二次根式测试题Microsoft Word 文档
二次根式练习题及参考答案

二次根式练习题及参考答案一、选择题1. 下列各式中,是二次根式的是()A. √2B. 2+√3C. (√2)^2D. 1/√22. 二次根式的定义域是()A. 正实数集B. 全体实数集C. 负实数集D. 零集3. 已知a为正数,b为非负数,则必有()A. √a ≠ √bB. √a > √bC. √a < √bD. √a = √b4. 如果√a = √b,则()A. a = bB. a ≤ bC.a ≥ bD. a > b5. 下列哪个数是二次根式()A. 2B. 49C. 5^2D. 3^2二、计算题1. 计算√(3+2√2) 的值。
解答:将√(3+2√2) 分解成 r+s 的形式,即等于√2 + r + s,其中 r 和 s 都是实数。
则有:√2 + r + s = √(3+2√2)√2 = √(3+2√2) - r - s为了消去开方,上式两边平方可得:2 =3 + 2√2 - 2(r+s) + r^2 + s^2 + 2rs2 =3 + r^2 + s^2 + 2rs + √2(2 - 2(r+s))由于√2和(2 - 2(r+s))都是独立存在的,所以它们的系数和常数必须分别为零。
根据此条件可以整理出以下两个方程:2 - 2(r+s) = 02 =3 + r^2 + s^2 + 2rs解得 r = 1,s = 0。
因此:√(3+2√2) = √2 + 1 + 0 = √2 + 12. 计算(√3+1)(√3-1) 的值。
解答:使用公式 (a + b)(a - b) = a^2 - b^2,将a = √3,b = 1 代入,得到:(√3+1)(√3-1) = (√3)^2 - 1^2= 3 - 1= 2三、解答题1. 计算√18 - √8 的值。
解答:将√18 和√8 分别化简,得到:√18 = √(9 × 2) = √9 × √2 = 3√2√8 = √(4 × 2) = √4 × √2 = 2√2因此,√18 - √8 = 3√2 - 2√2 = √22. 计算√(6 + 3√2) + √(6 - 3√2) 的值。
(完整word版)二次根式测试题及答案【1】2,推荐文档

第二十一章 二次根式填空题:1.要使根式3-x 有意义,则字母x 的取值范围是______. 2.当x ______时,式子121-x 有意义. 3.要使根式234+-x x有意义,则字母x 的取值范围是______. 4.若14+a 有意义,则a 能取得的最小整数值是______. 5.若x x -+有意义,则=+1x ______.6.使等式032=-⋅+x x 成立的x 的值为______.7.一只蚂蚁沿图1中所示的折线由A 点爬到了C 点,则蚂蚁一共爬行了______cm .(图中小方格边长代表1cm)选择题图1 图27.如图2,点E 、F 、G 、H 、I 、J 、K 、N 分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应是( ) (A)525 (B)53 (C)25 (D)548.使式子23+x 有意义的实数x 的取值范围是( ) (A)x ≥0(B)32->x (C)23-≥x (D)32-≥x 9.使式子2||1+-x x 有意义的实数x 的取值范围是( )(A)x ≥1 (B)x >1且x ≠-2 (C)x ≠-2 (D)x ≥1且x ≠-2 10.x 为实数,下列式子一定有意义的是( )(A)21x (B)x x +2(C)112-x (D)12+x11.有一个长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )(A)cm 41(B)cm 34(C)cm 25 (D)cm 35解答题13.要使下列式子有意义,字母x 的取值必须满足什么条件?(1)1||21--x x (2)x +--21(3)232+x (4)x x 2)1(- (5)222++x x17.(1)已知05|3|=-++y x ,求yx的值;(2)已知01442=+++++y x y y ,求y x 的值.18.已知实数x 、y 满足324422+--+-=x x x y ,求9x +8y 的值.二次根式(2)掌握二次根式的三个性质:a ≥0(a ≥0);(a )2=a (a ≥0);||2a a =.填空题:1.当a ≥0时,=2a ______;当a <0时,2a =______. 2.当a ≤0时,=23a ______;=-2)23(______. 3.已知2<x <5,化简=-+-22)5()2(x x ______.4.实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a ______.5.已知△ABC 的三边分别为a 、b 、c 则=+----||)(2c a b c b a ______. 6.若22)()(y x y x -=-,则x 、y 应满足的条件是______. 7.若0)2(|4|2=-+++x y x ,则3x +2y =______. 8.直线y =mx +n 如图4所示,化简:|m -n |-2m =______.10.36的平方根是( )(A)6(B)±6(C)6(D)±611.化简2)2(-的结果是( ) (A)-2 (B)±2 (C)2 (D)412.下列式子中,不成立的是( )(A)6)6(2=(B)6)6(2=--(C)6)6(2=-(D)6)6(2-=--13.代数式)0(2=/a a a 的值是( )(A)1(B)-1(C)±1(D)1(a >0时)或-1(a <0时)14.已知x <2,化简442+-x x 的结果是( )(A)x -2(B)x +2(C)-x +2(D)2-x15.如果2)2(2-=-x x ,那么x 的取值范围是( )(A)x ≤2(B)x <2(C)x ≥2(D)x >216.若a a -=2,则数a 在数轴上对应的点的位置应是( )(A)原点(B)原点及原点右侧 (C)原点及原点左侧(D)任意点17.若数轴上表示数x 的点在原点的左边,则化简|3|2x x +的结果是( )(A)4x(B)-4x(C)2x(D)-2x18.