高速铁路受电弓的工作原理

合集下载

高铁受电弓的工作原理

高铁受电弓的工作原理

高铁受电弓的工作原理
高铁受电弓的工作原理主要分为两个步骤:接触线接触和电流传输。

当高铁列车行驶时,受电弓头与接触线进行接触。

受电弓头通过碳刷或铜制接触片与接触线建立电气连接。

在接触的过程中,受电弓头需要保持与接触线之间的恰当接触力。

这是通过受电弓臂的升降来实现的。

受电弓臂可以根据列车的速度和接触线的高度进行自动调整,以保持恰当的接触力。

接触线接触后,接下来就是电流传输的过程。

当高铁列车行驶时,接触线上的电能会通过受电弓头传递到高铁列车上。

受电弓头将接触线上的交流电能转换为直流电能,并通过受电弓臂和列车上的电气系统进行传输。

在传输过程中,受电弓头需要保持与接触线之间的稳定接触,以确保电流的正常传输。

高铁受电弓的工作原理虽然看似简单,但其中涉及到的技术和工程细节却非常复杂。

首先,受电弓头需要具备良好的导电性能,以确保电流的传输效率。

其次,受电弓臂需要具备一定的刚度和稳定性,以保持与接触线之间的恰当接触力。

同时,受电弓臂还需要具备足够的升降速度和精确度,以适应不同速度和高度的接触线要求。

此外,高铁受电弓还需要考虑到列车的运行状态,如风阻和振动等因素对受电弓的影响,需要通过设计和优化来提高受电弓的稳定性和可靠性。

总的来说,高铁受电弓是高速列车上的重要组成部分,它通过与接触线的接触来实现电能的传输。

其工作原理涉及到受电弓头、受电弓臂和列车的协同工作,需要考虑到多种因素以确保电能的稳定传输和列车的安全运行。

受电弓工作原理

受电弓工作原理

受电弓工作原理受电弓是电力机车、电力动车组和有轨电车等电气牵引车辆上的重要部件,它的作用是通过接触网吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。

