2017-2018学年湖北省潜江市高一(下)期末数学试卷及答案

合集下载

2018学年湖北省天门、仙桃、潜江三市高一下学期期末考试数学(文)试题(解析版) (16)

2018学年湖北省天门、仙桃、潜江三市高一下学期期末考试数学(文)试题(解析版) (16)

高一下学期期末考试数学(文)试题一、选择题1.已知集合{}1,0,1M =-,集合{|sin ,}N y y x x M ==∈,则M N ⋂= A. {}1,0,1- B. {}0,1 C. {}1 D. {}0 2.由首项,公差确定的等差数列,当时,序号n 等于A. 99B. 100C. 96D. 1013.已知向量12,e e 是两个不共线的向量,若12122,a e e b e e λ=-=+与共线,则λ的值为A. 12-B. -2C. 12D. 2 4.已知a b >,则不等式22a b >, 11a b<,11a b a >-中不成立的个数为 A. 0 B. 1 C. 2 D. 35.对于锐角,若,则A. B. C. 1 D.6.已知函数1{|216,}4x A x x Z =<<∈, 2{|30,}B x x x x Z =-<∈,从集合A 中任取一个元素,则这个元素也是集合B 中元素的概率为 A.15 B. 13 C. 25 D. 237.若函数是偶函数,是奇函数,则的值是A. B. 1 C. D.8.公元263年左右,我国数学有刘徽发现当圆内接多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值 3.14,这就是著名的“徽率”。

某同学利用刘徽的“割圆术”思想设计了一个计算圆周率的近似值的程序框图如图,则输出S 的值为(参考数据: sin150.2588sin7.50.1305︒︒==,)A. 2.598B. 3.106C. 3.132D. 3.1429.某次月考后,从所有考生中随机抽取50名考生的数学成绩进行统计,并画出频率分布直方图如图所示,则该次考试数学成绩的众数的估计值为A. 70B. 2713C. 75D. 8010.已知lg lg 2a b +=,则()lg a b +的最小值为A. 1lg2+B.C. 1lg2-D. 211.如图,圆C 内切于扇形AOB ,∠AOB =,若在扇形AOB 内任取一点,则该点在圆C 内的概率为A. B. C. D.12.若函数()与函数的部分图像如图所示,则函数图像的一条对称轴的方程可以为A. B.C.D.二、填空题13.函数()()22log 32f x x x =+-的定义域为______.14.公差不为零的等差数列{}n a 中, 134,,a a a 成等比数列,则其公比q =__________.15.设函数()2,1{,1m x x f x x x +≥=<的图像过点(1,1),则函数()f x 的值域是_____.16.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60o ,再由点C 沿北偏东15o 方向走10米到位置D ,测得∠BDC =45o ,则塔AB 的高度______.三、解答题17.求函数()223,(0)x x f x x x-+-=>的最大值,以及此时x 的值.18.当,p q 都为正数且1p q +=时,试比较代数式()2px qy +与22px qy +的大小.19.ABC ∆的三个角,,A B C 所对的边分别为,,a b c , tan 1tan A B +=. (Ⅰ)求角A 的大小;(Ⅱ)若ABC ∆为锐角三角形,求函数22sin 2sin cos y B B C =-的取值范围.20.已知首项为1的数列{}n a 的前n 项和为n S ,若点()()1,2n n S a n -≥在函数34y x =+的图象上.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若22log 7n n a b +=,且12?n n n b c +=,其中*n N ∈,求数列{}n c 的前前n 项和n T .21.某校高二奥赛班N 名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100~110的学生数有21人。

