小学奥数—抽屉原理
小学奥数抽屉原理

小学奥数抽屉原理
小学奥数中的抽屉原理是指在一组物品中,如果物品的数量大于抽屉的数量,那么至少会有一个抽屉中放置了两个或以上的物品。
这个原理可以用一个简单的例子来解释。
假设有4只袜子和3
个抽屉,我们要将袜子放入这些抽屉中。
因为袜子的数量大于抽屉的数量,根据抽屉原理,至少有一个抽屉中会放置两只袜子。
我们可以用鸽巢原理(抽屉原理的另一种说法)来帮助我们理解。
想象一下,如果有4只鸽子要放在3个巢里,根据鸽巢原理,至少有一个巢会有两只鸽子。
在小学奥数中,经常会用到抽屉原理来解决问题。
例如,假设有10个苹果,我们要将它们放入9个抽屉中。
我们可以确定
至少有一个抽屉中会放置两个或以上的苹果。
通过理解抽屉原理,我们可以更好地解决一些有关数量关系的问题。
这个简单而重要的数学原理在日常生活中也有很多应用。
例如,在一个大班级中,如果学生的数量超过了座位的数量,必然会有至少两个学生坐在同一个座位上。
总之,小学奥数中的抽屉原理告诉我们,当物品的数量大于抽屉的数量时,一定会有至少一个抽屉中放置了两个或以上的物品。
这个原理可以帮助我们更好地理解数量关系,解决数学问题。
小学奥数抽屉原理习题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。
愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣⼏篇。
学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。
以下是⽆忧考为⼤家整理的《⼩学奥数抽屉原理习题及答案【三篇】》供您查阅。
【篇⼀】【例 1】向阳⼩学有730个学⽣,问:⾄少有⼏个学⽣的⽣⽇是同⼀天? 【解析】⼀年最多有366天,可看做366个抽屉,730个学⽣看做730个苹果.因为,所以,⾄少有1+1=2(个)学⽣的⽣⽇是同⼀天. 【巩固】试说明400⼈中⾄少有两个⼈的⽣⽇相同. 【解析】将⼀年中的366天或天视为366个或个抽屉,400个⼈看作400个苹果,从最极端的情况考虑,即每个抽屉都放⼀个苹果,还有个或个苹果必然要放到有⼀个苹果的抽屉⾥,所以⾄少有⼀个抽屉有⾄少两个苹果,即⾄少有两⼈的⽣⽇相同.【篇⼆】【例 2】三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩. 【解析】⽅法⼀: 情况⼀:这三个⼩朋友,可能全部是男,那么必有两个⼩朋友都是男孩的说法是正确的; 情况⼆:这三个⼩朋友,可能全部是⼥,那么必有两个⼩朋友都是⼥孩的说法是正确的; 情况三:这三个⼩朋友,可能其中男⼥那么必有两个⼩朋友都是⼥孩说法是正确的; 情况四:这三个⼩朋友,可能其中男⼥,那么必有两个⼩朋友都是男孩的说法是正确的.所以,三个⼩朋友在⼀起玩,其中必有两个⼩朋友都是男孩或者都是⼥孩的说法是正确的; ⽅法⼆:三个⼩朋友只有两种性别,所以⾄少有两个⼈的性别是相同的,所以必有两个⼩朋友都是男孩或者都是⼥孩.【篇三】【例 3】“六⼀”⼉童节,很多⼩朋友到公园游玩,在公园⾥他们各⾃遇到了许多熟⼈.试说明:在游园的⼩朋友中,⾄少有两个⼩朋友遇到的熟⼈数⽬相等. 【解析】假设共有个⼩朋友到公园游玩,我们把他们看作个“苹果”,再把每个⼩朋友遇到的熟⼈数⽬看作“抽屉”,那么,个⼩朋友每⼈遇到的熟⼈数⽬共有以下种可能:0,1,2,……,.其中0的意思是指这位⼩朋友没有遇到熟⼈;⽽每位⼩朋友最多遇见个熟⼈,所以共有个“抽屉”.下⾯分两种情况来讨论: (1)如果在这个⼩朋友中,有⼀些⼩朋友没有遇到任何熟⼈,这时其他⼩朋友最多只能遇上个熟⼈,这样熟⼈数⽬只有种可能:0,1,2,……,.这样,“苹果”数(个⼩朋友)超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. (2)如果在这个⼩朋友中,每位⼩朋友都⾄少遇到⼀个熟⼈,这样熟⼈数⽬只有种可能:1,2,3,……,.这时,“苹果”数(个⼩朋友)仍然超过“抽屉”数(种熟⼈数⽬),根据抽屉原理,⾄少有两个⼩朋友,他们遇到的熟⼈数⽬相等. 总之,不管这个⼩朋友各遇到多少熟⼈(包括没遇到熟⼈),必有两个⼩朋友遇到的熟⼈数⽬相等.。
