小学奥数《抽屉原理问题》经典专题点拨教案

合集下载

小学数学六年级《抽屉原理》优秀教学设计

小学数学六年级《抽屉原理》优秀教学设计

教学设计:《抽屉原理》一、教学目标1.知识目标:通过本节课的学习,学生能够了解什么是抽屉原理,掌握其基本概念和应用方法。

2.能力目标:培养学生的逻辑思维能力,提高学生运用抽屉原理解决问题的能力。

3.情感目标:激发学生的学习兴趣,培养学生的探索精神和解决问题的勇气。

二、教学重点1.了解抽屉原理的基本概念和应用方法。

2.运用抽屉原理解决相关问题。

三、教学难点学生能够灵活运用抽屉原理解决复杂问题。

四、教学过程设计1.引入(5分钟)教师通过提问,引导学生思考:你们在家里的抽屉里放了什么东西?抽屉有什么共同特点?学生回答之后,教师引导学生总结抽屉的共同特点:抽屉是一种容器,可以用来存放衣服、书籍、文具等物品。

2.导入(10分钟)教师出示一些抽屉的图片,让学生观察并回答问题:这些抽屉里装了多少件东西?学生回答后,教师引导学生进一步思考:如果这些抽屉的数量和放入抽屉的物品数量相等,那么最少需要多少抽屉?最多需要多少抽屉?学生能够自主思考解决问题,教师适时给予点拨。

3.学习(25分钟)(1)教师介绍抽屉原理的基本概念:在一类事物中放入的东西比该类事物的数目还多,那么必定有至少一个抽屉放了两件或两件以上的东西。

(2)教师通过几个简单的案例来让学生理解抽屉原理的应用方法。

例如:有8个抽屉,放入7个苹果,那么至少有一个抽屉中放了2个苹果。

学生在理解的基础上进行思考,试着运用抽屉原理解决其他类似问题。

(3)教师带领学生进行抽屉原理的练习。

先进行简单的练习,再逐步提高难度。

例如:有10个抽屉和9只手套,那么至少有一个抽屉中放了2只手套;有100个抽屉和99个文件夹,那么至少有一个抽屉中放了两个文件夹。

(4)教师和学生一起解析练习题,确保学生掌握抽屉原理的应用方法。

4.拓展(15分钟)(1)教师出示一些有关抽屉原理的拓展问题,让学生独立思考解决方案。

例如:有100个瓶子和99个球,那么至少有一个瓶子中装了几个球?学生可以根据抽屉原理提出自己的思路和解决办法。

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案教学目标:1.了解抽屉原理的定义及相关概念;2.能够应用抽屉原理解决问题;3.培养学生的逻辑思维和推理能力。

