小六奥数抽屉原理专题解析
六年级奥数分册:第29 周 抽屉原理

第二十九周抽屜原理(一)專題簡析:如果給你5盒餅乾,讓你把它們放到4個抽屜裏,那麼可以肯定有一個抽屜裏至少有2盒餅乾。
如果把4封信投到3個郵箱中,那麼可以肯定有一個郵箱中至少有2封信。
如果把3本聯練習冊分給兩位同學,那麼可以肯定其中有一位同學至少分到2本練習冊。
這些簡單內的例子就是數學中的“抽屜原理”。
基本的抽屜原理有兩條:(1)如果把x+k(k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有2個或2個以上的元素。
(2)如果把m×x×k(x>k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有m+1個或更多個元素。
利用抽屜原理解題時要注意區分哪些是“抽屜”?哪些是“元素”?然後按以下步驟解答:a、構造抽屜,指出元素。
b、把元素放入(或取出)抽屜。
C、說明理由,得出結論。
本周我們先來學習第(1)條原理及其應用。
例題1:某校六年級有學生367人,請問有沒有兩個學生的生日是同一天?為什麼?把一年中的天數看成是抽屜,把學生人數看成是元素。
把367個元素放到366個抽屜中,至少有一個抽屜中有2個元素,即至少有兩個學生的生日是同一天。
平年一年有365天,閏年一年有366天。
把天數看做抽屜,共366個抽屜。
把367個人分別放入366個抽屜中,至少在一個抽屜裏有兩個人,因此,肯定有兩個學生的生日是同一天。
練習1:1、某校有370名1992年出生的學生,其中至少有2個學生的生日是同一天,為什麼?2、某校有30名學生是2月份出生的,能否至少有兩個學生生日是在同一天?3、15個小朋友中,至少有幾個小朋友在同一個月出生?例題2:某班學生去買語文書、數學書、外語書。
買書的情況是:有買一本的、二本的、也有三本的,問至少要去幾位學生才能保證一定有兩位同學買到相同的書(每種書最多買一本)?首先考慮買書的幾種可能性,買一本、二半、三本共有7種類型,把7種類型看成7個抽屜,去的人數看成元素。
要保證至少有一個抽屜裏有2人,那麼去的人數應大於抽屜數。
六年级奥数-26抽屉原理(二)

抽屉原理(二)1.知识目标:初步了解抽屉原理,会用抽屉原理解决简单的实际问题.2.能力目标:经历抽屉原理的探究过程,通过实践操作发展学生的类推能力,形成比较抽象的数学思维.3.情感目标:通过“抽屉原理”的灵活应用感受到数学的魅力.重点:1.经历抽屉原理的探究过程,了解掌握抽屉原理难点:1.区分哪些是“抽屉”?哪些是“元素”2.按步骤解答:a、构造抽屉,指出元素b、把元素放入(或取出)抽屉C、说明理由,得出结论1.“任意放”的意思是不限制把物品放进笼子里的方法,不规定每个笼子中都要放物品,即有些笼子可以是空的,也不限制每个笼子放物品的个数。
2.抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的笼子可能有多个,但这里只需保证存在一个达到要求的笼子就够了。
知识点1最不利原则例1.红、黄、蓝、绿、白、紫6种不同的颜色的小球各1个,至少取出_____个小球,就能保证其中一定有1个白色的小球?练习1.小东玩掷骰子的游戏,要保证掷出的数至少有两次是相同的,小东至少应____次.例2.5种颜色不相同的小球各3个,至少取出______个小球,就能保证其中一定有2个小球的颜色相同?练习1.4种颜色不相同的小球各5个,至少取出______个小球,就能保证其中一定有2个小球的颜色相同?例3.有黑、白、黄三种颜色的小棒各8根,混放在一起,从这些小棒中,至少取出_______根,才能保证有4根颜色是相同的?练习1.有黑、白、绿、黄四种颜色的袜子各6只,混放在一起,从这些袜子中,至少取出_______只,才能保证有4只颜色相同的袜子?此类型题要考虑最倒霉,最不利的情况,从最坏的情况入手.知识点2抽屉原理(二)利用抽屉原理解题时要注意区分哪些是“抽屉”?哪些是“元素”?然后按以下步骤解答:a、构造抽屉,指出元素。
b、把元素放入(或取出)抽屉。
C、说明理由,得出结论。
在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:m÷n=a……b(m>n>1)把m个物体放进n个抽屉里(m>n>1),不管怎么放总有一个抽屉至少放进(a+1)个物体。
六年级奥数分册:第30周 抽屉原理