小学奥数抽屉原理

小学奥数抽屉原理小学奥数是小学生学习数学的一项重要内容,其中抽屉原理是一个非常有趣且实用的数学概念。
抽屉原理是指如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉中至少有两个物品。
这个简单的原理在解决一些实际问题时非常有用,下面我们就来详细了解一下小学奥数中的抽屉原理。
首先,我们来看一个简单的例子。
假设有5个苹果和4个篮子,我们要把这些苹果放进篮子里,那么根据抽屉原理,至少有一个篮子里会有至少两个苹果。
这是因为5个苹果分别放入4个篮子,必然会有至少一个篮子里有两个或以上的苹果。
抽屉原理在解决实际问题时非常有用。
比如,在一个班级里,学生们的生日是随机分布的,如果班级有31个学生,那么根据抽屉原理,至少有两个学生会有相同的生日。
这是因为一年有365天,而学生的数量只有31个,必然会有至少两个学生生日在同一天。
除了生日问题,抽屉原理还可以应用在许多其它实际问题中。
比如在一副扑克牌中,如果抽出了5张牌,那么根据抽屉原理,至少会有一种花色的牌有两张或以上。
这是因为一副扑克牌只有4种花色,而抽出的牌有5张,必然会有至少一种花色的牌有两张或以上。
在小学奥数中,抽屉原理可以帮助学生更好地理解和解决一些问题。
通过抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力。
同时,抽屉原理也可以帮助学生更好地理解数学知识,为他们打下坚实的数学基础。
总之,抽屉原理是小学奥数中非常重要的一个概念,它不仅能够帮助学生更好地理解数学知识,还能够在解决实际问题时发挥重要作用。
通过学习抽屉原理,学生们可以培养逻辑思维能力,提高解决问题的能力,为将来的学习打下坚实的基础。
希望学生们能够认真学习抽屉原理,将其运用到实际生活中,发挥出更大的作用。
小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
奥数-18抽屉原理+答案

请你说明理由。
2. 一个旅行团在北京游玩 5 天,他们想去 6 个景点游玩,导游说你们至少有一天游 玩两个景点,请你说明理由。
二、 解题方法
抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣 的问题,许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使 问题得到解决。
1. 公式 苹果÷抽屉=商……余数 余数:① 余数=0,结论:至少有“商”个苹果在同一个抽屉里。 ② 余数>0,结论:至少有(商+1)个苹果在同一个抽屉里。
抽屉原理
一、 抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,至少有一个抽 屉里面至少放两个苹果。如果把 n+1 个物体放到 n 个抽屉中,那么至少有一个抽屉 中放着 2 个或更多的物体,我们称这种现象为抽屉原理。
抽屉原理可以推广为:如果有 m 个抽屉,有 k×m+r(0<r≤m)个元素那么至 少有一个抽屉中要放(k+1)个或更多的元素。通俗地说,如果元素的个数是抽屉个 数的 k 倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。
6. 四个连续的自然数分别被 3 除后,必有两个余数相同,请说明理由。
2
【例3】 一养鸽户有 10 只鸽笼,每天鸽子回家他都要数一数,并作记录。他发现 每天都会出现 3 只鸽子住同一个鸽笼,请问:他至少养了几只鸽子?