教学重难点:1.掌握抽屉原理的概念和证明方法;2.培养学生运用抽屉原理解决问题的能力。

教学准备:1.教师准备好抽屉和球(或者其他小物体);2.黑板、彩色粉笔。

教学过程:Step 1 引入问题引入抽屉原理:同学们,你们有没有听过抽屉原理呢?它是数学中的一条非常重要的原理,广泛应用于各个领域。

今天我们就一起来学习一下抽屉原理。

Step2 导入示例教师在教室里摆放若干抽屉,并将一些球随意放在这些抽屉里。

然后请同学们观察这个情景,并思考一下,最少需要几个抽屉才能确保至少有一个抽屉里放有两个球?引导同学们思考之后,教师可以让同学们讨论并互相交流自己的想法。

然后,教师可以请同学们表达自己的观点,并给出答案。

教师可以解释抽屉原理的定义,并引导同学们理解。

Step3 抽屉原理的定义抽屉原理:如果有n+1个对象放进n个抽屉里,那么至少有一个抽屉里至少放了两个对象。

教师可以在黑板上列举一些例子,阐明抽屉原理的用法和意义。

Step4 抽屉原理的证明教师可以通过一个简单的证明过程来验证和解释抽屉原理。

例如,教师可以假设有6个抽屉,里面放有10个球。

假设每个抽屉里放的球的数量都不同,最多只能有1个球。

因为每个抽屉只能放最多1个球,所以只能放6个球。

但是实际上,我们有10个球。

所以,这个假设是错误的。

同理,假设每个抽屉里放的球的数量都不同,最少只能有0个球。

因为每个抽屉里放的球的数量都不同,所以最多只能放5个球。

但是实际上,我们有10个球。

所以,这个假设也是错误的。

通过这个简单的证明过程,我们可以得出结论:如果有n+1个对象放进n个抽屉里,那么至少有一个抽屉里至少放了两个对象。

Step5 拓展应用在日常生活中,抽屉原理的应用非常广泛。

尤其在数学、计算机科学和概率统计等领域有着重要的作用。

同学们可以思考一下抽屉原理在哪些实际问题中可以应用,并举例说明。

六年级上册奥数(教案)第15讲:抽屉原理

六年级上册奥数(教案)第15讲:抽屉原理

(六年级)备课教员:×××第十五讲抽屉原理一、教学目标: 1. 熟悉抽屉原理,灵活利用所学知识解决问题。

2. 培养学生的逻辑推理思维和能力。

3.经历探究抽屉原理的过程,提高学生对解决数学问题的能力和兴趣,感受数学的魅力。

二、教学重点:掌握抽屉原理的两个“原理”,利用“最不利原则“解决问题。

三、教学难点:找到抽屉原理中的“抽屉”。

四、教学准备:ppt五、教学过程:第一课时(50分钟)一、导入(7分)师:同学们,老师想和大家玩个游戏,你们想要玩吗?生:想。

师:这个游戏的内容是——老师说一句话,看老师说得准不准,好不好?生:好。

师:老师认为,你们之中一定有2个人在同一个月过生日(视学生人数而定)!你们信不信?生:不信。

师:好,那老师先和大家打个赌,如果老师赢了,你们要给老师一个降龙十巴掌;如果老师输了,就给大家每人两个大拇指(视具体情况而定)。

好不好?生:好。

师:那我们就来说一下,自己是在哪个月过生日的?(根据学生人数而定)生:……师:好,大家给老师降龙十巴掌吧。

师:你们想知道老师为什么猜得这么准吗?生:想。

师:想的话,要好好听今天的课哦,今天上课的内容就是抽屉原理。

【板书课题:抽屉原理】师:同学们知道什么是抽屉原理吗?生:……师:有的同学之前学过,已经知道了,有的同学还没有学过,还不知道。

那么没关系,只要你认真学今天的内容,都能学得很好。

首先我们要来知道什么是抽屉原理。

知道的同学可以说一下吗?生:把几个苹果放到抽屉里,有一个抽屉一定有多个苹果。

师:嗯,说得很棒,但还不够准确。

应该是,如果有10个苹果,把10个苹果放到9个抽屉里面,一定有一个抽屉至少有2个苹果。

想知道为什么吗?生:想!师:好,那就让我们在实战中来慢慢掌握吧。

【出示例题一】二、探索发现授课(40分)(一)例题1:(13分)一个小组共有13名同学,其中至少有2名同学同一个月过生日,为什么?师:大家发现没有,刚才我们已经玩的游戏,其实和这个题目是一样的?生:发现了。

六年级数学《抽屉原理》教学设计【优秀3篇】

六年级数学《抽屉原理》教学设计【优秀3篇】

六年级数学《抽屉原理》教学设计【优秀3篇】作为一名辛苦耕耘的教育工,时常需要编写教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。

教学设计应该怎么写呢?这里山草香为大家分享了3篇六年级数学《抽屉原理》教学设计,希望在抽屉原理教学设计的写作这方面对您有一定的启发与帮助。

最新《抽屉原理》教学设计篇一教学目标:1.知识与能力目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。

渗透“建模”思想。

2.过程与方法目标:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.情感、态度与价值观目标:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

教学准备:教具:5个杯子,6根小棒;学具:每组5个杯子,6根小棒。

教学过程:一、游戏激趣,初步体验。

师:同学们,你们玩过扑克牌吗?下面我们用扑克牌来玩个游戏。

大家知道一副扑克牌有54张,如果去掉两张王牌,就剩52张,对吗?如果从这52张扑克牌中任意抽取5张,我敢肯定地说:“张5张扑克牌至少有2张是同一种花色的,你们信吗?那就请5位同学上来各抽一张,我们来验证一下。