不用计算器,估计13的大致范围是( )(A)1<13<2(B)2<13<3(C)3<13<4(D)4<13<519.某同学在现代信息技术课学了编程后,写出了一个关于实数运算的程序:输入一个数值后,屏幕输出的结果总比该数的平方小1,若某同学输入7后,把屏幕输出的结果再次输入,则最后屏幕输出的结果是( ) (A)6 (B)8 (C)35 (D)37解答题: 20.计算:(1);)12(|3|)2(02---+-(2)⋅-+-|21|2)3(0221.化简:(1));1()2()1(22>++-x x x (2).||2)(2x y y x ---22.已知实数x ,y 满足04|5|=++-y x ,求代数式(x +y )2007的值.23.已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值.24.在实数范围内分解因式:(1)x 4-9; (2)3x 3-6x ; (3)8a -4a 3; (4)3x 2-5.21.2 二次根式的乘除(1)理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性填空题:1.计算:ab a ⋅=______. 2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______. 5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______. 选择题:7.化简20的结果是( ) (A)25(B)52(C)102(D)548.化简5x -的结果是( )(A)x x2- (B)x x--2(C)x x-2(D)x x29.若a ≤0,则3)1(a -化简后为( ) (A)1)1(--a a (B)a a --1)1( (C)a a --1)1((D)1)1(--a a解答题: 10.计算:(1);63⨯ (2));7(21-⨯(3));102(53-⨯(4));804()245(-⨯-(5));25.22(321-⨯ (6);656)3122(43⨯-⨯ (7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅(13));42(2212mn m m +-⋅ (14))12()321(123143z xy x x ⋅-⋅⋅.11.化简:(1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+- (2).425.060sin 12)21(20082008o 2⨯---13.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.图121.2 二次根式的乘除(2)理解二次根式除法运算法则,即b aba =(a ≥0,b >0)的合理性 填空题: 1.在4,21,8,6中,是最简二次根式的是______. 2.某精密仪器的一个零件上有一个矩形的孔,其面积是42cm 2,它的长为5cm ,则这个孔的宽为______cm . 3.2-3的倒数是______,65+的倒数是______.4.使式子3333+-=+-x xx x 成立的条件是______. 选择题:5.下列各式的计算中,最简二次根式是( ) (A)27(B)14(C)a1 (D)23a6.下列根式xy y x xy 53,,21,12,2+中最简二次根式的个数是( ) (A)1个 (B)2个(C)3个(D)4个7.化简273-的结果是( ) (A)27- (B)27+(C))27(3-(D))27(3+8.在化简253-时,甲的解法是:,25)25)(25()25(3253+=+-+=-乙的解法是:,2525)25)(25(253+=--+=-以下判断正确的是( )(A)甲的解法正确,乙的解法不正确 (B)甲的解法不正确,乙的解法正确(C)甲、乙的解法都正确(D)甲、乙的解法都不正确9.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ~△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( ) (A)22(B)2(C)2 (D)2210.如图1,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )图1(A)m )13(6+ (B)m )13(6- (C)m )13(12+(D)m )13(12-11.计算)(baa b a b b a ÷的正确结果是( ) (A)ba(B)ab(C)22ba(D)112.若ab ≠0,则等式aba b a 135-⋅=--成立的条件是( ) (A)a >0,b >0(B)a <0,b >0(C)a >0,b <0(D)a <0,b <0解答题: 13.计算:(1);51 (2);208 (3);2814 (4);5)12(÷-(5));74(142-÷ (6));452()403(-÷-(7));6121(211-÷ (8);1543513÷- (9);45332b a b a ÷(10));6(322344c b a c b a -÷(11);152)1021(23÷⨯(12);521431252313⨯÷ (13);653034y xy xy ⋅÷(14);3)23(235ab b a ab b ÷-⋅ (15));1843(3211233xy xy x -÷⋅(16)⋅-÷+)2332()2332(15.已知b a ==20,2,用含a ,b 的代数式表示:(1);5.12 (2).016.021.3 二次根式的加减(1)学习要求:了解同类二次根式的概念,会辨别两个二次根式是否为同类二次根式.会进行简单的二次根式的加、减法运算,体会化归的思想方法.做一做: 填空题: 选择题: 7.计算312-的结果是( ) (A)3(B)3(C)32(D)338.下列二次根式中,属于最简二次根式的是( ) (A)a 4(B)4a (C)4a(D)4a 9.下列二次根式中,与2是同类二次根式的是( ) (A)27(B)12(C)10(D)810.在下列各组根式中,是同类二次根式的是( )(A)3和18(B)3和31 (C)b a 2和2ab (D)1+a 和1-a11.