第三十周抽屜原理(二)專題簡析:在抽屜原理的第(2)條原則中,抽屜中的元素個數隨著元素總數的增加而增加,當元素總數達到抽屜數的若干倍後,可用抽屜數除元素總數,寫成下麵的等式:元素總數=商×抽屜數+餘數如果餘數不是0,則最小數=商+1;如果餘數正好是0,則最小數=商。
例題1:幼稚園裏有120個小朋友,各種玩具有364件。
把這些玩具分給小朋友,是否有人會得到4件或4件以上的玩具?把120個小朋友看做是120個抽屜,把玩具件數看做是元素。
則364=120×3+4,4<120。
根據抽屜原理的第(2)條規則:如果把m×x×k(x>k≥1)個元素放到x個抽屜裏,那麼至少有一個抽屜裏含有m+1個或更多個元素。
可知至少有一個抽屜裏有3+1=4個元素,即有人會得到4件或4件以上的玩具。
練習1:1、一個幼稚園大班有40個小朋友,班裏有各種玩具125件。
把這些玩具分給小朋友,是否有人會得到4件或4件以上的玩具?2、把16枝鉛筆放入三個筆盒裏,至少有一個筆盒裏的筆不少於6枝。
這是為什麼?3、把25個球最多放在幾個盒子裏,才能至少有一個盒子裏有7個球?例題2:布袋裏有4種不同顏色的球,每種都有10個。
最少取出多少個球,才能保證其中一定有3個球的顏色一樣?把4種不同顏色看做4個抽屜,把布袋中的球看做元素。
根據抽屜原理第(2)條,要使其中一個抽屜裏至少有3個顏色一樣的球,那麼取出的球的個數應比抽屜個數的2倍多1。
即2×4+1=9(個)球。
列算式為(3—1)×4+1=9(個)練習2:1、布袋裏有組都多的5種不同顏色的球。
最少取出多少個球才能保證其中一定有3個顏色一樣的球?2、一個容器裏放有10塊紅木塊、10塊白木塊、10塊藍木塊,它們的形狀、大小都一樣。
當你被蒙上眼睛去容器中取出木塊時,為確保取出的木塊中至少有4塊顏色相同,應至少取出多少塊木塊?3、一副撲克牌共54張,其中1—13點各有4張,還有兩張王的撲克牌。
六年奥数知识讲解:抽屉原理

六年奥数知识讲解:抽屉原理
抽屉原理
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[n/m ]+1个物体:当n不能被m整除时。
②k=n/m个物体:当n能被m整除时。
理解知识点:[_]表示不超过_的整数。
例[4.351]=4;[0.3_]=0;[2.9999]=2;
关键问题:构造物体和抽屉。
也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。
六年奥数知识讲解:抽屉原理.到电脑,方便收藏和打印:。
小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
小学奥数教案抽屉原理解析版

小学奥数教案抽屉原理解析版一、教学目标:1.理解抽屉原理的概念和应用。
2.能够使用抽屉原理解决问题。
3.培养学生的逻辑思维和问题解决能力。
二、教学准备:1.教师准备:抽屉、小球等实物。
2.学生准备:纸、笔。
三、教学过程:1.导入通过举例子引导学生思考:每个学生的书包里都有很多小球,假如有10个小球,但书包只能放下5个小球,那么最少有多少个学生的书包里至少有6个小球呢?请思考一下。
2.概念讲解介绍抽屉原理的概念:如果有6个抽屉放置5个小球,那么至少有一个抽屉里会放多于一个小球。
引导学生思考:为什么这个原理叫做“抽屉原理”呢?(待学生回答后给予解释,类比于抽屉里放物体的情景)3.解决问题a.难度逐渐增加的练习:-问题1:一个班级里有10个学生,每个学生有5双鞋,请问至少有几个学生至少有6双鞋?-问题2:一张报纸有10页,每个人看了3页,请问至少有几个人看了4页?-问题3:一辆公交车有30个座位,每个座位上最多坐2个人,请问至少有几个座位上坐了3个人?b.制作模型进行实际演示:让学生在纸上标出6个抽屉(使用不同的颜色标识),并按照抽屉的数量放置小球。
观察抽屉中小球的分布情况,并总结“抽屉原理”。
4.进一步拓展a.进一步讨论抽屉原理的应用领域,如数学、计算机等。
b.给学生自学任务:在生活中寻找抽屉原理的实际应用,并在下节课上进行分享。
5.归纳总结教师引导学生归纳总结抽屉原理的概念和应用,并与学生一起总结解决问题的思路和方法。
四、教学反思:通过引导学生思考和实际操作等多种教学方法,帮助学生理解和应用抽屉原理。
同时,通过扩展抽屉原理的应用领域,培养学生的创新思维和问题解决能力。
为了让学生更深刻地理解抽屉原理,可以举一些生活中的例子进行讲解,引导学生运用抽屉原理解决相关问题。
同时,希望学生能将所学内容应用到实际生活中,培养他们的观察力和分析能力。
小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。
同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。
以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名⼩朋友看作367个物品。
这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。
因此⾄少有2名⼩朋友的⽣⽇相同。
例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。
六年级奥数:抽屉原理(附答案详解)