如果再请五位同学来抽,我还敢这样肯定地说,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?二、操作探究,发现规律。

(一)经历“抽屉原理”的探究过程,理解原理。

1.研究小棒数比杯子数多1的情况。

师:今天这节课我们就用小棒和杯子来研究。

师:如果把3根小棒放在2个杯子里,该怎样放?有几种放法?学生分组操作,并把操作的结果记录下来。

请一个小组汇报操作过程,教师在黑板上记录。

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案

小学数学《抽屉原理》教案课时数:2课时教学目标:1.了解抽屉原理的概念和应用;2.能够运用抽屉原理解决问题;3.培养学生观察、归纳、推理和解决问题的能力;4.通过实例让学生体会数学在解决实际问题中的作用。

教学重点:1.抽屉原理的概念;2.抽屉原理的应用。

教学难点:1.如何运用抽屉原理解决问题;2.培养学生解决实际问题的能力。

教学准备:1.教师准备课件和教具;2.学生准备笔记本和铅笔。

教学过程:一、导入(10分钟)1.教师用一个实例引出抽屉原理的概念:“假设有10双袜子,颜色只有红、蓝、黄三种。

那么不论如何排列,一定有两双颜色一样的袜子放在同一个抽屉里。

请问为什么?”2.引导学生思考这个问题,鼓励他们发言讨论。

二、概念解释与引入(10分钟)1.教师向学生解释抽屉原理的概念:“抽屉原理又称为鸽巢原理,意思是:如果有n+1个对象,要放进n个盒子里,那么至少有一个盒子里放的对象个数一定多于1个。

”2.通过图示和具体例子向学生展示抽屉原理的应用。

三、教学示范与讲解(30分钟)1.教师通过几个简单的问题向学生展示抽屉原理的应用方法,并给予解答讲解。

示例问题1:抽屉原理在生活中的应用有哪些?示例问题2:在0到9这10个数字中,至少有两个数字的个位数字相同,你能找出这两个数字吗?2.让学生自己尝试解答一些问题,并请学生上台展示解答过程,让其他学生进行评价和补充。

四、拓展与应用(20分钟)1.让学生分组完成以下问题:问题1:甲乙两个班级的学生共有50人,这两个班级每个班至少有多少人?问题2:小区有100户居民,每户最多能养2只宠物,那么这个小区最多能养多少只宠物?问题3:一台机器每小时可以生产100件产品,要生产1000件产品至少需要多少时间?2.鼓励学生思考不同的解决方法和思路,并让每个小组展示他们的解答过程。

五、总结与反思(10分钟)1.教师进行知识总结,强调抽屉原理的应用方法和思维方式。

2.鼓励学生反思本节课学到的内容,提出问题和思考。

小学奥数教案——抽屉原理(解析版)

小学奥数教案——抽屉原理(解析版)

小学奥数教案——抽屉原理(解析版)第一篇:小学奥数教案——抽屉原理(解析版)教案抽屉原理一本讲学习目标初步抽屉原理的方法和心得。

二概念解析把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到:抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。

如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。

比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。

应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。

三例题讲解例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。

抽屉原理奥数教案

抽屉原理奥数教案

抽屉原理奥数教案教案标题:抽屉原理奥数教案教学目标:1. 理解抽屉原理的概念和应用;2. 能够运用抽屉原理解决奥数问题;3. 培养学生的逻辑思维和问题解决能力。

教学准备:1. 教师准备:抽屉原理的相关知识和例题;2. 学生准备:纸和笔。

教学过程:1. 导入(5分钟)引导学生回顾排列组合的知识,提问:“你们还记得排列组合吗?能否举一个实际生活中的例子?”学生回答后,教师引出抽屉原理的概念,并给出一个简单的例子进行解释。

2. 理论讲解(15分钟)2.1 解释抽屉原理的定义和原理,即“如果有n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放入两个或更多物体”。

