浅谈功率分析仪原理及应用

浅谈功率分析仪原理及应用

浅谈功率分析仪原理及应用

?功率分析仪原理

?

?

?传统的有功功率表通常针对工频或中频正弦波测量设计,因此只能满足正弦波电路的有功功率测量,在波形畸变较小的时候,可以获取与标称测量精度,当波形畸变增大时,测量误差增大,甚至丧失正常的测量功能。

?

?

?功率分析仪是有功功率表的功能升级产品,一般具备下述功能:

?

?

?1、具备功率表的基本功能:电压、电流真有效值和总有功功率的测量;

?

?2、对功率表的基本功能的适用性进行扩展,使其能够测量正弦电路和非正弦电路的电压、电流真有效值和总有功功率。一般要求适应较宽的带宽和较宽的基波频率范围;

?

?

?3、能够对非正弦电压、电流及功率包含的详细信息进入定性和定量的分析。

全自动生化分析仪操作技巧规章

BS-400全自动生化分析仪标准操作规程 一、BS-400全自动生化分析仪标准操作规程(开/关机程序) 1 开机 1.1 依次打开分析部主电源、分析部电源、操作部显示器电源、操作部主机电源、打印机电 源; 1.2 开启操作部主机后会自动启动操作软件,在对话框中输入用户名与密码; 1.2.1若只关闭分析部电源保持试剂盘制冷,则要依次打开分析部电源、操作部显示器电 源、操作部主机电源、打印机电源; 1.2.2若使用仪器睡眠功能,则只需在对话框中输入用户名与密码,重新登陆; 2 分析前准备 2.1 观察各压力表是否在绿色标线之内; 2.2 检查蒸馏水、去离子水是否足够、废液管道有否堵塞,废液桶是否清空; 2.3 检查高浓度清洗罐是否有足够高浓度清洗液; 2.4 确认试剂盘的D1号位置已放置碱清洗液,D2号位置已放置酸清洗液,W号位 置已放置蒸馏水、去离子水。 2.5 确认样本盘的U号位置已放置尿液稀释液(ISE专用稀释液),D1位置已放置ISE 清洗液(如选配有ISE模块),D2位置已放置酸清洗液,D3位置已放置碱清洗 液,W位置已放置足够的蒸馏水、去离子水。 2.6 对于选配ISE模块的仪器,确认ISE试剂包已安装且试剂存量充足。 2.7 检查样本注射器和试剂注射器是否漏液以及是否有气泡。 2.8 检查样本针,确认无污物,无弯折。如有污物,清洗样本针。如有弯折,更换样本针。 2.9 检查试剂针,确认无污物,无弯折。如有污物,清洗样本针。如有弯折,更换样本针。 2.10检查样本搅拌杆与试剂搅拌杆,确认搅拌杆表面无污物,杆无弯折。如有污物,清洗搅拌 杆。 3 关机 3.1 仪器处于“空闲”状态时,可以点击关机按提示选择“退出”或“紧急退出”进行关机 操作。依次关闭打印机电源,操作部主机电源,操作部显示器电源,分析部电源,分析 部主电源。此时需要取走试剂仓内试剂冰箱保存。 3.2 如保留试剂制冷功能,则不需要关闭分析部主电源。 3.3 如需切换不同操作者,仪器处于“空闲”状态时,可点击关机后选择注销后重齐以新用 户登陆。 3.4 如需进行休眠功能,仪器处于“空闲”状态时,可点击关机后选择休眠,仪器进行休眠 状态。 3.5 清理取走样本盘所有标本。 二、BS-400全自动生化分析仪标准操作规程分析参数设置程序 1 点击主界面下参数二项目设置按钮,进行必须参数设置; 1.1 |项目设置;;

水质分析仪的工作原理及特点

水质分析仪的工作原理及特点 一、前言 随着近年来我国经济的快速发展,城市的工业和生活垃圾大量增加,目前对垃圾进行处理的主要方法是卫生填埋,而进行填埋都是露天作业,垃圾经压实后,随着垃圾中生物的分解及遇到雨雪天气时,雨水和雪水渗入填埋区,会产生垃圾渗滤液。渗滤液属高浓度有机废水,浓度值变化范围大,其中含碳氢化合物、硝酸盐、硫酸盐及微量铜、镉、铅等重金属离子,细菌指标很高,如不进行处理直接排入水体,将严重污染当地的水环境。为了保护水环境,必须加强对污水排放的监测。检测点的设计和检测仪表(主要是水质分析仪)的质量对水环境监测起着至关重要的作用,本文结合某一污水处理厂的设计谈谈这方面体会。 二、水质分析仪的工作原理 污水处理厂使用的分析仪有两种:pH计和溶氧分析仪。 1、pH计的工作原理 水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10-7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。 pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。该厂采用了CPS11型pH传感器和CPM151型pH 变送器。具体结构如图1所示,测量电极上有特殊的对pH反应灵敏的玻璃探头,