2017-2018学年湖北省联考高一(下)期末数学试卷

2017-2018学年湖北省联考高一(下)期末数学试卷

2017-2018学年湖北省联考高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}2.函数f(x)=cos2x的最小正周期为()A.4πB.2πC.πD.3.已知函数y=f(x)+sin x为偶函数,若f()=,则f()=()A.B.C.D.4.设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.3B.2C.2D.5.阅读如图所示的程序框图,输出A的值为()A.B.C.D.6.若,是两个单位向量,且(2+)•(﹣2+3)=2﹣1,则,的夹角为()A.B.C.D.7.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310﹣1山高y(km)24343864由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.﹣10B.﹣8C.﹣4D.﹣68.若实数a,b满足+=,则ab的最小值为()A.B.2C.2D.49.在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5)D.(2,4)10.已知等比数列{a n}满足,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.11.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.12.若函数f(x)=4x﹣m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为()A.(﹣2,2)B.(6,+∞)C.(2,6)D.(2,+∞)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上对应题号后的横线上)13.计算:cos(α+30°)cos(α﹣30°)+sin(α+30°)sin(α﹣30°)=.14.假设小明家订了一份报纸,送报人可能在早上6:30至7:30之间把报纸送到小明家,小明爸爸离开家去工作的时间在早上7:00至8:00之间,问小明的爸爸在离开家前能得到报纸的概率是.15.已知定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(﹣1)=2,则不等式f (x﹣1)+2≤0在(0,+∞)的解集为.16.已知函数f(x)=sin2ωx﹣cos2ωx+(其中ω为常数,且ω>0),函数g(x)=f (x)﹣的部分图象如图所示.则当x∈[﹣]时,函数f(x)的取值范围是.三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.已知α,β都是锐角,tanα=,sinβ=,求tan(α+2β)的值.18.现从某校高三年级随机抽50名考生2015年高考英语听力考试的成绩,发现全部介于[6,30]之间,将成绩按如下方式分成6组:第1组[6,10),第2组[10,14),…,第6组[26,30],如图是按上述分组方法得到的频率分布直方图.(Ⅰ)估算该校50名考生成绩的众数和中位数;(Ⅰ)求这50名考生成绩在[22,30]内的人数.19.下面有两个游戏规则,袋子中分别装有球,从袋中无放回地取球,分别计算甲获胜的概率,并说明哪个游戏是公平的?游戏1游戏22个红球和2个白球3个红球和1个白球取1个球,再取1个球取1个球,再取1个球取出的两个球同色→甲胜取出的两个球同色→甲胜取出的两个球不同色→乙胜取出的两个球不同色→乙胜20.设S n表示数列{a n}的前n项和.(Ⅰ)若{a n}是等差数列,试证明:S n=;(Ⅰ)若a1=1,q≠0,且对所有的正整数n,有S n=,判断{a n}是否为等比数列.21.锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量=(2,c),=(cosC﹣sinA,cosB),已知b=,且⊥.(1)求角B;(2)求△ABC面积的最大值及此时另外两个边a,c的长.22.已知a是实数,函数f(x)=2ax2+2x﹣3,如果函数y=f(x)在区间(﹣1,1)有零点,求a的取值范围.2017-2018学年湖北省天门、仙桃、潜江市联考高一(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}【考点】交集及其运算.【分析】直接利用交集及其运算得答案.【解答】解:由M={x|﹣2≤x<2},N={0,1,2},得M∩N={x|﹣2≤x<2}∩{0,1,2}={0,1}.故选:D.2.函数f(x)=cos2x的最小正周期为()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】利用二倍角的余弦公式化简函数的解析式,再根据函数y=Acos(ωx+φ)+b的周期为,得出结论.【解答】解:函数f(x)=cos2x=的最小正周期为=π,故选:C.3.已知函数y=f(x)+sin x为偶函数,若f()=,则f()=()A.B.C.D.【考点】函数奇偶性的性质.【分析】由题意可得f(x)﹣f(﹣x)=﹣2sin x,结合f()=f(2)=,f ()=f(﹣2),求得f(﹣2)的值.【解答】解:∵函数y=f(x)+sin x为偶函数,∴f(﹣x)﹣sin x=f(x)+sin x,∴f(x)﹣f(﹣x)=﹣2sin x.∵f()=f(2)=,f()=f(﹣2),∴﹣f(﹣2)=﹣2•=﹣,∴f(﹣2)=2,故选:A.4.设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cosA=.且b<c,则b=()A.3B.2C.2D.【考点】正弦定理.【分析】运用余弦定理:a2=b2+c2﹣2bccosA,解关于b的方程,结合b<c,即可得到b=2.【解答】解:a=2,c=2,cosA=.且b<c,由余弦定理可得,a2=b2+c2﹣2bccosA,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:C.5.阅读如图所示的程序框图,输出A的值为()A.B.C.D.【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的A,i的值,当i=11时,不满足条件i≤10,退出循环,输出A的值为.【解答】解:模拟执行程序框图,可得A=1,i=1A=,i=2满足条件i≤10,A=,i=3满足条件i≤10,A=,i=4满足条件i≤10,A=,i=5满足条件i≤10,A=,i=6满足条件i≤10,A=,i=7满足条件i≤10,A=,i=8满足条件i≤10,A=,i=9满足条件i≤10,A=,i=10满足条件i≤10,A=,i=11不满足条件i≤10,退出循环,输出A的值为,故选:C.6.若,是两个单位向量,且(2+)•(﹣2+3)=2﹣1,则,的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出,代入向量的夹角公式计算.【解答】解:∵(2+)•(﹣2+3)=2﹣1,∴﹣4+3+4=2﹣1.∵==1,∴=.∴cos<,>==.∴<,>=.故选:A.7.登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x(°C)181310﹣1山高y(km)24343864由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.﹣10B.﹣8C.﹣4D.﹣6【考点】线性回归方程.【分析】求出,,代入回归方程,求出a,代入,将y=72代入可求得x的估计值.【解答】解:由题意,,,代入到线性回归方程,可得a=60,∴y=﹣2x+60,由﹣2x+60=72,可得x=﹣6.故选:D.8.若实数a,b满足+=,则ab的最小值为()A.B.2C.2D.4【考点】基本不等式.【分析】由+=,可判断a>0,b>0,然后利用基础不等式即可求解ab的最小值【解答】解:∵+=,∴a>0,b>0,∵(当且仅当b=2a时取等号),∴,解可得,ab,即ab的最小值为2,故选:C.9.在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5)D.(2,4)【考点】平面向量的坐标运算.【分析】根据平行四边形法则,可以求出,再根据平行四边形法则可以求出结果,在运算过程中要先看清各向量的关系,理清思路以后再用坐标表示出结果.【解答】解:∵,故选B.10.已知等比数列{a n}满足,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.11.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为()A.B.C.D.【考点】几何概型.【分析】先解已知不等式,再利用解得的区间长度与区间[0,2]的长度求比值即得.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤log(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A12.若函数f(x)=4x﹣m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为()A.(﹣2,2)B.(6,+∞)C.(2,6)D.(2,+∞)【考点】函数零点的判定定理.【分析】利用换元法,问题转化为函数f(t)=t2﹣mt+m+3有两个不同的零点,且大于1,建立不等式,即可求出实数m的取值范围.【解答】解:设t=2x,∵x1+x2>0,x1x2>0,∴t>1,∴函数f(t)=t2﹣mt+m+3有两个不同的零点,且大于1,∴,∴m>6,故选:B.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上对应题号后的横线上)13.计算:cos(α+30°)cos(α﹣30°)+sin(α+30°)sin(α﹣30°)=.【考点】两角和与差的余弦函数;三角函数的化简求值.【分析】运用两角和与差的余弦函数化简求解即可.【解答】解:cos(α+30°)cos(α﹣30°)+sin(α+30°)sin(α﹣30°)=cos(α+30°﹣α+30°)=cos60°=;故答案为:.14.假设小明家订了一份报纸,送报人可能在早上6:30至7:30之间把报纸送到小明家,小明爸爸离开家去工作的时间在早上7:00至8:00之间,问小明的爸爸在离开家前能得到报纸的概率是.【考点】几何概型.【分析】设送报人到达的时间为x,小明爸爸离家去工作的时间为y,则(x,y)可以看成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件A所构成的区域及其面积,由几何概型公式,计算可得答案.【解答】解:设送报人到达的时间为x,小明爸爸离家去工作的时间为y,记小明爸爸离家前能看到报纸为事件A;以横坐标表示报纸送到时间,以纵坐标表示小明爸爸离家时间,建立平面直角坐标系,小明爸爸离家前能得到报纸的事件构成区域如图示:由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示小明爸爸在离开家前能得到报纸,即事件A发生,所以P(A)==,故答案为:.15.已知定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(﹣1)=2,则不等式f (x﹣1)+2≤0在(0,+∞)的解集为(1,2] .【考点】奇偶性与单调性的综合.【分析】由题意和奇函数的性质得f(1)=﹣f(﹣1)=﹣2,由函数的单调性化简不等式,求出不等式的解集.【解答】解:因为f(x)是在R上的奇函数,f(﹣1)=2,所以f(1)=﹣f(﹣1)=﹣2,因为f(x)在(0,+∞)上单调递增,且f(x﹣1)+2≤0为:f(x﹣1)≤﹣2=f(1),所以0<x﹣1≤1,解得1<x≤2,所以不等式f(x﹣1)+2≤0在(0,+∞)的解集为(1,2],故答案为:(1,2].16.已知函数f(x)=sin2ωx﹣cos2ωx+(其中ω为常数,且ω>0),函数g(x)=f (x)﹣的部分图象如图所示.则当x∈[﹣]时,函数f(x)的取值范围是[﹣,+1].【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用两角差的正弦公式化简f(x)的解析式,利用正弦函数的周期性求得ω,再根据正弦函数的定义域和值域求得f(x)的取值范围.【解答】解:函数f(x)=sin2ωx﹣cos2ωx+=2sin(2ωx﹣)+(其中ω为常数,且ω>0),根据函数g(x)=f(x)﹣的部分图象,可得=•=﹣,∴ω=1,f(x)=2sin(2x﹣)+,则当x∈[﹣]时,2x﹣∈[﹣,],sin(x﹣)∈[﹣1,],∴f(x)的取值范围是[﹣, +1],故答案为:.三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.已知α,β都是锐角,tanα=,sinβ=,求tan(α+2β)的值.【考点】两角和与差的正切函数.【分析】由同角三角函数关系式先求出tanβ,再由倍角公式求出tan2β,由此利用正切函数加法定理能求出tan(α+2β)的值.【解答】解:∵α,β都是锐角,tanα=,sinβ=,∴cosβ====,tanβ==,tan2β===,∴tan(α+2β)===1.18.现从某校高三年级随机抽50名考生2015年高考英语听力考试的成绩,发现全部介于[6,30]之间,将成绩按如下方式分成6组:第1组[6,10),第2组[10,14),…,第6组[26,30],如图是按上述分组方法得到的频率分布直方图.(Ⅰ)估算该校50名考生成绩的众数和中位数;(Ⅰ)求这50名考生成绩在[22,30]内的人数.【考点】频率分布直方图;众数、中位数、平均数.【分析】(Ⅰ)由频率分布直方图,能求出该校50名考生听力成绩的众数和中位数.(Ⅰ)由频率分布直方图求出后两组频率及人数,由此能求出该校这50名考生听力成绩在[22,30]的人数.【解答】解:(Ⅰ)由频率分布直方图知,该校这50名考生听力成绩的众数为…中位数为…(Ⅰ)由频率分布直方图知,后两组频率为(0.03+0.02)×4=0.2人数为0.2×50=10,即该校这50名考生听力成绩在[22,30]的人数为10人.…19.下面有两个游戏规则,袋子中分别装有球,从袋中无放回地取球,分别计算甲获胜的概率,并说明哪个游戏是公平的?游戏1游戏22个红球和2个白球3个红球和1个白球取1个球,再取1个球取1个球,再取1个球取出的两个球同色→甲胜取出的两个球同色→甲胜取出的两个球不同色→乙胜取出的两个球不同色→乙胜【考点】概率的意义.【分析】在游戏1中,分别求出取两球同色的概率和取两球异色的概率;游戏2中,分别求出取两球同色的概率和取两球异色的概率,由此能求出结果.【解答】解:在游戏1中,取两球同色的概率为:=,取两球异色的概率为:=,因此游戏1中规则不公平.游戏2中,取两球同色的概率为:=,取两球异色的概率为:=,因此游戏2中规则是公平的.20.设S n表示数列{a n}的前n项和.(Ⅰ)若{a n}是等差数列,试证明:S n=;(Ⅰ)若a1=1,q≠0,且对所有的正整数n,有S n=,判断{a n}是否为等比数列.【考点】等比关系的确定;等差数列的性质.【分析】(I)利用等差数列的通项公式及其求和公式、倒序相加法即可得出.(II)利用等比数列的通项公式定义、递推关系即可得出.【解答】(Ⅰ)证明:设{a n}的公差为d,则S n=a1+a2+…+a n=a1+(a1+d)+(a1+2d)+…+[a1+(n﹣1)d],又S n=a n+(a n﹣d)+(a n﹣2d)+…+[a n﹣(n﹣1)d],∴2S n=n(a1+a n)∴.(Ⅰ)解:{a n}是等比数列.证明如下:∵∴,∵a1=1,q≠0,∴当n≥1时,有.因此,{a n}是以1为首项,且公比为q的等比数列.21.锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量=(2,c),=(cosC﹣sinA,cosB),已知b=,且⊥.(1)求角B;(2)求△ABC面积的最大值及此时另外两个边a,c的长.【考点】三角函数中的恒等变换应用;平面向量数量积的运算;正弦定理.【分析】(1)应用正弦定理求B角;(2)注意题中三角形为锐角三角形,应用化一公式求得面积最大值.【解答】解:(1)∵∴即bcosC+ccosB=2sinA2RsinBcosC+2RsinCcosB=2sinA2Rsin(B+C)=2sinA2RsinA=2sinA∴2R=2∵∴∵∴(2)S=═====∵三角形为锐角三角形∴即∴;此时∴.22.已知a是实数,函数f(x)=2ax2+2x﹣3,如果函数y=f(x)在区间(﹣1,1)有零点,求a的取值范围.【考点】二次函数的性质.【分析】通过讨论a的范围,结合二次函数以及一次函数的性质得到关于a的不等式组,解出即可.【解答】解:(1)若a=0,则f(x)=2x﹣3,令f(x)=0得,不符合题意,故a≠0…(2)当a>0时,由于f(0)=﹣3<0,∴y=f(x)在(﹣1,1)上可有两个不同零点或一个零点,依题意需满足或即或解之得…(3)当a<0时,f(x)在(﹣1,1)有零点需满足或无解,故a<0时,不符合题意由(1)(2)(3)可知f(x)在(﹣1,1)上有零点,a的取值范围是祝考出好成绩。