解析:本题需要求“苹果”的数量,需要反用抽屉原理,并结合最“坏”情况。 最坏的情况是每个笼子都有 2 只鸽子,出现 3 只鸽子住同一个鸽笼,是因为比这些 鸽子还至少多 1 只鸽子,所以至少需要养 21 只鸽子。
小学奥数--抽屉原理

⼩学奥数--抽屉原理⼩学奥数--抽屉原理抽屉原理(⼀)解题要点:要从最不利情况考虑,准确地建⽴抽屉和确定元素的总个数(如果将5个苹果放到3个抽屉中去,那么不管怎么放,⾄少有⼀个抽屉中放的苹果不少于2个。
道理很简单,如果每个抽屉中放的苹果都少于2个,即放1个或不放,那么3个抽屉中放的苹果的总数将少于或等于3,这与有5个苹果的已知条件相⽭盾,因此⾄少有⼀个抽屉中放的苹果不少于2个。
同样,有5只鸽⼦飞进4个鸽笼⾥,那么⼀定有⼀个鸽笼⾄少飞进了2只鸽⼦。
以上两个简单的例⼦所体现的数学原理就是“抽屉原理”,也叫“鸽笼原理”。
抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么⾄少有⼀个抽屉中的物品不少于2件。
说明这个原理是不难的。
假定这n个抽屉中,每⼀个抽屉内的物品都不到2件,那么每⼀个抽屉中的物品或者是⼀件,或者没有。
这样,n个抽屉中所放物品的总数就不会超过n件,这与有多于n件物品的假设相⽭盾,所以前⾯假定“这n 个抽屉中,每⼀个抽屉内的物品都不到2件”不能成⽴,从⽽抽屉原理1成⽴。
从最不利原则也可以说明抽屉原理1。
为了使抽屉中的物品不少于2件,最不利的情况就是n个抽屉中每个都放⼊1件物品,共放⼊n 件物品,此时再放⼊1件物品,⽆论放⼊哪个抽屉,都⾄少有1个抽屉不少于2件物品。
这就说明了抽屉原理1。
例1 某幼⼉园有367名1996年出⽣的⼩朋友,是否有⽣⽇相同的⼩朋友,分析与解:1996年是闰年,这年应有366天。
把366天看作366个抽屉,将367名⼩朋友看作367个物品。
这样,把367个物品放进366个抽屉⾥,⾄少有⼀个抽屉⾥不⽌放⼀个物品。
因此⾄少有2名⼩朋友的⽣⽇相同。
例2在任意的四个⾃然数中,是否其中必有两个数,它们的差能被3整除, 分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
我们将余数的这三种情形看成是三个“抽屉”。
⼀个整数除以3的余数属于哪种情形,就将此整数放在那个“抽屉”⾥。
2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。
这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。
抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。
这个原理的证明也很简单。
假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。
但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。
抽屉原理的应用非常广泛,包括组合数学、概率论等领域。
在小学奥数中,它通常用于解决物品分配、排列组合等问题。
以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。
这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。
2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。
这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。
3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。
这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。
总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。
这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。
所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。
希望以上内容对您有所帮助。
五年级奥数第12讲:抽屉原理-课件

例题二
芭啦啦综合教育学校五年级有32名同学是在五月份出生 的,那么,其中至少有几名同学的生日在同一天?
抽屉原理1:将多 于n件的物品任意 放到n个抽屉里, 那么至少有一个 抽屉里的物品不 少于2件。
31天
32÷31=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学的生日在同一天。
练习二
答:如果每个抽屉里都放一个苹果,那么6 个抽屉就有6个苹果,实际上有7个苹果, 说明至少有一个抽屉里至少有2个苹果。
练习一
5只鸽子飞进4个鸽笼,那么一定有一个鸽笼里至少飞进 2只鸽子,为什么?
5÷4=1(只)……1(只)
答:每个鸽笼里飞进一只鸽子,4个鸽笼就有4只鸽子, 实际上有5只鸽子,说明至少有1个鸽笼里至少飞 进2只。
共9种
1个足球1个排球、1个足球1个篮球、1个排球1个篮球
66÷9=7(名)……3(名) 7+1=8(名)
答:至少有8名同学所拿的球种类是完全相同的。
练习五(选做)
芭啦啦综合教育学校组织夏令营活动,游览北京颐和园、 故宫和长城三个景点,共有200名同学参加。规定每人至少去 1处,至多去2处,那么至少有几人游览的地方完全相同?
选
择
在
夏
我们,还在路上……
某兴趣小组有13名同学,其中至少有几名同学是同一个 星座的?