迈瑞BSBS全自动生化分析仪操作

BS-330/BS-350全自动生化分析仪标准作业程序 1 开机前检查 1 检查电源,确认电源有电并且能够提供正确的电压。 2 检查分析部、操作部和输出部的通讯线和电源线,确认已连接且没有松动。 3 检查打印纸是否足够。 4 确认试剂盘的39号位置已放置足够的强化清洗液,40号位置已放置足够的蒸馏水。如果选配了 ISE模块,检查37号位置是否放置了ISE清洗液,38号位置放置了尿液稀释液。 5 检查去离子水的连接、废液的连接、注射器的连接是否漏液。 6 检查加样针是否弯曲、有污物、挂液。 7 检查搅拌看杆是否弯曲、有污物。 8 检查去离子水桶是否有足够的去离子水。 9 检查废液桶是否清空。 2 开机 系统通上电后,按下列顺序依次打开电源:分析部主电源、分析部电源、操作部显示器电源、操作部主机电源、打印机电源。 3 启动控制软件 登陆Windows操作系统后,双击桌面上操作软件的快捷图标,或从【开始】处选择操作软件程序,启动操作软件。 ?注意:开机后观察加样针的清洗水流、水量是否正常,搅拌杆的旋转、清洗水量是否正常。 4 设置参数 申请测试前,必须至少设置完成下列参数: √点击“设置”→“系统设置”,设置系统参数。 √点击“设置”→“医院设置”,设置医院和医生信息。 √点击“定标”→“定标液设置”,设置定标液信息。 √点击“参数”→“项目设置”,设置项目参数、参考范围、定标规则、质控规则。 √点击“试剂,”设置试剂信息。 √点击“设置”→“交叉污染”,设置交叉污染信息。

√点击“设置”→“打印设置”,设置打印信息。 5 放置试剂 在试剂盘上设定的试剂位放置相应的试剂,并打开试剂瓶盖。 6 试剂空白 需要时,进行试剂空白测试。 点击“定标”→“定标申请”,申请试剂空白。 点击“开始测试”,运行试剂空白。 点击“定标”→“结果查看”,查看试剂空白结果。 7 定标 需要时,进行定标测试。 ?注意:改变试剂盒批号、更改测试参数、更换光源及其它原因等导致测定条件改变,需要新定标。 点击“定标”→“定标申请”,申请定标。 点击“开始测试”,运行定标测试。 点击“定标”→“结果查看”,查看定标结果。 8 质控 点击“质控申请”,申请质控。 申请质控后,在样本盘上设定的位置放置相应的质控液。 点击“开始测试”,运行质控测试。 点击“质控”→“实时质控”/“日内质控”/“日间质控”,查看质控结果。 9 样本分析 点击“样本申请”,申请样本测试。 ?注意:急诊申请的操作与普通样本的操作基本相同,不同这处在于申请时选中“急诊”。 申请样本后,在样本盘上设定的位置放置相应的样本。 点击“开始测试”,运行样本测试。 点击“历史结果”或“当前结果”,查看样本测试结果。 10 编辑样本结果 需要时,编辑样本结果。

简易频谱分析仪

简易频谱分析仪[ 2005年电子大赛二等奖] 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号 (),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图