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析

XXX2017-2018学年高一下学期期末数学试卷 Word版含解析2017-2018学年XXX高一(下)期末数学试卷一、选择题(共12小题,每小题5分,共60分)1.已知sinα=1/2,并且α是第二象限的角,那么tanα的值等于()A。

-1/2 B。

-2 C。

1/2 D。

22.某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查。

这种抽样方法是()A。

简单随机抽样法 B。

抽签法 C。

随机数表法 D。

分层抽样法3.已知变量x,y满足约束条件x+y=1,则z=x+2y的最小值为()A。

3 B。

1 C。

-5 D。

-64.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三.1班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是()A。

2 B。

3 C。

4 D。

55.执行如图所示的程序框图,若输入n的值为6,则输出s的值为()A。

105 B。

16 C。

15 D。

16.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为()A。

1/2 B。

1/4 C。

3/4 D。

1/37.为了得到函数y=sin(2x-π/2)的图象,可以将函数y=cos2x的图象()A。

向右平移π/4个单位长度 B。

向右平移π/2个单位长度 C。

向左平移π/4个单位长度 D。

向左平移π/2个单位长度8.a11 B。

0<q<1 C。

q<0 D。

q<19.函数y=|x-2|+|x+1|的图象大致为()A。

图略 B。

图略 C。

图略 D。

图略10.在矩形ABCD中,AB=2,AD=1,点P为矩形ABCD内一点,则使得AP/BP=CP/DP的点P的坐标为()A。

【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)

【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)

⊥底面 ABC,垂足为 H,则点 H在 ( ).
A.直线 AC上 B .直线 AB上
C.直线 BC上 D .△ ABC内部
12. 已知 ab
0
,

P(a,b)
是圆
2
x
2
y
2
r 内一点 , 直线 m是以
点 P 为中点的弦所在的直线 , 直线 L 的方程是 ax by r 2 , 则下列结论正确的是 ( ).
1 D .m
2
3. 如图,矩形 O′ A′B′ C′是水平放置的一个平面图形的直观图,其中
O′ A′= 6 cm, C′D′= 2 cm,则原图形是 ( ).
A.正方形 B .矩形 C .菱形 D .梯形
4. 已知 A 2, 3 , B 3, 2 ,直线 l 过定点 P 1,1 ,且与线段 AB 相交,
C. 3x 6y 5 0
D
. x 3或3x 4 y 15 0
8. 三视图如图所示的几何体的表面积是 (
).
A.2+ 2 B .1+ 2 C .2+ 3 D .1+ 3
9. 设 x0 是方程 ln x+ x= 4 的解,则 x0 属于区间 ( ).A. (0 ,1)B . (1 ,2)C
. (2 , 3)
C.若 l ∥ β ,则 α∥ β D .若 α ∥ β,则 l ∥ m
6. 一个长方体去掉一个小长方体,所得几何体的
主视图与左视图分别如右图所示,则该几何
体的俯视图为 ( ).
7. 一条直线经过点
M ( 3,
3)
,
被圆
2
x
2
y
25 截得的弦长等于 8, 这条直线的方
2
程为 ( ).

2017-2018学年高一数学下学期期末考试试题 文 (I)

2017-2018学年高一数学下学期期末考试试题 文 (I)

2017-2018学年高一数学下学期期末考试试题文 (I)考试时间:120分钟满分:150分一、选择题(本题共12小题,每题5分)1.设全集是实数集,或,,则()A. B. C. D.2.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包量成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为()A. B. C. D.3.从某中学甲、乙两班各随机抽取名同学,测量他们的身高(单位:),所得数据用茎叶图表示如下,由此可估计甲、乙两班同学的身高情况,则下列结论正确的是()A. 甲班同学身高的方差较大B. 甲班同学身高的平均值较大C. 甲班同学身高的中位数较大D. 甲班同学身高在以上的人数较多4.在如图所示的程序框图中,若输出的,则判断框内可以填入的条件是()A. B. C. D.5.若在区间上随机取一个数,则“直线与圆相交”的概率为()A. B. C. D.6.下面四种说法:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是()A.4B.3C.2D.17.当时,若,则的值为()A. B. C. D.8.已知平面向量,且,则在上的投影为()A. B. C. D.9.三棱锥中,为等边三角形,,,三棱锥的外接球的体积为()A.B.C.D.10.已知圆的半径为2,圆的一条弦的长是3,是圆上的任意一点,则的最大值为 ( )A. 9B. 10C.D.11.将函数的图象向右平移()个单位,再将图象上每一点的横坐标缩短到原来的(纵坐标不变),所得图象关于直线对称,则的最小值为()A. B. C. D.12.设等差数列的前项和为,已知,为整数,且,则数列前项和的最大值为()A.1 B. C.D.二、填空题(本题共4小题,每题5分)13.在中, , , 分别是角,,的对边,且,则=14.若角的终边经过点,则15.已知函数f(x)=x+sinx,x(-1,1),如果f(1-m)+f(1-m2)<0,则m的取值范围是.16.定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积。

2017-2018学年高一数学下学期期末考试试题理 (VI)

2017-2018学年高一数学下学期期末考试试题理 (VI)

2017-2018学年高一数学下学期期末考试试题理 (VI)说明:本卷满分150分,考试时间为2小时。

一、选择题:本大题共12小题,每小题5分,共60分。

1.设,,若,则( )A. B. C. D.2. 某中学有老教师25人,中年教师35人,青年教师45人,用分层抽样的方法抽取21人进行身体状况问卷调查,则抽到的中年教师人数为( )A. B. C. D. 3.若直线与直线垂直,则的值是( )A.或B.或C.或D.或14.已知数列是公比为的等比数列,且,,成等差数列,则公比的值为( )A. B. C. 或 D. 或5. 已知四棱锥的三视图如图所示,则四棱锥的五个面中面积的最大值是( )A. 3B. 6C. 8D. 106.设,是两条不重合的直线, ,是两个不同的平面,有下列四个命题: ①若, ,则;②若, , ,则; (第5题) ③若, , ,则;④若, , ,则. 则正确的命题为( )A. ①②③B. ②③C. ③④D. ①④ 7.若, , ,则的最小值为( )A. B. C. D.8.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当否i > 4?x = 2x-1i = i +1i =1输入x 开 始原多少酒?”用程序框图表达如下图所示,即最终输出的,则一开始输入的的值为()A. B. C. D.9.正方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.(第8题)10. 已知的三边长构成公差为2的等差数列,且最大角为120°,则这个三角形的周长为()A. 15B. 18C. 21D. 2411.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A. ①③B. ③④C. ①④D. ②③12.和点,使得,则实数的取值范围是()A. B. C. D.二、填空题:本大题共4小题,每小题5分,共20分。

