线性代数正定二次型课件

合集下载

5.4_正定二次型

5.4_正定二次型

d f 正定的充要条件为: i 0, i 1,2,, n
(3) 非退化线性替换不改变二次型的正定性.
AX 证明:设正定二次型 f ( x1, x2 ,, xn ) X
经过非退化线性替换X=CY化成:
f ( x1, x2 ,, xn ) Y (CAC )Y g ( y1, y2 ,, yn )
§5.4 正定二次型
一 、正定二次型
1、定义:实二次型 f ( x1, x2 ,, xn )若对任意一组不全为零 的实数c1,c2,…cn,都有:
f (c1, c2 ,, cn ) 0
则称f 为正定二次型。
2 如,二次型 f ( x1 , x2 ,, xn ) xi 是正定的; i 1 n
又由于C可逆, 0 0 ,所以 X 0 0, Y 即 c1 , c2 ,, cn不全为0。
g (k1, k2 ,, kn ) f (c1, c2 ,, cn ) 0
g ( y1, y2 ,, yn )正定.
反之,实二次型 g ( y1, y2 ,, yn ) 可经过非退化线性替换
k k
x1 x ( x1 , x2 ,, xk ) A(1,2,, k ) 2 x k
i 1 j 1
对任意一不全为零的数 c1 , c2 ,, ck , 有:
f k (c1, c2 ,, ck ) f (c1, c2 ,, ck ,0,,0) 0
Y C -1 X
变到实二次型:f ( x1, x2 ,, xn ),
同理,若g正定,则f正定。 所以,非退化线性替换不改变二次型的正定性。
r (4) n元实二次型 f ( x1, x2 ,, xn ) 正定的充要条件为: ( f ) p n

正定二次型

正定二次型

正定二次型一、定义正定二次型是线性代数中一个重要的概念。

在矩阵理论中,正定二次型是正定矩阵基于向量内积的一种自然推广。

正定二次型在数学分析、优化问题以及统计学中有着广泛的应用。

设A是一个n阶方阵,A是一个n维列向量,则称二次型A(A)=AAAA为矩阵A的对应二次型。

如果对于任意的非零向量A,都有A(A)>0,则称二次型A(A)为正定二次型。

二、性质正定二次型具有以下性质:1. 正定二次型的矩阵A一定是对称矩阵。

这是因为对称矩阵的转置等于自身,所以对任意的A,都有AAAA=AA(AAA)=AAAA。

2. 正定二次型的特征值全为正数。

设A是正定二次型的矩阵,对于A 的任意一个特征向量A,我们有AA=AA。

由于正定二次型对于任意非零向量A的取值都大于零,所以对于特征向量A,有AAAA>0,这等价于AA(AA)>0,即A>0。

因此,正定二次型的特征值全为正数。

3. 正定二次型的标准型为A₁²+A₂²+⋯+AA²。

正定二次型可以通过配方法化简为标准型。

化简的过程就是通过正交变换将原二次型变为标准型。

正交变换保持向量的长度不变,所以正定二次型的标准型为A₁²+A₂²+⋯+AA²。

4. 正定二次型的零空间只包含零向量。

设二次型A(A)=AAAA是正定二次型,如果A(A)=0,那么由于A≠0,所以AAAA=0,根据正定二次型的定义,A=0。

三、应用正定二次型在数学的许多领域有着广泛的应用。

1. 凸优化凸优化是数学中的一个重要分支,而正定二次型在凸优化问题中扮演着重要的角色。

对于一个凸优化问题,如果目标函数是一个正定二次型,那么这个优化问题就是一个凸优化问题。

通过对正定二次型进行分析,我们可以得到其极小点,并进一步解决凸优化问题。

2. 统计学在统计学中,正定二次型常常出现在协方差矩阵、精确度矩阵等概念中。

协方差矩阵描述了多个变量之间的关系,而正定二次型可以通过协方差矩阵定义一个正态分布的概率密度函数。

第6章 第4讲 正定二次型 课件(共26张PPT)- 《概率论与数理统计(慕课版)》同步教学(人民邮

第6章 第4讲 正定二次型 课件(共26张PPT)- 《概率论与数理统计(慕课版)》同步教学(人民邮

之差为2r – m为符号差.
3
01
正定二次型的定义
惯性定理
任意二次型 X T AX 都可通过非退化线性变换化为规范形
z12 z22
z 2p z 2p 1
z 2p q,
其中 p 为正惯性指数,q 为负惯性指数,p + q为二次型的秩
且 p 、q 由二次型唯一确定,即规范情势唯一的.
霍尔维茨定理
例5
方程3x 2 5 y 2 5z 2 4 xy 4 xz 10 yz 1表示何种二次曲面.
2
2
2
f
x
,
y
,
z

解 因为
3x 5 y 5z 4 xy 4 xz 10 yz
是一个二次型,
3 2 -2
其矩阵A= 2 5 -5 ,由 A - E 0 得
因为 3 2 3 0,
所以A不是正定矩阵,从而二次型不是正定二次型.
10
01
正定二次型的定义
例3
已知A为n阶正定矩阵,E为n阶单位矩阵,证明 | A E | 1.

