CRH380AL型动车组受电弓工作原理浅析(可编辑修改版).
受电弓的工作原理

受电弓的工作原理受电弓是电力机车、电力动车组以及有轨电车等电气化铁路牵引车辆上的一种重要设备,它的作用是通过接触网吸收电能,然后将电能传输给车辆的牵引电动机,从而驱动车辆行驶。
受电弓是电气化铁路牵引系统中的重要组成部分,其工作原理的稳定性和可靠性对于铁路运输的安全和高效至关重要。
受电弓的工作原理可以分为以下几个方面来详细介绍:一、受电弓的结构和组成。
受电弓通常由受电弓主体、受电弓支架、受电弓杆、接触板、接触滑板等部件组成。
受电弓主体是受电弓的主要部分,它通过受电弓支架与车体连接,能够在运行时保持与接触网的良好接触。
受电弓杆是受电弓的伸缩部分,能够根据接触网的高度自动调节受电弓的位置。
接触板和接触滑板则是受电弓与接触网之间的电气连接部分,能够确保电能的传输稳定和可靠。
二、受电弓的工作原理。
当电力机车或者电力动车组行驶时,受电弓通过受电弓支架保持与接触网的接触,从而实现与接触网的电气连接。
接触网上的电能通过接触板和接触滑板传输到受电弓内部的牵引变流器中,然后再由牵引变流器转换成适合牵引电动机使用的电能。
牵引电动机接收到电能后,就能够驱动车辆行驶。
在行驶过程中,受电弓能够根据接触网的高度自动调节受电弓的位置,确保与接触网的良好接触,从而保证电能的传输稳定和可靠。
三、受电弓的工作原理特点。
受电弓的工作原理具有以下几个特点:1. 自动调节,受电弓能够根据接触网的高度自动调节受电弓的位置,确保与接触网的良好接触,从而保证电能的传输稳定和可靠。
2. 高效传输,受电弓能够将接触网上的电能高效传输到车辆的牵引电动机中,从而实现高效的牵引动力。
3. 稳定可靠,受电弓的工作原理稳定可靠,能够确保电能的传输稳定和可靠,保证铁路运输的安全和高效。
四、受电弓的维护和保养。
受电弓作为电气化铁路牵引系统中的重要设备,需要定期进行维护和保养,以确保其工作原理的稳定性和可靠性。
维护和保养工作主要包括对受电弓主体的检查、润滑和更换,对受电弓支架的调整和维修,对受电弓杆的清洁和润滑,以及对接触板和接触滑板的检查和更换等。
CRH380AL型动车组受电弓工作原理浅析

CRH380AL型动车组受电弓工作原理浅析 摘要:CRH380A动车组,编组16列,目前运行速度300km/h,如此高的运行速度,旅客们对动车组乘坐的舒适性和安全性也提出了很高的要求。
但要达到这一目标稳定的动力输出是必不可少的,要提供稳定动力输出,高压供电系统的稳定是基础。
而提到动车组高压供电系统,就不得不提到受电弓。
关键词:动车组;动力输出;高压供电系统;受电弓 高压供电系统是动车组关键技术之一,而受电弓的表现直接关系到动车组高压供电系统的稳定性。
在动车组的检修过程中,对受电弓的检查和试验是相当严格的,是绝对不能有半点失误的。
任何一点失误,都有可能对动车组的运行造成极其恶劣的影响。
现在结合日常的工作,对动车组受电弓的组成及工作原理进行简要的介绍。
一、受电弓概述 CRH380AL动车组使用的受电弓型号为DSA380,弓头长1950mm,滑板长1576mm,质量(不包括绝缘子和阀板)为117kg,其结构如下图: 图1 受电弓结构 主要参数: (1)最小绝缘距离:≥310mm (2)最大电流:1000A (3)短路电流:35kA(60ms) (4)车辆静止时最大电流:80A (5)受电弓落弓时高度:666mm (6)静态接触压力为80N、可调 (7)最大集电头(弓头)宽度:1950mm(+0/-10mm) (8)两根滑板中心线距离:约580mm (9)滑板材料:渗金属碳 (10)弓角材料:部分绝缘 (11)最大上升时间:10s (12)最大下降时间:10s (13)下降310mm的最大时间:3s (14)ADD释放后,故障受电弓降到考核高度下200mm处的最大时间:1.0s (15)输入空气压力:4~10bar (16)形式及管径:内螺纹/G 1/2’ 二、工作原理 1.升降弓工作原理 当受电弓的电磁阀得电时,压缩空气也经过减压阀、电控阀一路向气囊(17)充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,受电弓开始升弓,与接触网接触集取电流。