天门仙桃潜江2017-2018学年度第二学期期末联考试题(理)数答地正

天门仙桃潜江2017-2018学年度第二学期期末联考试题(理)数答地正

天门仙桃潜江㊀2017-2018学年度第二学期期末联考试题高一地理祝考试顺利㊀㊀本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.全卷满分100分,考试时间90分钟.㊀㊀注意事项:㊀㊀1.答题前,考生务必将自己的姓名㊁准考证号填写在答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷和草稿纸上无效.3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内.答在试卷和草稿纸上无效.考生必须保持答题卡的整洁.考试结束后,只需上交答题卡.第Ⅰ卷(选择题㊀共50分)一㊁选择题(本卷共25小题,每小题2分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.)㊀㊀应日本首相安倍晋三邀请,李克强于2018年5月8日至11日赴日出席第七次中日韩领导人会议并对日本进行正式访问.下图是中㊁日㊁韩三国首都位置和气候资料图,读图完成1-3题.1.导致北京㊁首尔㊁东京三城市降水量差异的主导因素是A.纬度位置㊀㊀㊀㊀㊀㊀B .地形㊀㊀㊀㊀㊀㊀C .海陆位置㊀㊀㊀㊀㊀㊀㊀D.洋流2.北京㊁首尔㊁东京三城市共同的气候特征是A.冬季寒冷干燥B.夏季高温多雨C.气温年较差小D.降水的年际变化小3.李克强出席第七次中日韩领导人会议期间,三城市A.太阳均从东南方升起B.首尔昼变短夜变长C.北京日出时间推迟D.东京正午太阳高度增大㊀㊀2018年5月1日,多米尼加共和国与中华人民共和国建交.下图是多米尼加共和国位置图,读图完成4-6题.4.甲洋流是A.北大西洋暖流B.北太平洋暖流C.北赤道暖流D.墨西哥湾暖流5.有关多米尼加的河流特征的叙述,正确的是A.河流径流量年际变化较大B.水流平稳,利于航运C.河流由中部向南北两侧分流D.流域面积较大,有凌汛6.多米尼加东北部地区的自然带最有可能的是A.热带荒漠带B.热带草原带C.亚热带常绿硬叶林带D.热带雨林带㊀㊀读我国近十年来人口总数㊁人口自然增长率变动情况统计图,完成7-9题.7.目前,影响我国人口自然增长率高低的最主要因素是A.计划生育政策㊀㊀㊀B.经济发展水平㊀㊀㊀㊀C.受教育程度㊀㊀㊀㊀㊀D.传统观念8.近十年来,我国人口变动的特点是A.总人口数逐年增加B.人口自然增长率降低C.人口抚养压力减轻D.人口总数与自然增长率同步9.从2016年1月1日起,我国启动 全面二孩 政策,该生育政策调整的主要依据是A.人口老龄化加剧B.人口数量持续减少C.劳动力严重不足D.环境压力加大㊀㊀2018年4月16日,美国商务部宣布,将禁止美国公司向中兴通讯销售零部件㊁商品㊁软件和技术7年.针对美国的单边制裁,我国华为㊁中兴㊁阿里巴巴等著名企业决定投资研发芯片等计算机的核心部件.结合所学知识完成10-11题.10.电脑芯片的生产企业属于A.原料导向型B.市场导向型C.技术导向型D.劳动力导向型11.华为㊁中兴㊁阿里巴巴等中国著名企业决定投资兴建芯片生产厂,最主要的原因是中国拥有A.庞大的消费市场B.雄厚的科技力量C.廉价的劳动力D.便利的交通㊀㊀读我国糖料作物主要产区分布图,完成12-14题.12.导致我国糖料作物地区分布差异的主要因素是A.地形B.热量C.降水D.土壤13.影响我国制糖工业分布的主要因素是A.消费市场B.交通运输C.原料产地D.能源基地14.长江中下游地区和四川盆地纬度基本相同,却不是甘蔗集中种植区,主要原因是长江中下游地区A.光照弱B.降水少C.多大风D.易受低温冻害㊀㊀印加文明是在南美洲西部㊁中安第斯山区发展起来的又一著名的印第安古代文明.印加人从山顶到山脚开垦了无数的梯田,印加人修筑的水渠和梯田非常坚固.读古印加文明区域示意图(图左)和古印加梯田景观图(图右),完成15-17题.15.古印加梯田改造的农业区位因素主要是A.水源B.光照C.土壤D.地形16.印加人修建水平梯田的生态效益主要是A.蓄水保土㊁增肥力B.调节当地气候C.增加粮食产量D.减少地震灾害的发生17.古印加梯田的灌溉水源主要来自A.大气降水B.高山冰雪融水C.山下河流D.地下水㊀㊀卡塔尔位于波斯湾西南岸的卡塔尔半岛上,半岛面积为1.1万平方千米,地势平坦,全国可耕地面积为2.8万公顷,农牧产品不能自给,粮食㊁蔬菜㊁水果㊁肉蛋奶等主要依赖进口.读图完成18-19题.18.导致卡塔尔农牧产品不能自给的主要原因是A.光热不足B.农业科技水平低C.土壤贫瘠D.水资源严重短缺19.卡塔尔境内无铁路,内陆各主要城市之间由现代化公路网相连,其原因主要是①国土面积狭小②城市之间距离短③海洋运输发达④铁路建设投资大A.③④B.①②C.①③D.②④㊀㊀兰斯塔德地区是荷兰经济发展的重心,因其多中心环状城镇格局与大面积的 绿心 农业区并存而闻名于世,被国际社会誉为开放空间保护的典范.右下图示意兰斯塔德 绿心 和城镇布局.读图完成20-22题.20.兰斯塔德城镇布局的优点是A.缩短居民出行距离B.加强各区之间联系C.改善城市生态环境D.节省基础设施投资21.兰斯塔德地区限制城镇化对 绿心 的侵占,这符合可持续发展的A.公平性原则B.共同性原则C.持续性原则D.因地制宜的原则22.兰斯塔德 绿心 农业区适宜发展A.小麦和养羊业B.园艺和乳牛业C.玉米和大豆种植业D.水稻和甘蔗种植业㊀㊀兰新高铁于2014年底建成通车.下图是吐鲁番市附近主要交通线路图,读图完成23-25题.23.随着交通条件的改善,吐鲁番市城区可能A.向西南扩展B.向西北扩展C.向东北扩展D.向东南扩展24.与普通铁路线相比,高速铁路线走向更注重考虑的因素是A.地形B.聚落C.水源D.气候25.兰新高铁的开通运营首先影响吐鲁番市的A.功能分区B.行政范围C.服务范围D.城市等级第Ⅱ卷(非选择题㊀共50分)二㊁非选择题26.阅读图文材料,完成下列要求.(14分)㊀㊀20世纪七八十年代,广东顺德开始兴起制作家具的小型作坊.改革开放以后,家具产业在佛山市顺德区逐渐发展,从家具原材料㊁家具产品㊁家具木工机械㊁家具连接件和配件,家具涂料的生产和销售,到家具会展等,一应俱全,顺德形成了我国最早也是规模最大的家具生产基地.下图为广东省佛山市及周边区域图和顺德区家具生产专业镇联系示意图.(1)指出图示区域城市等级体系的特点.(4分)(2)简述顺德家具产业兴起的主要区位优势.(6分)(3)请简要说明与家具生产相关的企业在顺德高度集聚的原因.(4分)27.阅读材料,回答下列问题.(16分)㊀㊀常德位于湖南省西北部,洞庭湖西岸,独特的气候条件和丰富的水土资源,造就了江南著名的 粮仓 ,境内已探明矿藏145种,其中雄磺储量亚洲第一,金刚石㊁石煤㊁芒硝储量为全国之首,磷矿㊁石膏矿㊁膨润土等蕴藏量和产量均居湖南省前列.下图为常德市等高线地形图.(1)分析常德市西部地区环境人口容量小于东部地区的主要原因.(4分)(2)指出常德市东部地区大力发展水稻种植业的主要区位优势.(8分)(3)简述常德市在开采㊁利用矿产资源的过程中可能产生的主要环境问题.(4分)28.阅读图文资料,完成下列问题.(20分)㊀㊀加利福尼亚州位于美国西海岸,面积41万平方千米,是美国人口最多的一个州.著名的洛杉矶已成为美国石油化工㊁航天工业的最大基地和世界最大的微电子工业中心,也是一个移民城市.州内的内华达山脉西坡多峡谷㊁平缓倾斜㊁森林茂密,而东坡断崖陡峻㊁干燥无林.2017年9月,洛杉矶所在的南加州地区发生多起森林火灾,火势快速蔓延,造成数十万居民紧急撤离.下图为美国加州地区和洛杉矶气候统计图.(1)中央谷地是纵贯加州中部的平原,是该州主要农业区.简述中央谷地的形成过程.(4分) (2)分析加州境内内华达山脉东西两坡植被差异较大的原因.(8分)(3)从气候的角度,简析南加州地区夏季森林火灾多发的原因.(4分)(4)简述洛杉矶吸引人口迁入的主要原因.(4分)。