全自动生化分析仪的原理、构成及使用

全自动生化分析仪的原理、构成及使用 全自动生化分析仪的原理、构成及使用 一、全自动生化分析仪的功能及特点 全自动生化分析仪是将生化分析中的取样、加试剂、混合、保温、比色、结果计算、书写报告等步骤的部分或全部由模仿手工操作的仪器来完成。它可进行定时法、连续监测法等各种反应类型的分析测定。除了一般的生化项目测定外,有的还可进行激素、免疫球蛋白、血药浓度等特殊化合物的测定以及酶免疫、荧光免疫等分析方法的应用。它具有快速、简便、灵敏、准确、标准化、微量等特点。 二、全自动生化分析仪的分类 全自动生化分析仪有多种分类方法,最常用的是按其反应装置的结构进行分类。按此法可将全自动生化分析仪分为流动式和分立式两大类。所谓流动式全自动生化分析仪是指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。这是第一代全自动生化分析仪。过去说得多少通道的生化分析仪指的就是这一类。存在较严重的交叉污染,结果不太准确,现已淘汰。 分立式全自动生化分析仪与流动式的主要差别是每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成的,不易出现较差污染,结果可靠。 三、全自动生化分析仪的构成 因为全自动生化分析仪是模仿手工操作的过程,所以无论哪一类的全自动生化分析仪,其结构组成均与手工操作的一些器械设备相似,一般可有以下几个部分组成: 1、样品器:放置待测样本、标准品、质控液、空白液和对照液等。 2、取样装置:包括稀释器、取样探针和输送样品和试剂的管道等。 3、反应池或反应管道:一般起比色皿(管)的作用。 4、保温器:为化学反应提供恒定的温度。 5、检测器:如比色计、分光光度计、荧光分光光度计、火焰光度计、电化学测定仪等。不同仪器配置不同。 6、微处理器:是分析仪的电脑部分,又叫程序控制器。控制仪器所有的动作和功能,使用者可通过键盘与仪器“对话”,同时电脑还能接受从各部件反馈来的信号,并作出相应的反应,对异常情况发出一定的指示信号。分析软件和分析结果一般贮存在磁盘中,可共查询。 7、打印机:可绘制反应动态曲线和打印检验报告单等。 8、功能监测器:显示屏就是其中一部分,可查看反应状态、人机“对话”的情况、当前仪器工作状态、分析结果等。 四、流动式全自动生化分析仪 流动式全自动生化分析仪又可分为空气分段系统和非分段系统。前者是流动式分析仪中最典型的一种。 (一)空气分段系统 这种分析仪的特点是通过比例定量泵挤压弹性样品管、空气管和试剂管(通称“泵管”),将样品依次连续地吸入并沿样品管输送,另一方面由空气管吸入的气泡将由同样原理吸入并在试剂管道中连续流动的试剂分成均匀的节段,样品流和试剂流在连续向前流动的过程中相遇、混合、透吸(必要时)、保温、反应及被测定。整个分析过程是液流在管道中连续流动的过程中完成的。 (二)非分段系统 非分段系统是靠试剂空白或缓冲液来间隔每个样品的反应液,这样,在管道中连续流动的液体不被分段。非分段系统可再分为流动注入系统和间隙系统。 1、流动注入系统:该系统的组成与空气分段系统相似,但某些结构和工作原理有所不同,空气分段系统是利用气泡分段来防止管道中各反应液在流动过程中的交叉污染,而流动注入系统则是通过将样品依次注入连续流动的试剂流管道中来达到防止交叉污染的目的的。

频谱分析仪的原理及应用

频谱分析仪的原理及应用 (远程互动方式) 一、实验目的: 1、熟悉远程电子实验系统客户端程序的操作,了解如何控制远地服务器主机,操作与其连接的电子综合实验板和PCI-1200数据采集卡,具体可参照实验操作说明。 2、了解FFT 快速傅立叶变换理论及数字式频谱分析仪的工作原理,同时了解信号波形的数字合成方法以及程控信号源的工作原理。 3、在客户端程序上进行远程实验操作,由程控信号源分别产生正弦波、方波、三角波等几种典型电压波形,并由数字频谱分析仪对这几种典型电压波形进行频谱分析,并对测量结果做记录。 二、实验原理: 1、理论概要 数字式频谱分析仪是通过A/D 采样器件,将模拟信号转换为数字信号,传给微处理器系统或计算机来处理和显示,与模拟仪器相比,数据的量化更精确,而且很容易实现存储、传输、控制等智能化的功能。电压测量的分辨率取决于A/D 采样器件的位数,例如12位A/D 采样的分辨率是1/4096。在对交流信号的测量中,根据奈奎斯特采样定理,采样速率必须是信号频率的两倍以上,采样频率越高,时间轴上的信号分辨力就越高,所获得的信号就越接近原始信号,在频谱上展现的频带就越宽。 本实验系统基于虚拟仪器构建,数字频谱分析仪是通过PCI-1200数据采集卡来实现的。通过虚拟仪器软件提供的网络通信功能,实现客户端与服务器之间的远程通信。由客户端程序发出操作请求,由服务器接受并按照要求控制硬件实验系统,然后将采集到的实验数据发给客户端,由客户端程序进行处理。 频谱分析仪是在频域进行信号分析测量的仪器之一,它采用滤波或傅立叶变换的方法,分析信号中所含各个频率份量的幅值、功率、能量和相位关系。频谱仪按工作原理,大致可分为滤波法和计算法两大类,本实验所用的数字频谱分析仪采用的是计算法。 计算法频谱分析仪的构成如图1所示: 图1 计算法频谱分析仪构成方框图 数据采集部分由数据采集部分由抗混低通滤波(LP )、采样保持(S/H )和模数转换(A/D )几个部分组成。 数字信号处理(DSP )部分的核心是FFT 运算。 有限离散序列Xn 和它的频谱X m 之间的傅立叶变换可表示如下: N-1 nm X m = ∑ Xn ·W N n=0 -j2π/N 式中W N = C n,m = 0,1,……,N-1 1 N-1 -nm Xn = - ∑ X m ·W N N m=0 X m 有N 个复数值,由它可获得振幅和相位谱∣X m ∣,φm 。由于时间信号Xn 总是实函数,X m 的N 个值的前后半部分共轭对称。 由于数据采集进行的是有限时间内的信号采集,而不是无限时间信号,在进行FFT 变