下列各式的计算中,成立的是( )(A)5252=+(B)15354=- (C)y x y x +=+22(D)52045=-12.若121,121+=-=b a 则)(ab b a ab -的值为( ) (A)2 (B)-2(C)2(D)22解答题:13.计算:(1);2523+ (2);188+ (3);50483122+-(4);312712-+ (5);202452321+-(6);12531110845--+ (7);)33()33(22++- (8);5.0753128132-+--(9))455112()3127(+--+; (10)231)13(3-++; (11)a a a aaa a 1084333273123-+-;21.3 二次根式的加减(2)9.在二次根式16,8,4,2中同类二次根式的个数为( ) (A)4 (B)3 (C)2(D)110.下列计算中正确的是( )(A)2323182=⨯= (B)134916916=-=-=- (C)24312312=== (D)a a 242=11.下列各组式子中,不是同类二次根式的是( )(A)81与18 (B)63与2825 (C)48与8.4 (D)125.0与12812.化简)22(28+-得( )(A)-2(B)22-(C)2(D)224-13.下列计算中,正确的是( )(A)562432=+(B)3327=÷(C)632333=⨯ (D)3)3(2-=-14.下列计算中,正确的是( )(A)14931227=-=-(B)1)52)(52(=+-(C)23226=-(D)228=-15.化简aa a a a a 149164212-+的值必定是( ) (A)正数(B)负数(C)非正数(D)非负数16.若a ,b 为实数且211441+-+-=a ab ,则22-+-++b a a b b a a b 的值为( ) (A)22 (B)2(C)22-(D)32解答题:17.计算:(1))232)(232(-+; (2)2)32(+; (3)2145051183-+;(4);7232318283--+ (5)23)121543(÷-; (6)20072006)65()56()1245()31251(-⋅+++--;(7)33322)1(2m n m n m n m m n ÷-.问题探究:因为223)12(2-=-,所以,12223-=- 因为223)12(2+=+,所以,12223+=+因为347)32(2-=-,所以,32347-=-请你根据以上规律,结合你的经验化简下列各式: (1)625-; (2)⋅+249复 习10.使根式x x 1+有意义的字母x 的取值范围是( )(A)x >-1(B)x <-1(C)x ≥-1且x ≠0(D)x ≥-111.已知a <0<b ,化简2)(b a -的结果是( )(A)a -b (B)b -a(C)a +b(D)-a -b12.在32,9,,,45222x a y x xy +-中,最简二次根式的个数是( )(A)1(B)2(C)3(D)413.下列二次根式中,与35-是同类二次根式的是( )(A)18(B)3.0(C)30(D)30014.计算28-的结果是( )(A)6(B)2(C)2(D)1.415.估算37(误差小于0.1)的大小是( ) (A)6 (B)6.0~6.1(C)6.3(D)6.816.下列运算正确的是( )(A)171251251252222=+=+=+ (B)1234949=-=-=-(C)20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯-(D)1535)3()5(22=⨯=-⨯- 17.下列运算中,错误..的是( ) (A)632=⨯(B)2221=(C)252322=+ (D)32)32(2-=-18.若把aa 1-的根号外的a 适当变形后移入根号内,结果是( ) (A)a --(B)a -(C)a -(D)a19.小明的作业本上有以下四题:①24416a a =;②a a a 25105=⋅; ③;1.12a aa a a== ④.23a a a =-做错的题是( ) (A)① (B)②(C)③ (D)④20.若)()()(22m n m n n a a m >-=-+-成立,则a 的取值范围是( )(A)m ≤a ≤n(B)a ≥n 且a ≤m(C)a ≤m(D)a ≥n21.用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P =112--n n ,与1)1(1)1(2-+-+=n n Q ,(n 为大于1的整数)的值的大小关系为( )(A)P <Q(B)P =Q(C)P >Q(D)不能确定解答题: 22.计算:(1);483122+ (2);7002871-+ (3);8121332+-(4))56()56(+⨯-; (5)2)2332(-; (6)25)520(-÷+;(7)m m m m m m m 3361082273223-+-; (8).123132+++23.(1)当a <0时,化简aa a a -+-2212;(2)已知x 满足的条件为⎩⎨⎧<->+0301x x ,化简;129622++++-x x x x(3)实数a ,b 在数轴上表示如图,化简:.)()2()2(222b a b a ++--+24.(1)当a =5+1,b =5-1时,求a 2b +ab 2的值;(2)当41=x ,y =0.81时,求31441y yx y x x ---的值.(3)已知154-的整数部分为a ,小数部分为b ,求a 2+b 2的值.25.若12+x 与y -2互为相反数,求x y 的值.26.已知x ,y 为实数,且499+---=x x y ,求y x +的值.第二十一章 二次根式测试题填空题:(每题2分,共24分) 1.函数1-=x xy 的自变量x 的取值范围是______. 2.当x ______时,x x -+-31有意义. 3.若a <0,则b a 2化简为______.4.若3<x <4,则=-++-|4|962x x x ______. 5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______. 