和谐号受电弓工作原理

和谐号受电弓工作原理
和谐号受电弓是一种用于电力牵引列车的设备,其工作原理可以描述如下:
1. 导电杆:和谐号受电弓的顶端装有一个导电杆,其主要作用是与接触网建立电气联系。
导电杆通常由导电材料制成,如铜或铝合金,具有良好的电导性能。
2. 弹簧装置:受电弓内部安装有弹簧装置,用于驱动导电杆与接触网之间保持合适的接触力。
通过调整弹簧的张力,可以确保导电杆与接触网之间始终保持压力适中的接触状态。
3. 牵引装置:和谐号受电弓通过牵引装置与列车的电力传输系统相连,将接触网上的电能传递给列车的牵引装置。
牵引装置通常由电流传感器和电缆组成,能够将受电弓接收到的电能有效地传输到列车内部的动力装置。
4. 自动控制系统:和谐号受电弓通常配备有自动控制系统,用于监测受电弓与接触网之间的电气状态,并根据需要调整受电弓的高度和倾角。
这样可以确保受电弓始终保持与接触网的良好接触,并在列车高速行驶时保持稳定的电力传输。
总之,和谐号受电弓通过导电杆与接触网建立电气联系,并通过弹簧装置保持适当的接触力。
通过牵引装置,受电弓将接触网上的电能传输给列车的动力装置,实现电力牵引。
自动控制系统可以监测和调整受电弓的工作状态,确保电力传输的稳定性和可靠性。
受电弓工作原理

受电弓工作原理受电弓是电力机车、电力动车组和有轨电车等电气牵引车辆上的重要部件,它的作用是通过接触网吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,下面将从接触网、受电弓结构和工作过程等方面详细介绍受电弓的工作原理。
接触网是电气牵引车辆供电系统的重要组成部分,它一般由一根或多根导线组成,悬挂在架空设备上,为电气牵引车辆提供电能。
接触网一般由铜、铝等材料制成,具有良好的导电性能和机械强度。
电气牵引车辆行驶时,受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的结构一般由受电弓支架、受电弓杆、受电弓头、接触板等部件组成。
受电弓支架一般安装在电气牵引车辆的车顶上,通过受电弓杆与受电弓头相连接,受电弓头上安装有接触板。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电。
当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
接触板与接触网之间的接触面积较大,接触压力较大,能够保证良好的导电性能。
受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。
受电弓的工作过程一般分为接触、牵引和分离三个阶段。
在接触阶段,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。
在牵引阶段,受电弓吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
在分离阶段,受电弓通过受电弓支架和受电弓杆与接触网分离,完成电能的传输。
总之,受电弓是电气牵引车辆上的重要部件,它通过与接触网保持接触,吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。