受电弓的工作原理是基于接触网和受电弓之间的接触和导电,下面将从接触网、受电弓结构和工作过程等方面详细介绍受电弓的工作原理。

接触网是电气牵引车辆供电系统的重要组成部分,它一般由一根或多根导线组成,悬挂在架空设备上,为电气牵引车辆提供电能。

接触网一般由铜、铝等材料制成,具有良好的导电性能和机械强度。

电气牵引车辆行驶时,受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。

受电弓的结构一般由受电弓支架、受电弓杆、受电弓头、接触板等部件组成。

受电弓支架一般安装在电气牵引车辆的车顶上,通过受电弓杆与受电弓头相连接,受电弓头上安装有接触板。

当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。

受电弓的工作原理是基于接触网和受电弓之间的接触和导电。

当电气牵引车辆行驶时,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。

接触板与接触网之间的接触面积较大,接触压力较大,能够保证良好的导电性能。

受电弓通过接触网吸收电能,将电能传输给车辆的牵引电动机,从而驱动车辆运行。

受电弓的工作过程一般分为接触、牵引和分离三个阶段。

在接触阶段,受电弓通过受电弓支架和受电弓杆与接触网保持接触,接触板与接触网之间形成一定的接触压力,从而实现电能的传输。

在牵引阶段,受电弓吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。

在分离阶段,受电弓通过受电弓支架和受电弓杆与接触网分离,完成电能的传输。

总之,受电弓是电气牵引车辆上的重要部件,它通过与接触网保持接触,吸收电能,将电能传输给车辆的牵引电动机,驱动车辆运行。

受电弓的工作原理是基于接触网和受电弓之间的接触和导电,具有良好的导电性能和机械强度。

受电弓工作原理

受电弓工作原理

受电弓工作原理
受电弓是电力机车接收电能的重要组成部分,它能够实现电力机车与电气化铁路之间的无线传输电能。

受电弓的主要工作原理是通过接触轨道上的架空线,将架空线上的直流或交流电能传输到电力机车上,以供电力机车运行。

下面将详细介绍受电弓的工作原理。

第一步:受电弓碰触架空线
当电力机车行驶到电气化铁路上时,受电弓的头部会碰触架空线,将架空线上的电能传输到电力机车的接触线上。

而架空线则是铁路电气化系统中的主要组成部分,其承担着将电能从发电站输送到电力机车的重要任务。

第二步:将电能传输到接触线
当受电弓碰触架空线后,架空线上的电能会通过受电弓的导电部件传送到电力机车的接触线上,其实现了电能的传输和连接。

受电弓的导电部件通常由碳刷、铜接线和钢丝绳等组成,以确保电能的顺畅传输。

第三步:将电能传输到牵引电机
当电能传输到电力机车的接触线上后,再通过变压器将电能进行调整,以适应电力机车牵引电机的工作需要。

牵引电机通常采用交流电机,其能够将电能转化为机械能,从而推动电力机车行驶。

综上所述,受电弓是电力机车在电气化铁路上接收电能的关键组成部分,其工作原理是通过接触架空线,将架空线上的电能传输到电力机车上,并通过变压器将电能进行调整,最终驱动电力机车牵引电机的工作,推动电力机车行驶。

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理

高速铁路受电弓的工作原理高速铁路作为现代交通的重要组成部分,为人们提供了更快、更便捷的出行方式。

而高速铁路列车的正常运行离不开供电系统的支持,其中受电弓作为关键部件之一,起到了将电能传输给列车的重要作用。

本文将介绍高速铁路受电弓的工作原理。

一、受电弓的定义与分类受电弓是安装在高速铁路列车车顶上,并与电网接触的装置,通过与供电线路的接触来获得电能。

根据其构造和工作原理的不同,受电弓可以分为机械式受电弓和气动式受电弓两种类型。

1. 机械式受电弓:机械式受电弓通常由一对可伸缩的碳刷组成,碳刷通过与供电线路的直接接触来获取电能。

当列车行驶过程中,机械式受电弓会根据电网的高度自动调节碳刷的伸缩长度,以保持良好的电接触,从而保证高效的电能传输。

2. 气动式受电弓:气动式受电弓采用了气动技术,通过气动部件来控制受电弓的伸缩。

与机械式受电弓相比,气动式受电弓具有更高的稳定性和可靠性,适用于高速列车等复杂运行条件。

二、高速铁路受电弓的工作原理高速铁路受电弓的工作原理可以概括为以下几个步骤:1. 接触网供电:在高速铁路上,有一组并联的供电线路,称为接触网。

接触网通过变电站从电网中获得电能,并将电能传输到各个供电线路上。

2. 受电弓接触供电线路:当列车驶过供电线路时,受电弓会与供电线路接触,通过碳刷或气动部件与供电线路建立电接触,从而将电能传输给列车。

3. 受电弓调节高度:高速铁路路况复杂,供电线路的高度会有所变化。

为了保持受电弓与供电线路之间的良好接触,受电弓会根据电网高度的变化,通过机械或气动系统自动调节受电弓的高度。

4. 受电弓传输电能:当受电弓与供电线路建立电接触后,电能会通过受电弓传输到列车的电动机或牵引系统中,从而驱动列车正常运行。

三、高速铁路受电弓的特点与优势高速铁路受电弓作为供电系统的重要组成部分,具有以下特点与优势:1. 快速调节能力:高速铁路受电弓能够根据供电线路的高度变化快速调节高度,以确保稳定的电能传输,保证列车正常运行。