7.长方形的面积为30,若宽为5,则长为______. 8.当x =______时,319++x 的值最小,最小值是______. 9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311ΛΛ=+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______.11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算:=+++++++++)12007)(200620071341231121(.Λ______.12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ; (2)若25,21==b a ,则23≤ab ;(3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______. 选择题:(每题2分,共24分) 13.已知xy >0,化简二次根式2xyx -的正确结果为( ) (A)y (B)y - (C)y -(D)y --14.若a <0,则||2a a -的值是( )(A)0 (B)-2a(C)2a(D)2a 或-2a15.下列二次根式中,最简二次根式为( )(A)x 9(B)32-x(C)xyx - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3 (B)-3 (C)1 (D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0(B)1(C)-1(D)31 18.下列各式:211,121,27,其中与3是同类二次根式的个数为( ) (A)0个(B)1个(C)2个(D)3个19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4(B)2x +2(C)-2x -2(D)-420.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( ) (A)a -1(B)1-a (C)1--a (D)a --121.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2(B )∴22)()(m n n m -=-(C)∴m -n =n -m (D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( )(A)3a 与3b (B)2a 与2b(C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( ) (A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠2 24.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE对应的函数表达式是( ) (A)332-=x y (B)y =x -2(C)13-=x y (D)23-=x y解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分) 25.计算:(1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x x x x x x +- (6)).0)](4327121(3[222≥--b ab ab ab a 26.若,03|9|22=--++mm n m 求3m +6n 的立方根.27.已知7979--=--x xx x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yxy xy y x y x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证: ;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-==⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233 (1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证;(2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案第二十一章 二次根式21.1 二次根式(1) 1.3≥x 2.21>x 3.34≤x 且x ≠-2 4.0 5.1 6.3 7.55+8.D 9.A 10.D 11.C 12.C 13.(1)⋅≤21x 且x ≠-1 (2)x <-2 (3)x 为任意实数 (4)x 为非零实数 (5)x 为任意实数 14.135+ 15.cm π 16.ab 22 17.53)1(-(2)-2 18.(1)215 (2)21% 问题探究:6注意x =2时要舍去 21.1 二次根式(2)1.a ,-a 2.32,3--a 3.3 4.1 5.0 6.x ≥y 7.-6 8.n 9.111111111 10.D 11.C 12.B 13.D 14.D 15.C 16.C 17.D 18.C 19.C 20.(1)6 (2)25 21.(1)2x +1 (2)y -x 22.1 23.2 24.(1))3)(3)(3(2-++x x x (2))2)(2(3+-x x x (3))2)(2(4a a a +- (4))53)(53(+-x x25.(1)小明 (2)因为a =9,所以1-a <0,所以1)1(2-=-a a 26.(1)2,11)(2n S n n n =+=+ (2),21012110=⨯⨯OA 所以1010=OA (3)222221024232221)210()23()22()21(S S S S S ++++=++++ΛΛ434241++=455410=++Λ 27.