氧气分析仪的特点与原理

氧气分析仪的特点与原理 氧气分析仪具有测量快速、准确、高精度的特点,它采用了先进的燃料池传感器测量氧含量。由于传感器完全密封,所以传感器是免维护的。通常使用寿命可达三到五年。 是老一代微氧仪的更新换代产品。并且与先进的单片机技术,流量控制,温度补偿,压力控制系统想结合,使之具有更好的人机操作平台和广泛的使用性能。 仪器采用独特的过压保护装置,当气体流量突然增大的时候,过压保护动作,气体进入传感器的通道被切断,从而很好的保护了传感器避免过压损坏。 同时由于该仪器设计时采针阀可将传感器在不使用的条件下密封,防止传感器在空气中消耗并且可以达到对进样管路进行吹扫,以达到清扫进样管路的目的,更使它在快速、大量分析作业众发挥重要作用。 仪器工作原理: 氧气分析仪采用完全密封的燃料池氧传感器是当前国际上zui先进的测氧方法之一。 燃料池氧传感器是由高活性的氧电极和铅电极构成,浸没在KOH的溶液中。在阴极氧被还原成氢氧根离子,而在阳极铅被氧化。 O2+2H2O+4e4OH 2Pb+4OH2Pb(OH)2+4e KOH溶液与外界有一层高分子薄膜隔开,样气不直接进入传感器,因而溶液与铅电

极不需定期清洗或更换。 样气中的氧分子通过高分子薄膜扩散到氧电极中进行电化学反应,电化学反应中产生的电流决定于扩散到氧电极的氧分子数,而氧的扩散速率又正比于样气中的氧含量; 这样,该传感器输出信号大小只与样气中的氧含量相关,而与通过传感器的气体总量无关。通过外部电路的连接,反应中的电荷转移即电流的大小与参加反应的氧成正比例关系。 采用此方法进行测氧,可以不受被测气体中还原性气体的影响,免去了许多的样气处理系统。它比老式“金网-铅”原电池测氧更快速,不需要漫长的开机吹除过程; “金网-铅”原电池样气直接进入溶液中,导致仪器的维护量很大,而燃料电池法样气不直接进入溶液中; 传感器可以非常稳定可靠的工作很长时间。事实上,燃料电池氧传感器是完全免维护的。 标签: 氧气分析仪

史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。 现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。 有两种技术方法可完成信号频域测量(统称为频谱分析)。 1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。这种仪器同样能分析周期和非周期信号。FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。 2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。

图1 信号的频域分析技术 快速傅立叶变换频谱分析仪 快速傅立叶变换可用来确定时域信号的频谱。信号必须在时域中被数字化,然后执行FFT算法来求出频谱。一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。 FFT分析仪能够完成多通道滤波器式同样的功能,但无需使用许多带通滤波器,它使用数字信号处理来实现多个独立滤波器相当的功能。从概念上讲,FFT方法

溶氧分析仪的工作原理

溶氧分析仪的工作原理 整理时间:2008-8-8 10:05:00 查看次数:373关键词:溶解氧分析仪,工作原理 测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。该厂采用了COS4型溶氧传感器和COM252型溶氧变送器。 氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的 溶解度与其分压成正比。 以COS4氧量测量传感器为例,其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入 而导致污染和毒化。 相反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-? 4OH-。 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测同污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。COS4

溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低 流速要求为0.5cm/s。

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

分析仪器安全操作规程(新版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 分析仪器安全操作规程(新版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

分析仪器安全操作规程(新版) 一、低速大容量离心机(DL-5型) 操作注意事项 1.除工作温度、运转速度和运转时间外,请不要随意更改及其的工作参数,以免影响其性能。 2.使用前应检查转子是否有划痕、腐蚀等现象;同时应对离心杯作裂纹、老化等方面的检查,发现问题立即停止使用,并与厂方联系。开机运转前,请务必拧紧转头的压紧螺帽,以免高速旋转的转头飞出造成事故。 3.转速不得超过最高转速(5000rpm),以确保机器安全运转。 4.使用中如出现0.00或其他数字,应关机停电,10秒钟后重新开机,待所设转速显示后,在按运转键将机器照常运行。 5.如需分离的样品比重超过1.2g/cm3

,最高转速N必须按下式修正N=Nmax ×(1.2÷样品比重)1/2 Nmax ——转子极限转速。 6.不得在机器运转过程中或转子未停稳的情况下打开盖门,以免发生事故。 7.离心杯必须等量灌注样品,切不要使转头在不平衡的情况下运行。 8.离心机一次运行最好不要超过60分钟。 9.离心机必须可靠接地;机器不使用,请拔掉电源插头。 车间机械设备卡片 装置 设备名称 低速大容量离心机 型号 DL—5

CS全自动生化分析仪操作规程精编版

C S全自动生化分析仪 操作规程 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-9018)