2017-2018学年高一(下)期末数学试卷(文科)带答案

2017-2018学年高一(下)期末数学试卷(文科)带答案

2017-2018学年高一(下)期末数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}2.(5分)下列说法正确的是()A.零向量没有方向 B.单位向量都相等C.任何向量的模都是正实数D.共线向量又叫平行向量3.(5分)若a,b,c为实数,则下列结论正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>abC.若a<b,则D.若a>b>0,则4.(5分)若两平行直线l1:x﹣2y+m=0(m>0)与l2:2x+ny﹣6=0之间的距离是,则m+n=()A.0 B.1 C.﹣2 D.﹣15.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n 为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.1106.(5分)如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.100米B.50(+1)米C.米D.200米7.(5分)设变量x,y满足约束条件目标函数z=x+2y的最大值是()A.4 B.2 C.D.8.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺B.尺C.尺D.尺9.(5分)函数f(x)=Asin(ωx+φ)(其中A>0,)的图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位10.(5分)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点,到直线l:y=x+b 的距离为2,则b取值范围为()A.(﹣2,2)B.[﹣2,2]C.[0,2]D.[﹣2,2)11.(5分)若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣3,1)∪(3,+∞) C.(﹣∞,﹣3)∪(3,+∞) D.(﹣3,1]∪(3,+∞)12.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则﹣2c的最小值等于()A.9 B.10 C.3 D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)sin(﹣300°)=.14.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=.15.(5分)两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,则m+c=.16.(5分)若不等式x2<|x﹣1|+a在区间(﹣3,3)上恒成立,则实数a的取值范围为.三、解答题(共6小题,满分70分)17.(10分)已知公差不为零的等差数列{a n}中,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2+n,求数列{b n}的前n项和S n.18.(12分)已知函数f(x)=,其中=(2cosx,sin2x),=(cosx,1),x∈R(1)求函数y=f(x)的最小正周期和单调递增区间:(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=且sinB=2sinC,求△ABC的面积.19.(12分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.20.(12分)某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?21.(12分)已知圆C的圆心在直线3x+y﹣1=0上,且x轴,y轴被圆C截得的弦长分别为2,4,若圆心C位于第四象限(1)求圆C的方程;(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x﹣1)2﹣y2=,求的取值范围.22.(12分)已知数列{a n}满足a n=n2+n,设b n=++…+.(1)求{b n}的通项公式;(2)若对任意的正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>b n恒成立,求实数t的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合A={﹣2,﹣1,0,1,2},B={x|(x﹣1)(x+2)<0},则A ∩B=()A.{﹣1,0}B.{0,1}C.{﹣1,0,1}D.{0,1,2}【分析】解一元二次不等式,求出集合B,然后进行交集的运算即可.【解答】解:B={x|﹣2<x<1},A={﹣2,﹣1,0,1,2};∴A∩B={﹣1,0}.故选:A.【点评】考查列举法、描述法表示集合,解一元二次不等式,以及交集的运算.2.(5分)下列说法正确的是()A.零向量没有方向 B.单位向量都相等C.任何向量的模都是正实数D.共线向量又叫平行向量【分析】根据零向量,单位向量、共线向量、平行向量的定义即可判断出结论.【解答】解:零向量的方向是任意的;单位向量的模为1,但是不一定相等;零向量的模是0;共线向量又叫平行向量.因此只有D正确.故选:D.【点评】本题考查了零向量,单位向量、共线向量、平行向量的定义,考查了推理能力与计算能力,属于基础题.3.(5分)若a,b,c为实数,则下列结论正确的是()A.若a>b,则ac2>bc2B.若a<b<0,则a2>abC.若a<b,则D.若a>b>0,则【分析】根据特殊值法判断A,C、D,根据不等式的性质判断B.【解答】解:对于A,若c=0,不成立,对于B,若a<b<0,两边同乘以a,得a2>ab,故B正确,对于C,令a=﹣1,b=1,显然不成立,对于D,令a=2,b=1,显然不成立,故选:B.【点评】本题考查了不等式的性质,考查特殊值法的应用,是一道基础题.4.(5分)若两平行直线l1:x﹣2y+m=0(m>0)与l2:2x+ny﹣6=0之间的距离是,则m+n=()A.0 B.1 C.﹣2 D.﹣1【分析】化简直线l2,利用两直线之间的距离为d=,求出m,即可得出结论.【解答】解:由题意,解得n=﹣4,即直线l2:x﹣2y﹣3=0,所以两直线之间的距离为d=,解得m=2,所以m+n=﹣2,故选C.【点评】本题考查两条平行线间的距离,考查学生的计算能力,属于中档题.5.(5分)已知{a n}为等差数列,其公差为﹣2,且a7是a3与a9的等比中项,S n 为{a n}的前n项和,n∈N*,则S10的值为()A.﹣110 B.﹣90 C.90 D.110【分析】通过a7是a3与a9的等比中项,公差为﹣2,求出【解答】解:a7是a3与a9的等比中项,公差为﹣2,所以a72=a3•a9,∵{a n}公差为﹣2,∴a3=a7﹣4d=a7+8,a9=a7+2d=a7﹣4,所以a72=(a7+8)(a7﹣4),所以a7=8,所以a1=20,所以S10==110故选D【点评】本题是基础题,考查等差数列的前n项和,等比数列的应用,考查计算能力,常考题型.6.(5分)如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.100米B.50(+1)米C.米D.200米【分析】直角△ABC与直角△ABD有公共边AB,若设AB=x,则在直角△ABC与直角△ABD就满足解直角三角形的条件,可以用x表示出BC与BD的长,根据BD﹣BC=CD,即可列方程求解.【解答】解:设AB=x米,在直角△ACB中,∠ACB=45°,∴BC=AB=x米.在直角△ABD中,∠D=30°,BD=x,∵BD﹣BC=CD,∴x﹣x=200,解得:x=100(+1).故选C.【点评】本题主要考查了解直角三角形的方法,解决的关键是注意到两个直角三角形有公共的边,利用公共边表示其它的量,从而把问题转化为方程问题.7.(5分)设变量x,y满足约束条件目标函数z=x+2y的最大值是()A.4 B.2 C.D.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图:化目标函数z=x+2y为,由图可知,当直线过点A时,直线在y轴上的截距最大,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.8.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为()A.尺B.尺C.尺D.尺【分析】设该女子每天比前一天多织d尺布,利用等差数列前n项和公式列出方程,能出结果.【解答】解:设该女子每天比前一天多织d尺布,由题意得:,解得d=.故选:C.【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)函数f(x)=Asin(ωx+φ)(其中A>0,)的图象如图所示,为了得到g(x)=2sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【分析】求出函数的解析式,利用坐标变换求解即可.