高铁受电弓工作原理

高铁受电弓工作原理

高铁受电弓工作原理
高铁受电弓是高速列车接触网供电系统中的重要部件,它通过接触网接收电能,然后
传输到列车的牵引、辅助设备上,是高铁列车正常运行的关键。

高铁受电弓的工作原理是
怎样的呢?下面我们将详细介绍。

高铁受电弓的主要部件包括受电弓主体、伸缩装置、接触轮组、电动传动机构等。


高铁列车行驶时,受电弓通过伸缩装置将接触轮组与接触网接触,然后通过电动传动机构
调整接触轮组的位置,以确保高铁列车与接触网之间始终保持合适的接触压力和接触面积。

这样,通过接触网传送过来的电能就能够通过接触轮组传输到列车的电气设备上。

高铁受电弓的工作原理可以分为两个主要过程:受电过程和接触过程。

在受电过程中,受电弓通过受电机构感应接触网上的电压,然后通过接触系统将电压传递到列车的牵引系统、辅助设备上。

而在接触过程中,受电弓通过伸缩装置、电动传动机构调整接触轮组的
位置,使其与接触网保持良好的接触状态,确保电能传输的安全可靠。

高铁受电弓的工作原理还涉及到接触网的供电系统。

高铁列车行驶时,接触网通过供
电系统提供电能,而受电弓则负责将接触网上的电能传输到列车上。

高铁受电弓的工作原
理不仅涉及到受电弓本身的工作原理,还包括与接触网供电系统之间的配合和协调。

高铁受电弓的工作原理是通过受电机构感应接触网上的电压,然后通过接触系统将电
压传递到列车的牵引系统、辅助设备上,同时通过伸缩装置、电动传动机构调整接触轮组
的位置,确保与接触网保持良好的接触状态,以确保电能传输的安全可靠。