CS-1300全自动生化分析仪操作规程 一、开机程序 1.1开机前检查 ①加样系统 探针(样品针、试剂针),搅拌棒是否沾有水滴,脏污,是否弯曲,堵塞;反应槽以及各清洗槽是否脏污或堵塞。如有以上情况发生,请参照“维护指南”进行。 ②清洗液 测试前先检查清洗液,不足时添加,具体位置如下: 清洗液位置清洗液种类 W1……………………………CS-碱性清洗液 ★W2……………………………CS-ISE清洗液 ★W3……………………………CS-酸性清洗液 清洗液盒………………………CS-碱性清洗液 45号位置………………………CS-抗菌无磷清洗液 ★此清洗液为选用 注:以上所有清洗液请使用迪瑞原厂清洗液

③废液桶 应保证废液桶有足够的空间盛装废液,当桶满时,及时倒掉并清理。 ④打印机 检查打印机是否正确地安装,打印纸是否充足。 ⑤仪器台面 检查仪器台面是否清洁,有无杂物。 ⑥供电电源 检查UPS电源开关应处再打开(ON)状态。 ⑦供水 打开自来水阀门,接通纯水机的电源,保证春水装置清洁,纯水机能正常给仪器供水且供水管路连接正确。 注:CS系列全自动生化分析仪耗水量最大为40L/h(CS-800为60L/h),要求纯水导电率小于1us/cm。 ⑧连接 分析仪与计算机主机间用通讯电缆正确地连接。 1.2开机 ①打开仪器右侧下方空开(总电源开关)。

注:为保证试剂仓和样样品圈的冷藏作用,存放试剂时,总电源开关处于打球开状态。 ②打开仪器右侧上方的电源开关(分析部电源)。 ③打开电脑,进入“CS全自动生化仪”操作软件,仪器进入待机状态后,方可进行下一步操作。 1.3开机后试剂准备 ①在软件主界面上点击“试剂信息”键,查看各试剂的剩余量。 ②更换试剂:结合当日预计测定量及时更换试剂(不同批号的试剂不能混合使用),试剂位置按屏幕显示放置,注意试剂瓶内不能有气泡。 ③试剂水平扫描:仪器可进行“自动扫描试剂水平”和“手工扫描试剂水平”两种试剂水平扫描模式。 自动扫描试剂水平:更换试剂完成后,如果“试剂信息”窗体下的“自动扫描试剂水平”单选框被选。那么仪器在盖好试剂盘盖后将自动进行试剂水平的扫描; 手工扫描试剂水平:更换试剂完成后,点击“试剂信息”窗体下的“手工扫描试剂水平”键,此时仪器进行试剂水平扫描,扫描完成后方可进行测试。 二、常规操作程序 2.1单个样本登记 在主界面点击“样本登记”选项,输入以下相应内容:

WT E功率分析仪操作规程

**规程*********** WT1806E高精度功率分析仪操作规程 20**年**月**日发布20**年**月**日实施 ***************

WT1806E高精度功率分析仪操作规程 1 目的 为了指导检验人员或其他使用人员WT1806E高精度功率分析仪的正确使用和保养方法,确保其量值准确、可靠、稳定和延长其使用寿命,特制定本规程。 2 范围 本规程适用于中心配备的WT1806E高精度功率分析仪。 3 引用文件 《WT1800高精度功率分析仪入门指南》、《WT1806E高精度功率分析仪操作手册》。 4 概述 用途 横河WT1806E数字功率分析仪集六个模块的输入于一体,一台仪器可同时测量两组三相系统,广泛应用于变频器、电机驱动器、照明系统、不间断电源、飞机电力系统、变压器测试和其它功率转换设备。 主要技术指标 WT1806E功率分析仪主要技术参数 1. 电压、电流、功率精度:读数%+量程%; 2. 电压/电流带宽:DC,至5MHz; 3. 采样率:2MS/s(16位); 4. 电压量程:3/6/10/15/30/60/100/150/300/600/1000[V]; 5. 电流量程:1/2/5/10/20/50[A];50mV/100 mV /200 mV /500 mV /1V/2V/5V/10V; 6. 可同时测量电压、电流、有功功率、无功功率、视在功率、功率因数、相位角、频率、电压峰值、电流峰值、峰值因数、积分(Wh,Ah,Varh,Vah)等。 7. 有电机分析功能、6路外部传感器输入、双路谐波分析功能、1ms高速数据捕获、20秒钟原始波形捕捉、星转三角计算、12路频率测试等功能,内置热敏打印机。 电流传感器CPCO1000技术参数和功能 1. 开环,内径77mm; 2. 电流范围:1000A,精度:%量程; 3. 带宽:DC 40KHz;