六年级奥数:抽屉原理(附答案详解)一、填空题1.一个联欢会有100人参加,每个人在这个会上至少有一个朋友.那么这100人中至少有个人的朋友数目相同.2.在明年(即1999年)出生的1000个孩子中,请你预测:(1)同在某月某日生的孩子至少有个.(2)至少有个孩子将来不单独过生日.3.一个口袋里有四种不同颜色的小球.每次摸出2个,要保证有10次所摸的结果是一样的,至少要摸次.4.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取到2颗颜色相同的珠子,一次至少要取颗.如果要保证一次取到两种不同颜色的珠子各2颗,那么一定至少要取出颗.5.从1,2,3…,12这十二个数字中,任意取出7个数,其中两个数之差是6的至少有对.6.某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有人的头发根数一样多.7.在一行九个方格的图中,把每个小方格涂上黑、白两种颜色中的一种,那么涂色相同的小方格至少有个.8.一付扑克牌共有54张(包括大王、小王),至少从中取张牌,才能保证其中必有3种花色.9.五个同学在一起练习投蓝,共投进了41个球,那么至少有一个人投进了个球.10.某班有37名小学生,他们都订阅了《小朋友》、《儿童时代》、《少年报》中的一种或几种,那么其中至少有名学生订的报刊种类完全相同.二、解答题11.任给7个不同的整数,求证其中必有两个整数,它们的和或差是10的倍数.12.在边长为1的正方形内任取51个点,求证:一定可以从中找出3点,以它们为顶点的三角形的面积不大于1/50.13.某幼儿园有50个小朋友,现在拿出420本连环画分给他们,试证明:至少有4个小朋友分到连环画一样多(每个小朋友都要分到连环画).14.能否在88的棋盘上的每一个空格中分别填入数字1,或2,或3,要使每行、每列及两条对角线上的各个数字之和互不相同?请说明理由.1.2因为每个人至少有1个朋友,至多有99个朋友,将有1个朋友的人,2个朋友的人,…,99个朋友的人分成99类,在100个人中,总有两个人属于同一类,他们的朋友个数相同.2.(1)3;(2)636因为1999年有365天,故在1999年出生的孩子至少有(个)孩子的生日相同;又因为1000-(365-1)=363,即至少有363个孩子将来不单独过生日.3.91当摸出的2个球颜色相同时,可以有4种不同的结果;当摸出的2个球颜色不同时,最多可以有3+2+1=6(种)不同结果.一共有10种不同结果.将这10种不同结果看作10个抽屉,因为要求10次摸出结果相同,故至少要摸910+1=91(次).4.4;7将三种不同颜色看作3个抽屉,对于第一问中为保证一次取到2颗相同颜色的珠子,一次至少要取13+1=4(颗)珠子.对于第二问为了保证一次取到两种不同颜色珠子各2颗,一次至少要取4+(12+1)=7(颗)珠子.5.1将1~12这十二个数组成这六对两数差为6的数组.任取7个数,必定有两个数差在同一组中,这一对数的差为6.6.267将4千万人按头发的根数进行分类:0根,1根,2根…,150000根共150001类.因为40000000=(266150001)+99743 266150001,故至少有一类中的人数不少于266+1=267(个),即该省至少有267个人的头发根数一样多.7.7将每10块颜色相同的木块算作一类,共3类.把这三类看作三个抽屉,而现在要保证至少有三块同色木块在同一抽屉中,那么至少要有23+1=7(块).8.29将4种花色看作4个抽屉,为了保证取出3张同色花,那么应取尽2个抽屉由的213张牌及大、小王与一张另一种花色牌.计共取213+2+1=29(张)才行.9.9将5个同学投进的球作为抽屉,将41个球放入抽屉中,至少有一个抽屉中放了9个球,(否则最多只能进58=40个球).10.6订阅报刊的种类共有7种:单订一份3种,订二份3种,订三分1种.将37名学生依他们订的报刊分成7类,至少有6人属于同一类,否则最多只有66=36(人).11.将整数的末位数字(0~9)分成6类:在所给的7个整数中,若存在两个数,其末位数字相同,则其差是10的倍数;若此7数末位数字不同,则它们中必有两个属于上述6类中的某一类,其和是10的倍数.A BC EF GH 12.将边长为1的正方形分成25个边条为的正方形,在51个点中,一定有(个)点属于同一个小正方形.不妨设A、B、C三点边长为的小正方形EFGH内,由于三角形ABC 的面积不大于小正方形面积EFGH的,又EFGH的面积为.故三角形ABC 的面积不大于.13.考虑最极端的情况,有3个小朋友分到1本,有3个小朋友分到2本,…,有3个小朋友分到16本,最后两个小朋友分到17本,那么一共至少要3(1+2+3+…+16)+217=442(本),而442 420,故一定有4个小朋友分了同样多的书.14.注意到8行、8列及两对角线共有18条"线",每条线上有8个数字,要使每条线上的数字和不同,也就是需要每条线上的数字和有18种以上的可能.但我们填入的数只有1、2、3三种,因此在每条线上的8个数字中,其和最小是8,最大是24,只有24-8+1=17(种).故不可能使得每行,每列及两条对角线上的各个数字之和互不相等.。