12个
13÷12=1(名)……1 (名) 1+1=2(名)
答:至少有2名同学是同一星座的。
小结
抽屉原理1:将多于n件的物品任意放到n个 抽屉里,那么至少有一个抽屉里的物品不少于 2件。
例题三
有红、黄、蓝、白四色小球各10个,混合放在一个暗盒 里,从中摸球,一次至少摸出几个,才能保证有3个小球是同 色的?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数-抽屉原理(一)先了解一下抽屉原理的概念,然后结合一些较复杂的抽屉原理问题,讨论如何构造抽屉。
抽屉原理1将多于n件物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。
抽屉原理2将多于m×n件物品任意放到到n个抽屉中,那么至少有一个抽屉中的物品不少于(m+1)件。
理解抽屉原理要注意几点:(1)抽屉原理是讨论物品与抽屉的关系,要求物品数比抽屉数或抽屉数的倍数多,至于多多少,这倒无妨。
(2)“任意放”的意思是不限制把物品放进抽屉里的方法,不规定每个抽屉中都要放物品,即有些抽屉可以是空的,也不限制每个抽屉放物品的个数。
(3)抽屉原理只能用来解决存在性问题,“至少有一个”的意思就是存在,满足要求的抽屉可能有多个,但这里只需保证存在一个达到要求的抽屉就够了。
(4)将a件物品放入n个抽屉中,如果a÷n= m……b,其中b是自然数,那么由抽屉原理2就可得到,至少有一个抽屉中的物品数不少于(m+1)件。
例1 五年级有47名学生参加一次数学竞赛,成绩都是整数,满分是100分。
已知3名学生的成绩在60分以下,其余学生的成绩均在75~95分之间。
问:至少有几名学生的成绩相同?分析与解:关键是构造合适的抽屉。
既然是问“至少有几名学生的成绩相同”,说明应以成绩为抽屉,学生为物品。
除3名成绩在60分以下的学生外,其余成绩均在75~95分之间,75~95共有21个不同分数,将这21个分数作为21个抽屉,把47-3=44(个)学生作为物品。
例2 夏令营组织2000名营员活动,其中有爬山、参观博物馆和到海滩游玩三个项目。
规定每人必须参加一项或两项活动。
那么至少有几名营员参加的活动项目完全相同?分析与解:本题的抽屉不是那么明显,因为问的是“至少有几名营员参加的活动项目完全相同”,所以应该把活动项目当成抽屉,营员当成物品。
营员数已经有了,现在的问题是应当搞清有多少个抽屉。
例3把125本书分给五(2)班学生,如果其中至少有1人分到至少4本书,那么,这个班最多有多少人?分析与解:这道题一下子不容易理解,我们将它变变形式。
因为是把书分给学生,所以学生是抽屉,书是物品。
本题可以变为:125件物品放入若干个抽屉,无论怎样放,至少有一个抽屉中放有4件物品,求最多有几个抽屉。
这个问题的条件与结论与抽屉原理2正好相反,所以反着用抽屉原理2即可。
例4五(1)班张老师在一次数学课上出了两道题,规定每道题做对得2分,没做得1分,做错得0分。
张老师说:可以肯定全班同学中至少有6名学生各题的得分都相同。
那么,这个班最少有多少人?分析与解:由“至少有6名学生各题的得分都相同”看出,应该以各题得分情况为抽屉,学生为物品。
例3与例4尽管都是求学生人数,但因为问题不同,所以构造的抽屉也不同,例3中将学生作为抽屉,例4中则将学生作为物品。
可见利用抽屉原理解题,应根据问题灵活构造抽屉。
一般地,当问“最少有多少××”时,应将××作为物品,如例1,2,4;当问“最多有多少××时,应将××作为抽屉,如例3。
例5任意将若干个小朋友分为五组。
证明:一定有这样的两组,两组中的男孩总数与女孩总数都是偶数。
分析与解:因为一组中的男孩人数与女孩人数的奇偶性只有下面四种情况:(奇,奇),(奇,偶),(偶,奇),(偶,偶)。
练习1.某单位购进92箱桔子,每箱至少110个,至多138个,现将桔子数相同的作为一组,箱子数最多的一组至少有几箱?2.幼儿园小朋友分200块饼干,无论怎样分都有人至少分到8块饼干,这群小朋友至多有多少名?3.有若干堆分币,每堆分币中没有币值相同的分币。
任意挑选多少堆分币,才能保证一定有两堆分币的组成是相同的?4.图书馆有甲、乙、丙、丁四类图书,规定每个同学最多可以借两本不同类的图书,至少有多少个同学借书,才能保证有两个人所借的图书类别相同?5.我国人口已超过12亿,如果人均寿命不超过75岁,那么我国至少有两个人出生的时间相差不会超过2秒钟。
这个结论是否正确?6.红光小学五(2)班选两名班长。
投票时,每个同学只能从4名候选人中挑选2名。
这个班至少应有多少个同学,才能保证有8个或8个以上的同学投了相同的2名候选人的票?7.把135块饼干分给16个小朋友,若每个小朋友至少要分到一块饼干,那么不管怎样分,一定会有两个小朋友得到的饼干数目相同。
为什么?小学奥数-抽屉原理(二)专题简析:在抽屉原理的第(2)条原则中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
例题1:幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?把120个小朋友看做是120个抽屉,把玩具件数看做是元素。
则364=120×3+4,4<120。