全自动生化仪使用说明书.doc

便携式生化检测仪 340 使用说明书便携式生化检测仪

【产品名称】便携式生化检测仪 【型号】340 【产品性能】 便携式生化检测仪(以下简称POC)。 POC专用于检测本公司体外诊断试剂盒“同型半胱氨酸检测试剂盒”,用于定量检测临床血清或血浆样本中同型半胱氨酸(HCY)。 POC是集样本处理、检测及分析报告一体化的便携式生化检测仪,无需外置电脑和安装软件。一次检测一份样本,约15分钟内完成检测并报告定量检测结果,具有机体小巧、携带及安装简便,操作简单快捷的特点。 POC控制过程:将含有检测试剂及样本的专用检测管放入测试盒内后,通过触摸屏控制,读取RFID 卡上的参数,自动完成搅拌、孵育、检测;自动计算样品中被检物的浓度并报告检测结果。 产品主要性能参数如下: 重量:3.5kg 外形尺寸:260×145×140cm 检测波长:340nm 自动控温:37℃ 电源:由电源适配器将电网电源AC100-240V,50/60Hz转换为DC12V电流4.0 A。 额定功率:30VA 工作温度:15℃~30℃ 相对湿度:40%~85% 大气压力:86.0 kPa~106.0 kPa 储存:经包装后的POC应存储在0℃~40℃,相对湿度不超过85%,无腐蚀性气体和通风良好的环境内。 运输:运输过程中应防止受到剧烈冲击、雨淋和曝晒。 【适用范围】 本仪器仅与本公司生化检测试剂盒“同型半胱氨酸检测试剂盒”配套使用,用于定量检测临床血清或血浆样本中生化成分检测。 【禁忌症】 无。 【主要结构】 由主机和电源适配器组成,仪器外观见图1,接口见图2。

图2仪器背面接口 【注意事项、警示以及提示性内容】 1.严禁非授权维修人员自行拆开机体。 2.禁止使用非专用管,以免损坏仪器。 3.检测操作时,放入检测管以前,确认管盖盖严,拭净管体外残留液体。 4.当系统工作时,切勿接触系统上的运动部件。 5.不可手动开检测盖。 6.使用触摸屏,只能用手指接触,禁止使用笔或尖锐物体接触。 7.必须使用专用的试剂盒,使用前确认试剂盒的适用性。 8.必须使用专用的试剂盒专用RFID卡,否则无法检测。 9.必须在有效期内使用试剂盒和RFID卡。 10.使用试剂、样本应严格按照相关管理规范执行。 11.剩余试剂、样本及废弃物的处理严格执行国家有关医疗废弃物处理规范执行。 12使用过的仪器进行运输、维修或储存前,应用75%的酒精对检测盒及仪器表面仔细清洁消毒,以防止污染及可能的生物风险。 【图形、符号、缩写的解释】 图形、符号、缩写名称解释 警告指本部位存在一定的危险,操作时应小心。 参考说明书参考说明书 怕晒表明运输包装件不能直接照晒 怕雨表明包装件怕雨淋 禁止翻滚表明不能翻滚运输包装

pH计和溶氧分析仪的原理及特点

pH计和溶氧分析仪的原理及特点 1、pH计的工作原理 水的pH值随着所溶解的物质的多少而定,因此pH值能灵敏地指示出水质的变化情况。pH 值的变化对生物的繁殖和生存有很大影响,同时还严重影响活性污泥生化作用,即影响处理效果,污水的pH值一般控制在6.5~7之间。水在化学上是中性的,某些水分子自发地按照下式分解:H2O=H++OH-,即分解成氢离子和氢氧根离子。在中性溶液中,氢离子H+和氢氧根离子OH-的浓度都是10~7mol/l,pH值是氢离子浓度以10为底的对数的负数:pH=-log,因此中性溶液的pH值等于7。如果有过量的氢离子,则pH值小于7,溶液呈酸性;反之,氢氧根离子过量,则溶液呈碱性。 pH值通常用电位法测量,通常用一个恒定电位的参比电极和测量电极组成一个原电池,原电池电动势的大小取决于氢离子的浓度,也取决于溶液的酸碱度。该厂采用了CPS11型pH 传感器和CPM151型pH变送器。测量电极上有特殊的对pH反应灵敏的玻璃探头,它是由能导电、能渗透氢离子的特殊玻璃制成,具有测量精度高、抗干扰性好等特点。当玻璃探头和氢离子接触时,就产生电位。电位是通过悬吊在氯化银溶液中的银丝对照参比电极测到的。pH值不同,对应产生的电位也不一样,通过变送器将其转换成标准4~20mA输出。 2、溶氧分析仪的工作原理 水中的氧含量可充分显示水自净的程度。对于使用活化污泥的生物处理厂来说,了解曝气池和氧化沟的氧含量非常重要,污水中溶氧增加,会促进除厌氧微生物以外的生物活动,因而能去除挥发性物质和易于自然氧化的离子,使污水得到净化。