高铁受电弓的
工作原理是高铁列车正常运行的关键,对于高铁运输的安全和稳定起着至关重要的作用。

受电弓知识点总结

受电弓知识点总结

受电弓知识点总结受电弓是电力机车和电力动车组的一种重要的输电装置,是将架空线路上的电能传送到列车上的装置。

在电气化铁路系统中,受电弓起到了非常关键的作用。

它不仅能够实现列车与电力线路之间的电能传输,还能够保证列车在高速行驶过程中和架空电缆之间的正确接触,确保电能的连续供应。

在本篇文章中,我们将系统地介绍受电弓的工作原理、种类、维护和维修等相关知识点。

一、受电弓的工作原理受电弓是一种能够贴合架空线路,连接列车与电力线路并传输电能的机械装置。

它的主要工作原理是通过受电弓的机械结构和控制系统,将列车上的电动机或者牵引变流器与架空电缆之间建立起良好的电气和机械接触,从而实现电能的输送和传输。

受电弓的工作原理可以概括为以下几个关键环节:1. 触网系统:受电弓首先要通过机械方式贴近架空电缆,确保电能的正常传输。

触网系统通常具有弹簧、气动或者液压装置,能够确保受电弓在高速行驶过程中能够稳定地贴合架空电缆。

2. 电气接触:受电弓通过电气接触将列车上的电气设备与架空电缆连接起来,确保电能的传输通畅。

3. 控制系统:受电弓还需要通过控制系统实现对受电弓的升降和调整,保证列车在行驶过程中保持与架空电缆的适当接触。

以上三个环节共同构成了受电弓的基本工作原理,保证了列车在行驶过程中能够稳定地获得电能,并保持与架空电缆的正确接触。

二、受电弓的种类根据不同的工作原理和使用场景,受电弓可以分为不同的种类,下面我们将着重介绍几种常见的受电弓种类。

1. 拉杆式受电弓:拉杆式受电弓是一种利用铰链机构伸缩的受电弓,通常适用于中低速列车。

它的优点是结构简单,维护较为方便,但是对于高速列车来说拉杆式受电弓的伸缩行程受限,不适合高速运行。

2. 弹性梁式受电弓:弹性梁式受电弓是一种通过弹性梁结构伸缩的受电弓,通常适用于中高速列车。

它的优点是能够适应高速列车的运行需要,但是相对于拉杆式受电弓结构更为复杂,维护难度较大。

3. 摇枕式受电弓:摇枕式受电弓是一种通过摇枕装置伸缩的受电弓,其特点是能够实现对受电弓的多方位调整,适用于高速列车。

受电弓工作原理

受电弓工作原理

受电弓工作原理
受电弓是电力机车和电动车辆等电气化交通工具中常用的接触网供电系统。

其工作原理如下:
1. 受电弓的基本原理是通过受电弓与接触网之间的接触,将接触网上的电能传递给电动车辆,以供其驱动电动机运行。

2. 受电弓通常由一个弓形的金属构架和一个绝缘材料做成。

弓形金属构架可以沿着车辆运行方向调整高度,以适应不同高度的接触网。

3. 当电动车辆行驶时,受电弓与接触网接触,形成电路闭合。

电流经过受电弓进入车辆,供电给车辆上的电动机。

4. 接触网上的电能是由供电系统提供的,通常是通过变电站将高压电能转换为接触网上的直流电。

5. 为了保证接触的稳定性和安全性,受电弓和接触网之间需要保持一定的接触压力。

这通常通过弹簧机构来实现,使受电弓能够自动对接触网进行上下运动调整。

总的来说,受电弓工作原理是通过受电弓与接触网之间的接触,将接触网上的电能传递给电动车辆,实现供电供能的功能。

浅析CRH3型动车组受电弓工作原理及调试

浅析CRH3型动车组受电弓工作原理及调试

浅析CRH3型动车组受电弓工作原理及调试摘要:CRH3型动车组受电弓是从接触网上受取电流的一种受流装置。

受电弓靠滑动接触受流,是动车组与固定供电装置之间连接的环节,其性能的优劣性直接影响到动车组工作的可靠性。

随着动车组运行速度的不断提高,对其受电弓性能,调试过程工作原理提出了越来越高的要求,探讨受电弓工作原理保证其性能稳定,实现动车组安全运行。

关键词:动车组;受电弓;原理;调试A brief analysis of the working principle and debugging of pantograph of CRH3emuAbstract:The model CRH3 pantograph is a current receiving device from the contact network.The pantograph receives the current by sliding contact, which is the link between the emu and the fixed power supply device.With the continuous improvement of the running speed of emu, higher and higher requirements are put forward for the pantograph performance and the working principle of the debugging process.Keyword:EMU;Pantograph;The principle;debugging引言受电弓是利用车顶接触网获取和传递电流的机械组成。

受电弓由气囊组成的气动平衡系统控制,该气囊的压力空气由气动控制单元提供。

在压力空气作用下气囊产生扭矩,通过凸轮及弹性连接轴作用在下臂的铰链处,从而使受电弓根据设定速度升弓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高速铁路受电弓的工作原理
1.升弓
压缩空气经电空阀均匀进入传动气缸,气缸活塞压缩气缸内的降弓弹簧,此时升弓弹簧使下臂杆转动,抬起上框架和滑板,受电弓匀速上升,在接近接触线时有一缓慢停滞,然后迅速接触接触线。

2.降弓
传动气缸内的压缩空气经受电弓缓冲阀迅速排向大气,在降弓弹簧的作用下,克服升弓弹簧的作用力,使受电弓迅速下降,脱离接触网。

为保证牵引电流的顺利流通,受电弓和接触线之间必须有一定的接触压力。

弓网实际接触压力由以下四部分组成:
(1)静态接触压力。

受电弓升弓系统施加于滑板,使之向上的垂直力为静态接触压力(一般为70 N或90 N)。

(2)动态接触压力。

接触悬挂本身存在弹性差异,接触线在受电弓抬升作用下会产生不同程度的上升,从而使受电弓在运行中产生上下振动,使受电弓产生一个与其本身换算质量相关的上下交变的动态接触压力。

(3)气动力。

受电弓在运行中受空气流作用会产生一个随速度增加而迅速增加的气动力。

(4)阻尼力。

受电弓各关节在升降弓过程中会产生阻尼力。

弓网接触压力能直观地反映受电弓滑板和接触线间的接触情况,它必须符合正态分布规律,在一定范围内波动。

如果太小,会增加离线率;如果太大,会使滑板和接触线间产生较大的机械磨耗。

为保证受电弓具有可靠的受流质量,应尽量减小受电弓的归算质量,增加接触悬挂的弹性均匀性。

滑板的质量和机电性能对受流质量影响很大。

相关文档
最新文档