【解答】解:由函数的图象可知:T=4×=π.ω==2.x=时,函数的最大值为:2.A=2,2=2sin(+φ),由函数的图象可得φ=.为了得到g(x)=2sin2x的图象,则只需将f(x)=2sin[2(x+)]的图象向右平移个长度单位.故选:B.【点评】本题考查三角函数的解析式的求法,函数的图象的平移,考查计算能力.10.(5分)若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点,到直线l:y=x+b的距离为2,则b取值范围为()A.(﹣2,2)B.[﹣2,2]C.[0,2]D.[﹣2,2)【分析】先求出圆心和半径,比较半径和2,要求圆上至少有三个不同的点到直线l:y=x+b的距离为2,则圆心到直线的距离应小于等于,用圆心到直线的距离公式,可求得结果.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0整理为(x﹣2)2+(y﹣2)2=18,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:y=x+b的距离为2则圆心到直线的距离d=≤,∴﹣2≤c≤2故选:B.【点评】本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.11.(5分)若偶函数f(x)在区间(﹣∞,0]上单调递减,且f(3)=0,则不等式(x﹣1)f(x)>0的解集是()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣3,1)∪(3,+∞) C.(﹣∞,﹣3)∪(3,+∞) D.(﹣3,1]∪(3,+∞)【分析】根据题意,由函数的奇偶性与单调性分析可得当x<﹣3或x>3时,f (x)>0;当﹣3<x<3时,f(x)<0,则分x<﹣3或x>3与﹣3<x<3两种情况讨论(x﹣1)f(x)>0的解集,综合即可得答案.【解答】解:根据题意,偶函数f(x)在区间(﹣∞,0]上单调递减,则其在[0,+∞)上为增函数,又由f(3)=0,则f(﹣3)=0,则有当x<﹣3或x>3时,f(x)>0;当﹣3<x<3时,f(x)<0,当x<﹣3或x>3时,若(x﹣1)f(x)>0,必有x﹣1>0,解可得x>3,当﹣3<x<3时,若(x﹣1)f(x)>0,必有x﹣1<0,解可得﹣3<x<1,综合可得:不等式(x﹣1)f(x)>0的解集是(﹣3,1)∪(3,+∞);故选:B.【点评】本题考查函数的奇偶性与单调性的综合应用,注意结合函数的奇偶性、单调性,对不等式进行分类讨论.12.(5分)若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则﹣2c的最小值等于()A.9 B.10 C.3 D.【分析】由一元二次方程根与系数的关系得到a+b=p,ab=q,再由a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a,b的方程组,求得a,b的关系,代入化简,再由基本不等式得答案.【解答】解:∵a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,即a,b是一元二次方程x2﹣px+q=0(p>0,q>0)的两个根,∴根据一元二次方程的韦达定理可得a+b=p,ab=q,(a>0,b>0,a≠b),由题意可得ab=c2,b+c=2a,消去c可得ab=(2a﹣b)2=4a2﹣4ab+b2,即为(a﹣b)(4a﹣b)=0,解得b=4a(b=a舍去),则﹣2c=+﹣2(2a﹣b)=8a+≥2=,当且仅当8a=,即a=时,取得等号.则所求的最小值为.故选:D.【点评】本题考查基本不等式的运用:求最值,考查韦达定理和等差数列、等比数列中项的性质,考查化简整理的运算能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)sin(﹣300°)=.【分析】由sin(α+2π)=sinα及特殊角三角函数值解之.【解答】解:sin(﹣300°)=sin(360°﹣300°)=sin60°=,故答案为.【点评】本题考查诱导公式及特殊角三角函数值.14.(5分)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=2.【分析】根据平面向量数量积的定义,求出•的值,再求向量的模长即可.【解答】解:由题意得,||=2,||=1,向量与的夹角为60°,∴•=2×1×cos60°=1,∴|+2|===2.故答案为:2.【点评】本题考查了平面向量数量积的定义以及向量模长的计算问题,是基础题目.15.(5分)两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,则m+c=3.【分析】由已知中两圆相交于点A(1,3)、B(m,﹣1),两圆的圆心均在直线x﹣y+c=0上,我们易得到直线x﹣y+c=0为线段AB的垂直平分线,即直线AB与直线x﹣y+c=0的斜率乘积为﹣1,且AB的中点落在直线x﹣y+c=0上,求出m,c后,即可得到答案.【解答】解:∵两圆的圆心均在直线x﹣y+c=0上,则直线x﹣y+c=0为线段AB的垂直平分线即K AB=﹣1=解得m=5则AB的中点(3,1)在直线x﹣y+c=0上,即3﹣1+c=0解得c=﹣2∴m+c=3故答案为:3【点评】本题考查的知识点圆与圆的位置关系,直线与直线垂直的斜率关系,其中根据已知判断出直线x﹣y+c=0为线段AB的垂直平分线,是解答本题的关键.16.(5分)若不等式x2<|x﹣1|+a在区间(﹣3,3)上恒成立,则实数a的取值范围为[7,+∞).【分析】分离参数得a>x2﹣|x﹣1|,求出右侧分段函数在(﹣3,3)上的最值即可得出a的范围.【解答】解:由x2<|x﹣1|+a得a>x2﹣|x﹣1|,令f(x)=x2﹣|x﹣1|=,∴f(x)在(﹣3,﹣]上单调递减,在(﹣,3)上单调递增,∵f(﹣3)=5,f(3)=7,∴f(x)<7,∴a的取值范围是[7,+∞).故答案为[7,+∞).【点评】本题考查了函数的单调性与最值的计算,属于中档题.三、解答题(共6小题,满分70分)17.(10分)已知公差不为零的等差数列{a n}中,a1=1,且a1,a3,a9成等比数列.(1)求数列{a n}的通项公式;(2)设b n=2+n,求数列{b n}的前n项和S n.【分析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用等差数列与等比数列的求和公式即可得出.【解答】解:(1)设数列{a n}公差为d,∵a1,a3,a9成等比数列,∴,∴(1+2d)2=1×(1+8d).∴d=0(舍)或d=1,∴a n=n.(2)令;S n=b1+b2+b3+…+b n=(21+1)+(22+2)+(23+3)+…+(2n+n)=(21+22+…+2n)+(1+2+3+…+n)==,.【点评】本题考査了等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.18.(12分)已知函数f(x)=,其中=(2cosx,sin2x),=(cosx,1),x∈R(1)求函数y=f(x)的最小正周期和单调递增区间:(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=且sinB=2sinC,求△ABC的面积.【分析】(1)求出f(x)=2sin(2x+)+1,由此能求出函数y=f(x)的最小正周期和函数y=f(x)的单调增区间.(2)由f(A)=2,求出A=,由,利用余弦定理得b=2c.由此能求出△ABC的面积.【解答】解:(1)∵=(2cosx,sin2x),=(cosx,1),x∈R,∴f(x)====2sin(2x+)+1,∴函数y=f(x)的最小正周期为T=π,单调递增区间满足﹣+2kπ+2kπ,k∈Z.解得﹣+kπ≤x≤+kπ,k∈Z.∴函数y=f(x)的单调增区间是[﹣+kπ,],k∈Z.(2)∵f(A)=2,∴2sin(2A+)+1=2,即sin(2A+)=,又∵0<A<π,∴A=,∵,由余弦定理得a2=b2+c2﹣2bccosA=(b+c)2﹣3bc=7,①∵sinB=2sinC,∴b=2c.②由①②得c2=,∴.【点评】本题考查三角函数的最小正周期、单调递增区间的求法,考查三角形面积的求法,考查同角三角函数、三角函数的最小正周期、三角函数的增区间、作弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.(12分)已知直线l:ax﹣y+1=0与x轴,y轴分别交于点A,B.(1)若a>0,点M(1,﹣1),点N(1,4),且以MN为直径的圆过点A,求以AN为直径的圆的方程;(2)以线段AB为边在第一象限作等边三角形ABC,若a=﹣,且点P(m,)(m>0)满足△ABC与△ABP的面积相等,求m的值.【分析】(1)求出A的坐标,即可求以AN为直径的圆的方程;(2)根据题意画出图形,令直线方程中x与y分别为0,求出相应的y与x的值,确定出点A与B的坐标,进而求出AB的长即为等边三角形的边长,求出等边三角形的高即为点C到直线AB的距离,由△ABP和△ABC的面积相等,得到点C 与点P到直线AB的距离相等,利用点到直线的距离公式表示出点P到直线AB 的距离d,让d等于求出的高列出关于m的方程,求出方程的解即可得到m的值.