测定氧含量主要有三种方法:自动比色分析和化学分析测量,顺磁法测量,电化学法测量。水中溶氧量一般采用电化学法测量。该厂采用了COS4型溶氧传感器和COM252型溶氧变送器。氧能溶于水,溶解度取决于温度、水表面的总压、分压和水中溶解的盐类。大气压力越高,水溶解氧的能力就越大,其关系由亨利(Henry)定律和道尔顿(Dalton)定律确定,亨利定律认为气体的溶解度与其分压成正比。 以COS4氧量测量传感器为例,其中的电极由阴极(常用金和铂制成)和带电流的反电极(银)、无电流的参比电极(银)组成,电极浸没在电解质如KCl、KOH中,传感器有隔膜覆盖,隔膜将电极和电解质与被测量的液体分开,因此保护了传感器,既能防止电解质逸出,又可防止外来物质的侵入而导致污染和毒化。 相反电极和阴极之间施加极化电压,假如测量元件浸入在有溶解氧的水中,氧会通过隔膜扩散,出现在阴极上(电子过剩)的氧分子就会被还原成氢氧根离子: O2+2H2O+4e-? 4OH-。 电化学当量的氯化银沉淀在反电极上(电子不足):4Ag+4Cl-? 4AgCl+4e-。对于每个氧分子,阴极放出4个电子,反电极接受电子,形成电流,电流的大小与被测同污水的氧分压成正比,该信号连同传感器上热电阻测出的温度信号被送入变送器,利用传感器中存储的含氧量和氧分压、温度之间的关系曲线计算出水中的含氧量,然后转化成标准信号输出。参比电极的功能是确定阴极电位。COS4溶氧传感器的响应时间为:3分钟后达到最终测量值的90%,9分钟后达到最终测量值的99%;最低流速要求为0.5cm/s。 3、 pH计的特点

超外差频谱分析仪的原理及组成

显示器 扫描产生器 3.1 超外差式频谱分析仪的原理及组成 3.1.1 超外差频谱分析仪的原理结构图 图3-1所示,为超外差频谱分析仪的简单原理结构图。 图3-1 超外差频谱分析仪的简单原理结构图 由图3-1可知:超外差频谱分析仪一般由射频输入衰减器、低通滤波器或预选器、混频器、中频增益放大器、中频滤波器、本地振荡器、扫描产生器、检波器、视频滤波器和显示器组成。 超外差频谱分析仪的工作原理是:射频输入信号通过输入衰减器,经过低通滤波器或预选器到达混频器,输入信号同来自本地振荡器的本振信号混频,由于混频器是一个非线性器件,因此其输出信号不仅包含源信号频率(输入信号和本振信号),而且还包含输入信号和本 第3章 超外差式频谱分析仪的原理

振信号的和频与差频,如果混频器的输出信号在中频滤波器的带宽内,则频谱分析仪进一步处理此信号,即通过包络检波器、视频滤波器,最后在频谱分析仪显示器CRT 的垂直轴显示信号幅度,在水平轴显示信号的频率,从而达到测量信号的目的。 3.1.2 RF 输入衰减器 超外差频谱分析仪的第一部分就是RF 输入衰减器。可变输入衰减器的作用是保证混频器有一个合适的信号输入电平,以防止混频器过载、增益压缩和失真。由于衰减器是频谱分析仪的输入保护电路,因此基于参考电平,它的设置通常是自动的,但是也可以用手动的方式设置频谱分析仪的输入衰减大小,其设置步长是10dB 、5dB 、2dB ,甚至是1dB ,不同频谱分析仪其设置步长是不一样的。如Agilent 8560系列频谱分析仪的输入衰减的设置步长是10dB 。 图3-2是一个最大衰减为70dB ,步长为2dB 的输入衰减器电路的例子。电路中的电容器是用来避免频谱分析仪被直流信号烧毁,但可惜的是它不仅衰减了低频信号,而且使某些频谱分析仪最小可使用频率增加到100Hz ,而其他频谱分析仪增加到9kHz 。 图3-2 RF 输入衰减器电路 图3-3所示,当频谱分析仪RF 输入信号和本振信号加到混频器的输入时,可以调整RF 输入衰减器,使混频器的输入信号电平合适或最佳,这样就可以提高测量精度。 0到70dB 衰减,步长2dB 电容器