受电弓的工作原理是基于接触网和受电弓之间的接触和导电,具有良好的导电性能和机械强度。
CRH380A型动车组受电弓无法升起原理及故障浅析

CRH380A 型动车组受电弓无法升起原理及故障浅析摘要:本文从动车组受电弓动作原理入手,通过对CRH380A 型动车组受电弓电路、气路等方面进行分析。
采用反向论证法,跳出原有故障处置流程,达到故障点的快速判断处置的目的,从而减少对运输秩序的影响。
关键字:CRH380A动车组;受电弓;电路;气路;反向论证CRH380A型动车组受电弓设置在M3-4车、M5-6车,通过空气回路控制升、降动作的铰接式机械构件,能够从接触网汲取电流,并将其传送到车辆电气系统的电气设备。
本文结合CRH380A型动车组实际运用情况、根据电路图、风路图分析受电弓无法升起的故障情况。
通过对升弓的原理分析,反向推出故障点所在位置,快速制定后续处置方案,从而有效指导线上应急处置,缩短应急处置时间,减少对运输秩序的影响。
1受电弓工作原理当受电弓升弓电磁阀得电时,压缩空气经过阀板的空气过滤、单向调速阀、调压阀一路向气囊充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,受电弓开始升弓,与接触网接触汲取电流。
当升弓电磁阀失电时,气囊中的压缩空气压力迅速减小,压缩气体由快排阀排向大气,受电弓靠自重降弓(见图1)。
1.1电路原理分析1.1.1升弓指令受电弓升弓指令可以通过操作主控端司机室的升弓旋钮,也可以通过MON屏远程切除界面发出。
下面分别就两种升弓方式的原理进行说明:远程控制(见图2):通过主控端MON屏上远程切除界面选择需要操作受电弓,由车辆信息控制终端装置使UR04继电器得电,得电后其辅助触点闭合使PanUR、PanUR1继电器得电。
图1受电弓工作原理图2远程升弓升弓旋钮控制(见图3):操作主控端司机室配电盘上的【受电弓切换开关】,对升04、06车受电弓进行选择选择。
升04车弓时106Y线得电,升06车弓时106X线得电。
106Y/106X线励磁条件有(见图3):①102线有电,司机室【受电弓·VCB】断路器闭合;②110线04、06车EGS限位开关处于闭合状态(升弓前04/06车EGS打开);③111线02、04、06车VCB限位开关处于闭合状态(升弓前02、04、06车VCB 打开);④主控端激活继电器MCR励磁;⑤控端VCB辅助继电器VCBRR励磁;⑥主控端接地保护开关继电器(EGSR)励磁;⑦非主控激活继电器MCRR励磁。
CRH380A型动车组自动降弓故障原因分析及措施处置

圈 5ADD 闷结 构 圈
3处 置 措 施 5.1途 中应急 处理
(1)装有受 电弓视 频监控 装置 的动 车组,随 车机械 师应立即通 过受 电弓视频监控 装置确认受 电弓外观状 态,并及时查 看回放视 频, 如能够确认受 电弓状态可见部 分无明显异 常或 不超限、无脱落风险时, 通 知 司 机 换 弓后 正 常运 行 。
圈 2受 电弓 自动 ■ 弓故 障 分 布 统 计 情 况 2受 电弓 自动 鼻 弓 原 因分 析 2.1正 常升 弓 2.1.1气 路原 理 在 司机 室按下受 电弓升弓按钮 ,升弓电磁阀得 电动作 ,向动车 组 受 电弓 供 应 压 缩 空气 。压 缩 空 气 首先 进 入 受 电 弓气 阀 板 ,依 次 经 过 气 阀板的空气过滤 、压力调整、流量调节,再经过车顶空气管路、受电弓 绝缘软管和受 电弓底架上的空气管路 的传输后’气路 分成为两条支路 , 一 条支路向受电弓升弓气囊供气 ,另一条支路经由 ADD阀向滑板、气 阀板压力开关 (DS2)供气 。受电弓升弓气路原理图如图 3所示。