设A的特征值为 1 , 2 ,
, n, 由A为正定矩阵知
1 0, 2 0,
A + E 的特征值为 1 1, 2 1,
4
01
正定二次型的定义
定义6.3
对应矩阵A 称为正定矩阵.
实二次型 f ( x1 , x2 ,
恒有 f (c1 , c2 ,
, xn ) X T AX,若对任意 (c1 , c2 ,
, cn ) 0,则称 f ( x1 , x2 ,
, cn )T 0,

高等代数课件 第三节 正定二次型

高等代数课件 第三节 正定二次型
第三节 正定二次型
1 定义 2 性质 3 练习
定义: 设实二次型f(x) = xTAx 满足对Rn中任何 非零向量x, 有f(x) > 0, 则称之为正定二 次型, 称A为正定矩阵. 若对Rn中任何非零向量x, 有f(x) < 0, 则 称之为负定二次型, 称A为负定矩阵.
注1. 正定(负定)矩阵必为实对称矩阵.
命题2. 相合矩阵的正定性也相同.
命题3. 同阶正定矩阵的和仍为正定矩阵. 设A,B正定, 则x0, xTAx>0, xTBx>0, (A+B)T=AT+BT=A+B, A+B为实对称的
x0, xT(A+B)x= xTAx+xTBx>0 A+B正定
定理. 设A为n阶实对称阵, 则下列命题等价:
(1) A是正定矩阵;
e1 e2 T Ae1 e2 a d c d 0 b c 0
•已知 A, aE A 是正定矩阵, 且A满足条件 A2 3A 4E O,则实数a满足条件 a > 1.
= 4,1 =1 a+>0 a+1>0
•若A
1 b
a
c
是正交矩阵,
1 b2 1
a
2
c2
1
则a,b,c满足条件 a = b = 0, c = 1.
注2. 对任何x0, x0 xi 0 ,并不是 xi 0
注3. f(x)=a11x12 + a22x22 + …+annxn2 正定 aii>0, i=1,2,…,n.
命题1. 可逆线性变换不改变二次型的正定性. x0, f(x) = xTAx >0, x=Py, P可逆 y=P1x 0, g(y)= yT(PTAP)y = xTAx >0

线性代数第5章课件:二次型

线性代数第5章课件:二次型

且有 f 9 y12 18 y22 18 y32 .
例3 求一个正交变换x Py,把二次型
f 2 x1 x2 2 x1 x3 2 x1 x4 2 x2 x3 2 x2 x4 2 x3 x4
化为标准形.

0 1 1 1
二次型的矩阵为
A
1 1
0 1 1 0
1 1
,
1 1 1 0
样进行,直到都配成平方项为止,经过非退化线
性变换,就得到标准形; 2. 若二次型中不含有平方项,但是 aij 0
(i j),则先作可逆线性变换
xi xj
yi yi
yj yj
k 1,2,,n且k i, j
xk yk 化二次型为含有平方项的二次型,然后再按1中方
法配方.
例1 化二次型
0 0 1
例2 化二次型
f 2 x1 x2 2 x1 x3 6 x2 x3 成 标 准 形, 并 求 所 用 的 变 换 矩 阵.
n
aij xi x j .
i , j1
2.用矩阵表示
f a11 x12 a12 x1 x2 a1n x1 xn a21 x2 x1 a22 x22 a2n x2 xn an1 xn x1 an2 xn x2 ann xn2
x1(a11 x1 a12 x2 a1n xn )
第5章 二次型
5.1 二次型的概念 5.2 化二次型为标准形 5.3 正定二次型
5.1 二次型的概念
一、二次型的定义
定义1 含有n个变量x1 , x2 ,, xn的二次齐次函数
f x1 , x2 ,, xn a11 x12 a22 x22 ann xn2
2a12 x1 x2 2a13 x1 x3 2an1,n xn1 xn 称为二次型.