频谱分析仪的工作原理

频谱分析仪的工作原理 频谱分析仪对于信号分析来说是不可少的。它是利用频率域对信号进行分析、研究,同时也应用于诸多领域,如通讯发射机以及干扰信号的测量,频谱的监测,器件的特性分析等等,各行各业、各个部门对频谱分析仪应用的侧重点也不尽相同。下面结合我台DSNG卫星移动站的工作特点,就电视信号传输过程中利用频谱分析仪捕捉卫星信标,监控地面站工作状态等方面,简要介绍一下频谱分析仪的工作原理。 科学发展到今天,我们可以用许多方法测量一个信号,不管它是什么信号。通常所用的最基本的仪器是示波器,观察信号的波形、频率、幅度等。但信号的变化非常复杂,许多信息是用示波器检测不出来的,如果我们要恢复一个非正弦波信号F,从理论上来说,它是由频率F1、电压V1与频率为F2、电压为V2信号的矢量迭加(见图1)。从分析手段来说,示波器横轴表示时间,纵轴为电压幅度,曲线是表示随时间变化的电压幅度。这是时域的测量方法,如果要观察其频率的组成,要用频域法,其横坐标为频率,纵轴为功率幅度。这样,我们就可以看到在不同频率点上功率幅度的分布,就可以了解这两个(或是多个)信号的频谱。有了这些单个信号的频谱,我们就能把复杂信号再现、复制出来。这一点是非常重要的。 对于一个有线电视信号,它包含许多图像和声音信号,其频谱分布非常复杂。在卫星监测上,能收到多个信道,每个信道都占有一定的频谱成份,每个频率点上都占有一定的带宽。这些信号都要从频谱分析的角度来得到所需要的参数。 从技术实现来说,目前有两种方法对信号频率进行分析。 其一是对信号进行时域的采集,然后对其进行傅里叶变换,将其转换成频域信号。我们把这种方法叫作动态信号的分析方法。特点是比较快,有较高的采样速率,较高的分辨率。即使是两个信号间隔非常近,用傅立叶变换也可将它们分辨出来。但由于其分析是用数字采样,所能分析信号的最高频率受其采样速率的影响,限制了对高频的分析。目前来说,最高的分析频率只是在10MHz或是几十MHz,也就是说其测量范围是从直流到几十MHz。是矢量分析。 这种分析方法一般用于低频信号的分析,如声音,振动等。 另一方法原理则不同。它是靠电路的硬件去实现的,而不是通过数学变换。它通过直接接收,称为超外差接收直接扫描调谐分析仪。我们叫它为扫描调谐分析仪。

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

贝克曼dxc600全自动生化分析仪操作规程

1.目的:规范贝克曼DXC600操作 2.适用范围:贝克曼DXC600检测过程 3.支持性文件:《全国临床检验操作规程》(第三版)、《临床检验操作规程编写要求》(WS/T227-2002) 4.操作规程: Ⅰ仪器开机程序 1.开机运行 开机检查MC部分试剂量是否充足,真空压力,水压,空气压力是否处在正常范围。 注意事项:日程维护保养(详见贝克曼保养手册) 例:每日保养工作:开机前用70%酒精擦洗试剂针和搅拌针。 2.安装试剂 a.首先检查试剂状态。在主菜单选定Rgts/Cal。 b.安装试剂 从主菜单选择Rgts/Cal,显示试剂状态屏幕 ↓ 点击试剂名称旁的Pos(1,2,3……),选定试剂放置的位置 ↓ 按F1 Load键,打开试剂舱闸门 ↓ 放入试剂,扫描试剂条码,关闭试剂舱闸门 ↓ 仪器自动检测试剂液面、较准日期等,并显示相应信息。 注意事项: a.AST、ALT、CK试剂需预处理:步骤将C孔试剂全部加打入A孔然后充分混匀。b.TBIL试剂需预处理:将C孔试剂吸取200微升到B孔然后充分混匀。 Ⅱ样品前运行程序 1.清除昨天的测试结果:

选Sample ↓ 选Clear F7 ↓ 输入昨天的日/月/年 ↓ 确定,即清除样品结果 2.冲洗仪器管道: 选Utils ↓ 选Prime F1 ↓ Prime all,清洗5次 Ⅲ仪器校准程序 定标: 选择Rgts/Cal,显示试剂状态屏幕 ↓ 点击试剂名称旁的Pos(1,2,3……),选择需要定标的项目 ↓ 按F7 Assign,选择定标液的类型,并输入试剂架号及位置 ↓ Cancel退出保存,放入定标液架,RUN。 注意事项: a.注有“*”的试剂都需要定标 b.K、Na、Cl、Ca离子项目每隔24小时需要定标一次。 C.贝克曼原装试剂校准周期严格参照贝克曼试剂说明书规定。 *如有项目校准失败必须查找分析原因并要快速解决问题* Ⅳ生化室内质控 取贝克曼高低两个浓度水平质控品,室温放置10-20分钟,摇匀后进行测定,随后将质控值输入质控分析软件进行质控分析。要质控在控后才能开机检测病人标本。 每天做二次质控,开机运行后做一次,中午仪器运行时再做一次。 注意事项: 如有项目失控首先要根该项目的失控类型判断是系统误差还是随机误差引起的,再查找失控原因,解决问题,最后必需重做质控在控后才能做该项目。 Ⅴ样本运行程序

相关文档
最新文档