(1)受 电弓供 风管受异物击打漏风 ; (2)碳滑板受异物击打漏风 ; (3)ADD 阀 自身故 障漏 风 ; 据不完 全统计,2017年全路 CRH380A型 动车组 自动降 弓故 障 33件 ,其 中供风管遭异 物击打漏风 共 27件 ,碳 滑板受异物 击打漏风 4件,ADD阀自身故障嘱风 2件,故障分布统计情况如图 2所 示。
火车受电弓工作原理

火车受电弓工作原理
火车受电弓是火车发电的重要设备,它的功能是在电力轨道上将供电线中的电能转换为电车辆所需的电能。
受电弓由夹杆形式的两个金属接触器、中空的软硅胶弓和由金属的支架组成的支架组件组成。
当车辆行驶时,接触器就会接触轨道上的供电线并转换电能。
弓型构件在接触器上刮走时会机械振动和热振动,从而产生电火花,这就是受电弓发出的“嘎嘎”声即传统火车列车的声音。
电火花会带动受电弓的软铜弓的上下运动,从而增强接触器的张力,充分发挥接触器夹紧裸导线的作用,使受电弓夹紧并形成一个可靠的电接触,从而实现火车辆供电和车辆安全行驶。
高速铁路受电弓的工作原理

高速铁路受电弓的工作原理高速铁路作为现代交通的重要组成部分,为人们提供了更快、更便捷的出行方式。
而高速铁路列车的正常运行离不开供电系统的支持,其中受电弓作为关键部件之一,起到了将电能传输给列车的重要作用。
本文将介绍高速铁路受电弓的工作原理。
一、受电弓的定义与分类受电弓是安装在高速铁路列车车顶上,并与电网接触的装置,通过与供电线路的接触来获得电能。
根据其构造和工作原理的不同,受电弓可以分为机械式受电弓和气动式受电弓两种类型。
1. 机械式受电弓:机械式受电弓通常由一对可伸缩的碳刷组成,碳刷通过与供电线路的直接接触来获取电能。
当列车行驶过程中,机械式受电弓会根据电网的高度自动调节碳刷的伸缩长度,以保持良好的电接触,从而保证高效的电能传输。
2. 气动式受电弓:气动式受电弓采用了气动技术,通过气动部件来控制受电弓的伸缩。
与机械式受电弓相比,气动式受电弓具有更高的稳定性和可靠性,适用于高速列车等复杂运行条件。
二、高速铁路受电弓的工作原理高速铁路受电弓的工作原理可以概括为以下几个步骤:1. 接触网供电:在高速铁路上,有一组并联的供电线路,称为接触网。
接触网通过变电站从电网中获得电能,并将电能传输到各个供电线路上。
2. 受电弓接触供电线路:当列车驶过供电线路时,受电弓会与供电线路接触,通过碳刷或气动部件与供电线路建立电接触,从而将电能传输给列车。
3. 受电弓调节高度:高速铁路路况复杂,供电线路的高度会有所变化。
为了保持受电弓与供电线路之间的良好接触,受电弓会根据电网高度的变化,通过机械或气动系统自动调节受电弓的高度。
4. 受电弓传输电能:当受电弓与供电线路建立电接触后,电能会通过受电弓传输到列车的电动机或牵引系统中,从而驱动列车正常运行。
三、高速铁路受电弓的特点与优势高速铁路受电弓作为供电系统的重要组成部分,具有以下特点与优势:1. 快速调节能力:高速铁路受电弓能够根据供电线路的高度变化快速调节高度,以确保稳定的电能传输,保证列车正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CRH380AL型动车组受电弓工作原理浅析
摘要:CRH380A动车组,编组16列,目前运行速度300km/h,如此高的运行速度,旅客们对动车组乘坐的舒适性和安全性也提出了很高的要求。
但要达到这一目标稳
定的动力输出是必不可少的,要提供稳定动力输出,高压
供电系统的稳定是基础。
而提到动车组高压供电系统,就
不得不提到受电弓。
关键词:动车组;动力输出;高压供电系统;受电弓
高压供电系统是动车组关键技术之一,而受电弓的表
现直接关系到动车组高压供电系统的稳定性。
在动车组的
检修过程中,对受电弓的检查和试验是相当严格的,是绝
对不能有半点失误的。
任何一点失误,都有可能对动车组
