)下列事件是必然事件的是( D )
A.抛掷一枚硬币四次,有两次正面朝上
B.打开电视频道,正在播放《新闻联播》
机会均等的结果;(2)两步或两步以上实验的不确
定事件发生的概率的计算,往往借助列表法、枚
举法、树状图来进行分析,注意避免计数的重复
与遗漏.
规范答题
解:(1)从 A,D,E,F 四点中任意取一点,以所取的这 C 为顶点画三角形, 一点及 B, 有△ABC, △DBC, △EBC, △FBC,但只有△DBC 是等腰三角形,所以 P(所画三角 1 形是等腰三角形)=4.
,常用的方法有:枚举法、列表法和画树状图法等 .
要点梳理
3.事件 A 发生的概率: 事件A发生的可能的结果总数 __. P(A)=__ 所有可能的结果总数
4.必然事件的概率为
为
0
1 ,不可能事件的概率
,不确定事件的概率 大于0且小于1
.
一个防范
要判断事件发生的可能性,除了要注意事件发生的
条件外,还要注意日常生活常识的积累.不确定事
(2) 用树状图或利用 表格列出所有可能的结果:
∵ 以点 A,E,B ,C 为顶点及以点 D,F ,B,C 为顶点所 画的四边形是平行四边形 ,∴ P(所画的四边形是平行四边 4 1 形 )=12 = 3.
答题思路 第一步:确定事件是等可能事件; 第二步:利用概率公式来计算; 第三步:给出明确的结论; 第四步:反思回顾,查看关键点、易错点和答题 规范.
2.(2014· 宜宾)一个袋子中装有 6 个黑球和 3 个白球,这 些球除颜色外,形状、大小、质地等完全相同,在看不
到球的条件下,随机地从这个袋子中摸出一个球,摸到
白球的概率是( B ) 1 A.9 1 B.3 1 C.2 2 D.3
3.(2013· 恩施)如图,在平行四边形纸片上作随机扎针试 验,针头扎在阴影区域内的概率为( B ) 1 A.3 1 B.4 1 C.5 1 D.6
黑球和若干个白球,它们除颜色外没有任何其他区
别,摇匀后从中随机摸出一个球记下颜色,再把它
放回盒子中,不断重复,共摸球40次,其中10次摸
到黑球,则估计盒子中大约有白球( A )
A.12个
B.16个
C.20个
D.30个
二、填空题(每小题6分,共30分) 6.(2014·孝感)下列事件:①随意翻到一本书的某 页,这页的页码是奇数;②测得某天的最高气温是 100℃;③掷一次骰子,向上一面的数字是2;④度 量四边形的内角和,结果是360°.其中是随机事件 ①③.(填序号) 的是____
1 面接触的概率是____ 2 .
9.(2013· 泸州)在一个不透明的口袋中放入红球 6 个,黑 球 2 个,黄球 n 个.这些球除颜色不同外,其他无任何 1 差别,搅匀后随机从中摸出一个恰好是黄球的概率为 3,
4__. 则放入口袋中的黄球总数 n=__
10.(2014·枣庄)有两组卡片,第一组卡片上分别写
7.(2014·邵阳)有一个能自由转动的转盘如图,盘
面被分成8个大小与形状都相同的扇形,颜色分为黑
白两种,将指针的位置固定,让转盘自由转动,当
1 它停止后,指针指向白色扇形的概率是____ 2 .
8.(2013·河北)如图,A是正方体小木块(质地均匀)
的一顶点,将木块随机投掷在水平桌面上,则A与桌
第17讲 简单随机事件的概率
要点梳理
1.事先能确定一定会发生的事件就叫做 必然事件 ,事
先确定一定不会发生的事件就是
不确定事件.
不可能事件 ,而在一
定条件下可能发生也可能不发生的事件,我们称之为
或
随机事件
要点梳理 2.概率定义为事件发生的可能性大小;简单事件的
概率可以通过统计事件发生的所有不同结果来计算
色外都相同).如果从中任取一个球,取得的是红球的概率与
不是红球的概率相同,那么m与n的和是6
【点评】 必然事件发生的概率是1,不可能事件发 生的概率是0,不确定事件发生的概率大于0而小于1.
1.(2013·包头)下列事件中是必然事件的是( C ) A.在一个等式两边同时除以同一个数,结果仍为 等式 B.两个相似图形一定是位似图形 C.平移后的图形与原来图形对应线段相等 D.随机抛掷一枚质地均匀的硬币,落地后正面一 定朝上
第一枚 第二枚 正 正 正正 反 正反
反
反正
反反
正解
解:画树状图如右:
因此共有四
1 种情况 ,其中 “正正 ” 出现一次 , 概率为 4; “ 正反 ” 出 1 1 现二次 ,概率为 2;“反反 ”出现一次 ,概率为 4.
考点跟踪突破17
简单随机事件的概率
一、选择题(每小题6分,共30分) 1.(2014·梅州)下列事件中是必然事件的是( C ) A.明天太阳从西边升起 B.篮球队员在罚球线投篮一次,未投中 C.实心铁球投入水中会沉入水底 D.抛出一枚硬币,落地后正面向上
C.射击运动员射击一次,命中十环
D.方程x2-2x-1=0必有实数根
2.(2014· 绍兴)一个不透明的袋子中有 2 个白球,3 个黄 球和 1 个红球,这些球除颜色不同外其他完全相同 ,则 ( C) 从袋子中随机摸出一个球是白球的概率为 1 A.6 1 B.4 1 C.3 1 D.2
3.(2014· 绵阳)一儿童行走在如图所示的地板上,当他随 意停下时,最终停在地板上阴影部分的概率是( A ) 1 A.3 1 B.2 3 C.4 2 D.3
件发生的可能性有大有小,即发生的概率大于0且小
于1.
列表法与树状图法的选取
列表和画树状图的目的都是不重不漏地列举所有可
能性相等的结果,在很多问题中,二者是共通的. 当一次试验要涉及两个因素,并且可能出现的结果 数目较多时,为了不重复不遗漏地列出所有可能的结 果,通常采用列表法. 当一次试验要涉及两个以上的因素时,为了不重复 不遗漏地列出所有可能的结果,通常采用树状图法.
1个球.
①求第一次摸到绿球,第二次摸到红球的概率;
②求两次摸到的球中有1个绿球和1个红球的概率;
(2)先从袋中摸出1个球后不放回,再摸出1个球, 则两次摸到的球中有1个绿球和1个红球的概率是多
少?请直接写出结果.
解:(1)①画树状图得:
∵共有 16 种等可能的结果,第一次摸到绿球,第二次摸到红球的有 4 种情况, 4 1 1 ∴第一次摸到绿球,第二次摸到红球的概率为 16=4;②∵两次摸到的球中有 个 绿球和 1 个红球的有 8 种情况,∴两次摸到的球中有 1 个绿球和 1 个红球的概率为 8 1 16=2 (2)∵先从袋中摸出 1 个球后不放回,再摸出 1 个球,共有等可能的结果为: 4×3=12(种),且两次摸到的球中有 1 个绿球和 1 个红球的有 8 种情况,
所有等可能的情况有 9 种,其中两数之积为偶数的情况有 5 种,之积为奇数的 5 4 5 4 情况有 4 种,∴P(小明获胜)= ,P(小华获胜)= ,∵ > ,∴该游戏不公平 9 9 9 9
试题 (2012·苏州)在3×3的方格纸中,点A,B,C,D, E,F分别位于如图所示的小正方形的顶点上.