【解答】解:(1)由题意A(﹣,0),AM⊥AN,∴=﹣1,∵a>0,∴a=1,∴A(﹣1,0),∵N(1,4),∴AN的中点坐标为D(0,2),|AD|=,∴以AN为直径的圆的方程是x2+(y﹣2)2=5;(2)根据题意画出图形,如图所示:由直线y=﹣x+1,令x=0,解得y=1,故点B(0,1),令y=0,解得x=,故点A(,0),∵△ABC为等边三角形,且OA=,OB=1,根据勾股定理得:AB=2,即等边三角形的边长为2,故过C作AB边上的高为,即点C到直线AB的距离为,由题意△ABP和△ABC的面积相等,则P到直线AB的距离d=|﹣m+|=,∵m>0,∴m=.【点评】此题考查圆的方程,考查了一次函数的性质,等边三角形的性质以及点到直线的距离公式.20.(12分)某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【分析】(1)依题意,每天生产的伞兵的个数为100﹣x﹣y,根据题意即可得出每天的利润;(2)先根据题意列出约束条件,再根据约束条件画出可行域,设W=2x+3y+300,再利用T的几何意义求最值,只需求出直线0=2x+3y过可行域内的点A时,从而得到W值即可.【解答】解:(1)依题意每天生产的伞兵个数为100﹣x﹣y,所以利润W=5x+6y+3(100﹣x﹣y)=2x+3y+300(x,y∈N).(2)约束条件为整理得目标函数为W=2x+3y+300,如图所示,作出可行域.初始直线l0:2x+3y=0,平移初始直线经过点A时,W有最大值.由得最优解为A(50,50),所以W max=550(元).答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550(元)【点评】本题考查简单线性规划的应用,在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件,②由约束条件画出可行域,③分析目标函数Z与直线截距之间的关系,④使用平移直线法求出最优解,⑤还原到现实问题中.21.(12分)已知圆C的圆心在直线3x+y﹣1=0上,且x轴,y轴被圆C截得的弦长分别为2,4,若圆心C位于第四象限(1)求圆C的方程;(2)设x轴被圆C截得的弦AB的中心为N,动点P在圆C内且P的坐标满足关系式(x﹣1)2﹣y2=,求的取值范围.【分析】(1)设圆C的方程为:(x﹣a)2+(y﹣b)2=r2,根据题意,有由①②③得a=1,⇒b=1﹣3a=﹣2,r2=9,即可得圆的方程;(2)在圆C的方程:(x﹣1)2+(y+2)2=9中令y=0,得A(1﹣,0),B(1+),N(1,0).将x﹣1)2+(y+2)2<9.(x﹣1)2﹣y2=代入=(1﹣﹣x,﹣y)(1+﹣x,﹣y)=(x﹣1)2+y2﹣5即可求解.【解答】解:(1)设圆C的方程为:(x﹣a)2+(y﹣b)2=r2,根据题意,有①﹣②得b2=a2+3,…④由③④得4a2﹣3a﹣1=0,∵a>0,解得a=1,⇒b=1﹣3a=﹣2,r2=9,∴圆C的方程为:(x﹣1)2+(y+2)2=9,(2)在圆C的方程:(x﹣1)2+(y+2)2=9中令y=0,得A(1﹣,0),B(1+),∴N(1,0).∵动点P(x,y)在圆C内,∴(x﹣1)2+(y+2)2<9…①将①代入(x﹣1)2﹣y2=得﹣,0=(1﹣﹣x,﹣y)(1+﹣x,﹣y)=(x﹣1)2+y2﹣5…②将(x﹣1)2﹣y2=代入②得=2y2﹣.【点评】本题考查圆的方程,与圆有关的最值问题,属于中档题.22.(12分)已知数列{a n}满足a n=n2+n,设b n=++…+.(1)求{b n}的通项公式;(2)若对任意的正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>b n恒成立,求实数t的取值范围.【分析】(1)b n=++…+=,由此利用裂项求和法能求出{b n}的通项公式.(2)由b n=,n∈N*,得到n=1时,b n取最大值,推导出当m∈[﹣1,1]时,t2﹣2mt>0恒成立,令g(m)=t2﹣2mt,由,能求出实数t的取值范围.【解答】解:(1)∵数列{a n}满足a n=n2+n,∴b n=++…+=====.(2)∵b n=,n∈N*,令f(n)=2n+,n∈N*,则,由f′(n)>0,得﹣<n<;由f′(n)<0,得n<﹣或n>,∵n∈N*,∴n=1时,b n取最大值,∵对任意的正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>b n恒成立,∴当m∈[﹣1,1]时,不等式>恒成立,即当m∈[﹣1,1]时,t2﹣2mt>0恒成立,令g(m)=t2﹣2mt,则,解得t>2或t<﹣2.∴实数t的取值范围是(﹣∞,﹣2)∪(2,+∞).【点评】本题考查数列的通项公式的求法,考查实数值的取值范围的求法,考查构造法、裂项求法、数列的单调性等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年湖北省潜江市高一(下)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)若集合M={x|﹣2≤x<2},N={0,1,2},则M∩N=()A.{0}B.{1}C.{0,1,2}D.{0,1}2.(5分)函数f(x)=cos2x的最小正周期为()A.4πB.2πC.πD.3.(5分)已知函数y=f(x)+sin x为偶函数,若f()=,则f()=()A.B.C.D.4.(5分)设△ABC的内角A,B,C的对边分别为a,b,c.若a=2,c=2,cos A=.且b<c,则b=()A.B.2C.2D.35.(5分)阅读如图所示的程序框图,输出A的值为()A.B.C.D.6.(5分)若,是两个单位向量,且(2+)•(﹣2+3)=2﹣1,则,的夹角为()A.B.C.D.7.(5分)登山族为了了解某山高y(km)与气温x(°C)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:由表中数据,得到线性回归方程,由此请估计出山高为72(km)处气温的度数为()A.﹣10B.﹣8C.﹣4D.﹣68.(5分)若实数a,b满足+=,则ab的最小值为()A.B.2C.2D.49.(5分)在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5)D.(2,4)10.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.11.(5分)在区间[0,2]上随机地取一个数x,则事件“﹣1≤(x+)≤1”发生的概率为()A.B.C.D.12.(5分)若函数f(x)=4x﹣m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为()A.(﹣2,2)B.(6,+∞)C.(2,6)D.(2,+∞)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上对应题号后的横线上)13.(5分)计算:cos(α+30°)cos(α﹣30°)+sin(α+30°)sin(α﹣30°)=.14.(5分)假设小明家订了一份报纸,送报人可能在早上6:30至7:30之间把报纸送到小明家,小明爸爸离开家去工作的时间在早上7:00至8:00之间,问小明的爸爸在离开家前能得到报纸的概率是.15.(5分)已知定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(﹣1)=2,则不等式f(x﹣1)+2≤0在(0,+∞)的解集为.16.(5分)已知函数f(x)=sin2ωx﹣cos2ωx+(其中ω为常数,且ω>0),函数g (x)=f(x)﹣的部分图象如图所示.则当x∈[﹣]时,函数f(x)的取值范围是.三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知α,β都是锐角,tanα=,sinβ=,求tan(α+2β)的值.18.(12分)现从某校高三年级随机抽50名考生2015年高考英语听力考试的成绩,发现全部介于[6,30]之间,将成绩按如下方式分成6组:第1组[6,10),第2组[10,14),…,第6组[26,30],如图是按上述分组方法得到的频率分布直方图.(Ⅰ)估算该校50名考生成绩的众数和中位数;(Ⅱ)求这50名考生成绩在[22,30]内的人数.19.(12分)下面有两个游戏规则,袋子中分别装有球,从袋中无放回地取球,分别计算甲获胜的概率,并说明哪个游戏是公平的?20.(12分)设S n表示数列{a n}的前n项和.(Ⅰ)若{a n}是等差数列,试证明:S n=;(Ⅱ)若a1=1,q≠0,且对所有的正整数n,有S n=,判断{a n}是否为等比数列.21.(12分)锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,设向量=(2,c),=(cos C﹣sin A,cos B),已知b=,且⊥.(1)求角B;(2)求△ABC面积的最大值及此时另外两个边a,c的长.22.