的运行造成极其恶劣的影响。
现在结合日常的工作,对动
车组受电弓的组成及工作原理进行简要的介绍。
一、受电弓概述
CRH380AL动车组使用的受电弓型号为DSA380,弓头长1950mm,滑板长1576mm,质量(不包括绝缘子和阀板)为117kg,其结构如下图:
图1 受电弓结构
主要参数:
(1)最小绝缘距离:≥310mm
(2)最大电流:1000A
(3)短路电流:35kA(60ms)
(4)车辆静止时最大电流:80A
(5)受电弓落弓时高度:666mm
(6)静态接触压力为80N、可调
(7)最大集电头(弓头)宽度:1950mm(+0/-
10mm)
(8)两根滑板中心线距离:约580mm
(9)滑板材料:渗金属碳
(10)弓角材料:部分绝缘
(11)最大上升时间:10s
(12)最大下降时间:10s
(13)下降310mm的最大时间:3s
(14)ADD释放后,故障受电弓降到考核高度下200mm处的最大时间:1.0s
(15)输入空气压力:4~10bar
(16)形式及管径:内螺纹/G 1/2’
二、工作原理
1.升降弓工作原理
当受电弓的电磁阀得电时,压缩空气也经过减压阀、电控阀一路向气囊(17)充气,同时一路向受电弓的集电头上的滑板气腔内充气;当气囊内气压达到一定压力时,
受电弓开始升弓,与接触网接触集取电流。
当电磁阀失电时,气囊中的压缩空气压力迅速减小,压缩气体由电磁阀口排向大气,受电弓靠自重落弓。
2.自动降弓工作原理
ED1:电控阀DS1:压力开关P1:测试口DIS1:绝缘管1
DIS2:绝缘管2 HU1:气囊SV1:快速降弓阀
AH1:关闭阀PH1:试验阀K01/K02:碳滑板
图3 自动降弓装置工作原理
压缩空气通过受电弓升弓装置进入到带有气腔的碳滑板,如果碳滑板出现空气泄漏,该故障会导致升弓装置(HU1)中的气体从快速降弓阀(SV1)中迅速排出,从而实现自动降弓。
3.受电弓阀板工作原理
F1:空气过滤器DB1:减压阀ED1:电控阀SI1:安全阀DS1:压力开关P1:测试口T1:直流电压B1:控制单元
图4 受电弓阀板
受电弓能的实现还有一个重要的组成部分就是升弓阀板,阀板安装在5、13号车内尽可能接近受电弓(短距离是为了受电弓/对受电弓的快速响应)的地方。
压缩空气流首先从阀板右侧进入空气过滤器F1。
然后压缩空气通过减
压阀DB1,进入压力电控阀ED1。
阀板上安装控制单元
B1,通过控制单元调制接触压力。
此外阀板是装有安全阀的。
在阀板上在ADD响应时用快速降弓阀。
在阀板装置上有两个压力开关。
阀板上有一个控制单元,控制单元的功能有:1.整个速度范围内的接触压力的调整;2.弹性接触网、简单接触网两种类型的接触压力的优化;3.双向(开口和闭口)下的接触压力的优化;4.自我诊断;5.通过控制单元上的按钮可相对于静态接触压力调节50N的压力;6.可以识别的车内受电弓位置调整;7.可通过按钮调整接触压力。
4. 受电弓接触压力的检查和设置
在受电弓升弓状态下,在工作高度从2m,1.5m和1m 慢慢上下移动中测量接触压力。
测量时移动的最大速度为0.1m/s,上升时接触压力在85N和90N之间。
下降时接触压力应该在70N和75N之间。
在相同的工作高度测量的升降之间的接触压力差应该最大是20N。
如需要对受电弓接触力进行调节时,可通过阀板上的B1控制单元进行调节。
三、日常检修与维护
CRH380AL动车组在每次一级检修时,都需要对受电弓各部进行重点检查。
具体检修要求如下:
(1)检查碳滑板是否有裂纹、缺损是否超限、碳滑板厚度和厚度差是否超限。
(2)检查供风管路连接状态,是否有漏气现象。
(3)检查受电弓上紧固螺栓是否有松动。
(4)检查受电弓弓头、集电头和阻尼器功能是否良好。
(5)检查受电弓的升降弓时间和升弓压力是否在规定范围内。