2.2 通过几个具体的例子进一步说明抽屉原理的应用,如“班级里有31个学生,但只有30个座位,那么至少有一个座位会有两个学生坐”。

2.3 引导学生思考如何运用抽屉原理解决奥数问题。

3. 实例分析(20分钟)3.1 给学生提供一些抽屉原理相关的奥数问题,让他们尝试解答。

3.2 学生完成后,教师逐个解答,并引导学生思考解题思路和关键步骤。

3.3 鼓励学生在解答过程中提出问题和讨论,加深对抽屉原理的理解。

4. 拓展应用(15分钟)4.1 给学生提供一些更复杂的抽屉原理奥数问题,让他们尝试解答。

4.2 学生完成后,教师与学生共同讨论解题思路和方法,引导学生深入思考问题的本质和解决方法。

5. 总结归纳(5分钟)教师对本节课的内容进行总结,强调抽屉原理的重要性和应用范围,并鼓励学生在实际生活中运用抽屉原理解决问题。

6. 作业布置(5分钟)布置相关的抽屉原理奥数题目作为课后作业,鼓励学生独立完成,并在下节课上进行讨论和解答。

教学评估:1. 教师观察学生的参与程度和问题解决能力;2. 对学生完成的作业进行评价。

教学延伸:1. 鼓励学生自主寻找更多抽屉原理相关的问题,并尝试解答;2. 引导学生将抽屉原理与其他数学知识相结合,拓展应用领域;3. 推荐相关的奥数参考书籍和网站,供学生深入学习和练习。

抽屉原理教案 《抽屉原理》教学设计12篇

抽屉原理教案 《抽屉原理》教学设计12篇

抽屉原理教案《抽屉原理》教学设计12篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。

优秀的教案都具备一些什么特点呢?又该怎么写呢?这里我给大家分享一些较新的教案范文,方便大家学习。

为了帮助大家更好的写作抽屉原理教案,作者整理分享了12篇《抽屉原理》教学设计。

《抽屉原理》教学设计篇一教材分析《抽屉原理的认识》是人教版数学六年级下册第五章内容。

在数学问题中有一类与“存在性”有关的问题。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明是通过什么方式把这个存在的物体(或人)找出来。

这类问题依据的理论,我们称之为“抽屉原理”。

“抽屉原理”较先是由19世纪的德国数学家狄里克雷(Dirichlet)运用于解决数学问题的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。

、学情分析本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。

通过几个直观的例子,用假设法向学生介绍“抽屉原理”,学生难以理解,感觉抽象。

在教学时,我结合本班实际,用学生熟悉的吸管和杯子贯穿整个课堂,让学生通过动手操作,在活动中真正去认识、理解“抽屉原理”学生学得轻松也容易接受。

教学目标1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

2、通过操作发展的类推能力,形成抽象的数学思维。

3、通过“抽屉原理”的灵活应用,感受数学的魅力。

教学重点和难点【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。

【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。

抽屉原理优质课教案篇二“数学广角”是人教版六年级下册第五单元的内容。

在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。

在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽屉原理问题
例1 袋子里有红、黄、黑、白珠子各15粒,闭上眼睛要想摸出颜色相同的五粒珠子,至少要摸出______粒珠子,才能保证达到目的。

(1992年福州市小学数学竞赛试题)
讲析:从最好的情况着手,则摸5粒刚好是同色的,但是不能保证做到。

要保证5粒同色,必然从最坏情况着手。

最坏情况是摸了16粒,这16粒珠子中没有一种是5粒同色,也就是说有4粒红色、4粒黄色、4粒黑色和4粒白色的。

现在再去摸一粒,这一粒只能是四色之一。

所以,至少要摸17粒。

例2 在一个3×9的方格里,将每一格随意涂上黑色或白色,试说明不管怎样涂,至少有两列的着色是完全相同的。

(“新苗杯”小学数学邀请赛试题)
讲析:可用两种颜色涂每一列的三格,它共有8种情况,如图5.89所示。

那么,剩下的一列不管怎样涂色,一定是上面8种中的一种。

所以它至少有两列的着色是完全相同的。

例3 把1、2、3、……、10这十个自然数以任意顺序排成一圈,试说明一定有相邻三个数之和不小于17。

(乌鲁木齐市小学数学竞赛试题)
讲析:因为1+2+3+……+10=55。

这十个数不管怎样排列,按每相邻三个数相加,共分成了10组,每个数都加了3次。

10组之和是165,平均每组为16,还余5。

然后把5分成几个数再加到其中一组或几组中,则肯定有一组相邻三个数之和不小于17。

相关文档
最新文档