根据抽屉原理的第(2)条规则:如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
可知至少有一个抽屉里有3+1=4个元素,即有人会得到4件或4件以上的玩具。
练习1:1、一个幼儿园大班有40个小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16枝铅笔放入三个笔盒里,至少有一个笔盒里的笔不少于6枝。
这是为什么?3、把25个球最多放在几个盒子里,才能至少有一个盒子里有7个球?例题2:布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?把4种不同颜色看做4个抽屉,把布袋中的球看做元素。
根据抽屉原理第(2)条,要使其中一个抽屉里至少有3个颜色一样的球,那么取出的球的个数应比抽屉个数的2倍多1。
即2×4+1=9(个)球。
列算式为(3—1)×4+1=9(个)练习2:1、布袋里有组都多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白木块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼睛去容器中取出木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1—13点各有4张,还有两张王的扑克牌。
至少要取出几张牌,才能保证其中必有4张牌的点数相同?例题3:某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?参加课外兴趣小组的学生共分四种情况,只参加一个组的有4种类型,只参加两个小组的有6个类型,只参加三个组的有4种类型,参加四个组的有1种类型。
把4+6+4+1=15(种)类型看做15个抽屉,把46个学生放入这些抽屉,因为46=3×15+1,所以班级中至少有4名学生参加的项目完全相同。
练习3:1、某班有37个学生,他们都订阅了《小主人报》、《少年文艺》、《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几位同学订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每个学生最多可以参加两个(可以不参加)。
某班有52名同学,问至少有几名同学参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个,问:在31个搬运者中至少有几人搬运的球完全相同?例题4:从1至30中,3的倍数有30÷3=10个,不是3的倍数的数有30—10=20个,至少要取出20+1=21个不同的数才能保证其中一定有一个数是3的倍数。
练习4:1、在1,2,3,……49,50中,至少要取出多少个不同的数,才能保证其中一定有一个数能被5整除?2、从1至120中,至少要取出几个不同的数才能保证其中一定有一个数是4的倍数?3、从1至36中,最多可以取出几个数,使得这些数中没有两数的差是5的倍数?例题5:将400张卡片分给若干名同学,每人都能分到,但都不能超过11张,试证明:找少有七名同学得到的卡片的张数相同。
这题需要灵活运用抽屉原理。
将分得1,2,3,……,11张可片看做11个抽屉,把同学人数看做元素,如果每个抽屉都有一个元素,则需1+2+3+……+10+11=66(张)卡片。
而400÷66=6……4(张),即每个周体都有6个元素,还余下4张卡片没分掉。
而这4张卡片无论怎么分,都会使得某一个抽屉至少有7个元素,所以至少有7名同学得到的卡片的张数相同。
练习5:1、把280个桃分给若干只猴子,每只猴子不超过10个。
证明:无论怎样分,至少有6只猴子得到的桃一样多。
2、把61颗棋子放在若干个格子里,每个格子最多可以放5颗棋子。
证明:至少有5个格子中的棋子数目相同。
3、汽车8小时行了310千米,已知汽车第一小时行了25千米,最后一小时行了45千米。
证明:一定存在连续的两小时,在这两小时内汽车至少行了80千米。
习题1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球?2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?3.有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。
试证明:一定有两个运动员积分相同。
5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?7.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?9.从1,3,5,……,99中,至少选出多少个数,其中必有两个数的和是100。
10.某旅游车上有47名乘客,每位乘客都只带有一种水果。
如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。
11.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有多少人得分相同?12.2006名营员去游览长城,颐和园,天坛。