(12分)已知a是实数,函数f(x)=2ax2+2x﹣3,如果函数y=f(x)在区间(﹣1,1)有零点,求a的取值范围.2017-2018学年湖北省潜江市高一(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【考点】1E:交集及其运算.【解答】解:由M={x|﹣2≤x<2},N={0,1,2},得M∩N={x|﹣2≤x<2}∩{0,1,2}={0,1}.故选:D.【点评】本题考查了交集及其运算,是基础题.2.【考点】H1:三角函数的周期性.【解答】解:函数f(x)=cos2x=的最小正周期为=π,故选:C.【点评】本题主要考查二倍角的余弦公式的应用,利用了函数y=A cos(ωx+φ)+b的周期为,属于基础题.3.【考点】3K:函数奇偶性的性质与判断.【解答】解:∵函数y=f(x)+sin x为偶函数,∴f(﹣x)﹣sin x=f(x)+sin x,∴f(x)﹣f(﹣x)=﹣2sin x.∵f()=f(2)=,f()=f(﹣2),∴﹣f(﹣2)=﹣2•=﹣,∴f(﹣2)=2,故选:A.【点评】本题主要考查函数的奇偶性的应用,属于基础题.4.【考点】HR:余弦定理.【解答】解:a=2,c=2,cos A=.且b<c,由余弦定理可得,a2=b2+c2﹣2bc cos A,即有4=b2+12﹣4×b,解得b=2或4,由b<c,可得b=2.故选:B.【点评】本题考查三角形的余弦定理及应用,主要考查运算能力,属于中档题和易错题.5.【考点】EF:程序框图.【解答】解:模拟执行程序框图,可得A=1,i=1A=,i=2满足条件i≤10,A=,i=3满足条件i≤10,A=,i=4满足条件i≤10,A=,i=5满足条件i≤10,A=,i=6满足条件i≤10,A=,i=7满足条件i≤10,A=,i=8满足条件i≤10,A=,i=9满足条件i≤10,A=,i=10满足条件i≤10,A=,i=11不满足条件i≤10,退出循环,输出A的值为,故选:C.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.6.【考点】9O:平面向量数量积的性质及其运算.【解答】解:∵(2+)•(﹣2+3)=2﹣1,∴﹣4+3+4=2﹣1.∵==1,∴=.∴cos<,>==.∴<,>=.故选:A.【点评】本题考查了平面向量的数量积运算,属于基础题.7.【考点】BK:线性回归方程.【解答】解:由题意,,,代入到线性回归方程,可得a=60,∴y=﹣2x+60,由﹣2x+60=72,可得x=﹣6.故选:D.【点评】本题考查回归方程的运用,考查学生的计算能力,属于基础题.8.【考点】7F:基本不等式及其应用.【解答】解:∵+=,∴a>0,b>0,∵(当且仅当b=2a时取等号),∴,解可得,ab,即ab的最小值为2,故选:C.【点评】本题主要考查了基本不等式在求解最值中的简单应用,属于基础试题9.【考点】9J:平面向量的坐标运算.【解答】解:∵,故选B.【点评】由于向量有几何法和坐标法两种表示方法,所以我们应根据题目的特点去选择向量的表示方法,由于坐标运算方便,可操作性强,因此应优先选用向量的坐标运算.10.【考点】88:等比数列的通项公式.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.11.【考点】CF:几何概型.【解答】解:利用几何概型,其测度为线段的长度.∵﹣1≤(x+)≤1∴解得0≤x≤,∵0≤x≤2∴0≤x≤∴所求的概率为:P=故选:A.【点评】本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.12.【考点】52:函数零点的判定定理.【解答】解:设t=2x,∵x1+x2>0,x1x2>0,∴t>1,∴函数f(t)=t2﹣mt+m+3有两个不同的零点,且大于1,∴,∴m>6,故选:B.【点评】本题考查函数的零点,考查方程根的讨论,正确转化是关键.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上对应题号后的横线上)13.【考点】GF:三角函数的恒等变换及化简求值;GP:两角和与差的三角函数.【解答】解:cos(α+30°)cos(α﹣30°)+sin(α+30°)sin(α﹣30°)=cos(α+30°﹣α+30°)=cos60°=;故答案为:.【点评】本题考查两角和与差的三角函数,三角函数的求值,考查计算能力.14.【考点】CF:几何概型.【解答】解:设送报人到达的时间为x,小明爸爸离家去工作的时间为y,记小明爸爸离家前能看到报纸为事件A;以横坐标表示报纸送到时间,以纵坐标表示小明爸爸离家时间,建立平面直角坐标系,小明爸爸离家前能得到报纸的事件构成区域如图示:由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示小明爸爸在离开家前能得到报纸,即事件A发生,所以P(A)==,故答案为:.【点评】本题考查几何概型的计算,解题的关键在于设出x、y,将(x,y)以及事件A 在平面直角坐标系中表示出来,属于中档题.15.【考点】3N:奇偶性与单调性的综合.【解答】解:因为f(x)是在R上的奇函数,f(﹣1)=2,所以f(1)=﹣f(﹣1)=﹣2,因为f(x)在(0,+∞)上单调递增,且f(x﹣1)+2≤0为:f(x﹣1)≤﹣2=f(1),所以0<x﹣1≤1,解得1<x≤2,所以不等式f(x﹣1)+2≤0在(0,+∞)的解集为(1,2],故答案为:(1,2].【点评】本题考查了函数的奇偶性与单调性的综合应用,以及转化思想,属于基础题.16.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【解答】解:函数f(x)=sin2ωx﹣cos2ωx+=2sin(2ωx﹣)+(其中ω为常数,且ω>0),根据函数g(x)=f(x)﹣的部分图象,可得=•=﹣,∴ω=1,f(x)=2sin(2x﹣)+,则当x∈[﹣]时,2x﹣∈[﹣,],sin(x﹣)∈[﹣1,],∴f(x)的取值范围是[﹣,+1],故答案为:.【点评】本题主要考查两角差的正弦公式,正弦函数的周期性,正弦函数的定义域和值域,属于基础题.三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.【考点】GP:两角和与差的三角函数.【解答】解:α,β都是锐角,tanα=,sinβ=,∴cosβ=,∴tanβ==.那么:tan2β==.故得tan(α+2β)===1【点评】本题考查两角和与差的三角函数的应用,考查计算能力.18.【考点】B8:频率分布直方图;BB:众数、中位数、平均数.【解答】解:(Ⅰ)由频率分布直方图知,该校这50名考生听力成绩的众数为…(2分)中位数为…(6分)(Ⅱ)由频率分布直方图知,后两组频率为(0.03+0.02)×4=0.2人数为0.2×50=10,即该校这50名考生听力成绩在[22,30]的人数为10人.…(12分)【点评】本题考查众数、中位数、频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.19.【考点】CB:古典概型及其概率计算公式.【解答】解:在游戏1中,取两球同色的概率为:=,取两球异色的概率为:=.因此游戏1中规则不公平.游戏2中,取两球同色的概率为:=,取两球异色的概率为:=,因此游戏2中规则是公平的.【点评】本题考查概率的求法及应用,考查相互独立事件事件概率乘法公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.20.【考点】83:等差数列的性质;87:等比数列的性质.【解答】(Ⅰ)证明:设{a n}的公差为d,则S n=a1+a2+…+a n=a1+(a1+d)+(a1+2d)+…+[a1+(n﹣1)d],又S n=a n+(a n﹣d)+(a n﹣2d)+…+[a n﹣(n﹣1)d],∴2S n=n(a1+a n)∴.(Ⅱ)解:{a n}是等比数列.证明如下:∵∴,∵a1=1,q≠0,∴当n≥1时,有.因此,{a n}是以1为首项,且公比为q的等比数列.【点评】本题考查了等差数列与等比数列的定义通项公式及其求和公式、递推关系、倒序相加法,考查了推理能力与计算能力,属于中档题.21.【考点】9O:平面向量数量积的性质及其运算;GL:三角函数中的恒等变换应用;HP:正弦定理.【解答】解:(1)∵∴即b cos C+c cos B=2sin A2R sin B cos C+2R sin C cos B=2sin A2R sin(B+C)=2sin A2R sin A=2sin A∴2R=2∵∴∵∴(2)S=═====∵三角形为锐角三角形∴即∴;此时∴.【点评】本题考查了正弦定理和三角函数化一求最值.22.【考点】52:函数零点的判定定理.【解答】解:①若a=0,则f(x)=2x﹣3,令f(x)=0得x=∉(﹣1,1),不符合题意,故a≠0.②当a>0时,由于f(0)=﹣3<0,∴y=f(x)在(﹣1,1)上可有两个不同零点或一个零点,依题意需满足或;即或;解之得.③当a<0时,f(x)在(﹣1,1)有零点需满足或;无解,故a<0时,不符合题意由(1)(2)(3)可知f(x)在(﹣1,1)上有零点,a的取值范围是(,+∞).【点评】本题考查函数的零点,不等式组的解法,二次函数的性质.考查计算能力.。

相关文档
最新文档