正定二次型及正定矩阵.ppt

正定二次型及正定矩阵.ppt
1 4 为半正定矩阵 6 0
2 2 ( 3) f x1 , x 2 x1 3 x 2 为负定二次型
1 为负定矩阵。 3 2 2 (4) f x1 , x2 , x3 x1 3 x2 为半负定二次型
交矩阵P,使得P T AP , 其中 diag(1 , 2 , , n )
对于任意非零向量 x x T Ax x T ( P 1 )T P 1 x ( P 1 x )T ( P 1 x )
T 设y P 1 x (y1 , y2 ,, yn) , 则y为非零向量
1
1
2
1
E n
设C PQ, 则C T AC E , 所以A与单位阵合同。
若A与单位阵合同,则存在可逆矩阵C,使A=
CTEC= CTC,则对于非零向量x xT Ax xT C T Cx (Cx )T (Cx )
C可逆,x 0, 故Cx 0,则(Cx )T (Cx ) 0 所以f正定。
1 3 为半负定矩阵。 0 2 2 (5) f x1 , x 2 x1 3 x2 为不定二次型
1 为不定矩阵。 3
二、正(负)定二次型的判别
准则1 对称矩阵A为正定的充分必要条件是: A的 特征值全为正. 证明 必要性 假设i ( i 1,2 , n)为A的特征值, i 为对应于i的
第六章
二次型
中南财经政法大学信息系
一、正(负)定二次型的概念
定义6.6 具有实对称矩阵A的n元二次型为
f X X AX
T
x1 x 1) 如果对于任意的非零向量 X= 2 ,都有 xn

正定二次型和正定矩阵.ppt

正定二次型和正定矩阵.ppt
特征值都是负数.
6
6 2 2 例 判断下列矩阵是否为正定矩阵 A 2 5 0 . 2 0 7 解
E A 6
2 2 2 2
6
2
2 0 7
5
0
0 2 7 2
5
0
7
( 6)( 5)( 7) 4( 5) 4( 7) ( 6)( 5)( 7) 8 48 ( 6)( 12 35) 8( 6)
15
定理 n阶实对称矩阵A负定的充分必要条件是它与
负单位矩阵
En
合同.
16
为了叙述下一个正定矩阵充分必要条件,我 们引进
定义 给定实对称矩阵 A (aij )nn , 则其前s行前s列元素组成的行列式 As | aij |ss , s 1, , n 称为A的顺序主子式.即
a11 A1 (a11 ), A2 a21 a11 a12 , A3 a21 a22 a 31 a12 a22 a32 a13 a23 , a33 ,
2

f ( x1 x2 ) x x 2 x1 x 2 x 正定二次型,
2 2 2 2 1 2 2
1 1 Af 正定矩阵; 1 2 2 2 2 g ( x1 x2 )2 x2 x1 2 x1 x 2 x2 负定二次型, 1 1 Ag 负定矩阵; 1 2 1 0 h x x 不定二次型.Ah 不定矩阵. 0 1
X P PX ( PX ) PX PX
T T T 2
0.
设A正定,则A合同于单位矩阵,即存在可逆矩 阵,使得A=PTEP=PTP.

第四章 二次型和正定矩阵

第四章 二次型和正定矩阵

• 求特征向量
求解方法:将下列两式联立求解
( A i I )x 0

xx 1


求矩阵
A


2 2
2 1
特征向量的规范正交向量组。
已知A的两特征值为1 0 和2 3
1 0
由(A 1I )x 0 得到 Ax 0

2 2
2 1

1 1 3
故 A为半负定
• 定义 关于问题2,我们有如下定义:
(i)矩阵 A为正定的,如果对于所有非零实向量x ,xAx 0 (ii)矩阵A 为半正定的,如果对于所有实向量x ,xAx 0 (iii)矩阵 A为负定的,如果对于所有非零实向量 x ,xAx 0 (iv)矩阵 A为半负定的,如果对于所有实向量x ,xAx 0
i1 j1
a21x2 x1 a22 x22 L a2n x2 xn an1xn x1 an2 xn x2 L ann xn2
其中 x1, x2 ,K , xn代表变量而aij 为常数 矩阵表示法:
xAx
常要求 A 为对称矩阵。
•例
二次型
8x12 3x1x2 6x1x3 4x22 5x2 x3 2x32
B I C1AC C1C
C1( A I )C 1 AI C
C
AI
因此B I 0 和 AI 0是同一方程。
• 幂等矩阵 定理 幂等矩阵的特征值为1或0。 证明 令A为幂等矩阵,考虑
Ax x
A2x Ax 2x
上下两式想减可得
2 2,A
2 5
0 1(1)33 1
2 1(5 4) 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档