(1)4.47秒 (2)1.76秒 (3)64.8米问题探究:略21.2 二次根式的乘除(1)1.b a 2.y x - 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23(2)37- (3)230- (4)30160 (5)15- (6)237-(7)1222-(8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+-(14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)0 13.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC 问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2) (2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF (3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF21.2 二次根式的乘除(2)1.6 2.10543.56,32-+ 4.-3<x ≤3 5.B 6.B 7.B 8.C 9.C 10.A 11.A 12.B 13.(1)55 (2)510 (3)22 (4)5510- (5)22- (6)2(7)-6 (8)332-(9)a ab 52 (10)c ab 23- (11)23 (12)210(13)6y 3 (14)ab b a 2- (15)x x y22- (16)625-- 14.cm 152 15.(1)a 5或a 25 (2)b a 52或ab25 16.31648-17.(1)不正确,第②③步出现了错误(2)原式ab ab aa ab a b b a a a b a b a b a =-⋅-=--=--=)1()()(2 18.42问题探究:(1)3 (2)33 (3)333 (4)3333 321Λ个100133321.3 二次根式的加减(1)1.23 2.略 3.2 4.23,21 5.123+ 6.10255+ 7.B 8.D 9.D 10.B 11.D 12.A 13.(1)28 (2)25 (3)2538+- (4)3314 (5)52315- (6)523316- (7)24 (8)33132413+ (9)5514334- (10)1 (11)a a 32- 问题探究:不够用,还需买78cm 21.3 二次根式的加减(2)1.3 2.0 3.1560- 4.3 5.xy x y )(- 6.x x 22-7.212- 8.12 9.C 10.A 11.C 12.A 13.B 14.D15.A 16.B 17.(1)10 (2)347+ (3)28 (4)26- (5)4523- (6)6338559--- (7)2m m n - 18.320 19.(1)有 (2)错在第一步,忽视了a <0(因为01>-a ,所以a <0) (3)原式+--=--⋅---=a a a aa a a 1 a a a --=-)1( 20.25-和25+的等差中项为5,等比中项为3± 问题探究:212)2(23)1(+- 复 习1.x >5 2.x -2 3.1 4.±1 5.0 6.0 7.5 8.2-6a 9.6 10.C 11.B 12.C13.D 14.C 15.B 16.D 17.D 18.A 19.D 20.A 21.C 22.(1)316 (2)7755-(3)2411 (4)1 (5)61230- (6)1 (7)0 (8)323 23.(1)a 1- (2) 4 (3)0 24.(1)58 (2)-2.45 (3)5418- 25.41 26.5 第二十一章 二次根式测试题 1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2006 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B 20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.113 28.229- 29.0.9cm 30.85 31.(1)=+-==+=1544415415441544154433 15441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n 11)1(1111222232322-+=-+-=-+-=-=--+n n n n n n n n n n n n n n n n n n n (n 为正整数,且n ≥2)。
二次根式测试题及答案

二次根式测试题及答案一、选择题(每题4分,共20分)1. 下列哪个数是一个二次根式?A) 3 B) 9 C) -4 D) 132. 下列哪一项是二次根式的定义?A) a² = b B) √a = b C) a = b² D) √a² = b3. √64的值等于:A) 6 B) 8 C) 4 D) 164. √(25 + 9)的值等于:A) 34 B) 7 C) 8 D) 65. 下列哪个数是一个无理数?A) 5 B) 36 C) -9 D) √3二、填空题(每题4分,共20分)1. 一个二次根式的指数为_________。
2. √(16 + 9)的值等于_________。
3. 5的二次根式是_________。
4. √(25 - 16)的值等于_________。
5. √49的值等于_________。
三、解答题(每题10分,共40分)1. 计算以下二次根式的值:√(5² + √16)解:首先计算5²,得到25。
然后计算√16,得到4。
最后将25与4相加,得到29。
所以,√(5² + √16)的值等于29。
2. 解方程:√(x - 2) + 3 = 7解:首先将方程两边减去3,得到√(x - 2) = 4。
然后两边进行平方运算,得到x - 2 = 16。
最后将方程两边加上2,得到x = 18。
所以,方程的解为x = 18。
3. 计算以下二次根式的值:√(2 - √3) + √(2 + √3)解:首先计算√3,得到一个无理数。
然后根据加法和减法的运算法则,将两个二次根式相加。
最后计算得到的结果。
由于表达式较复杂,无法直接计算出精确值。
所以,结果可以近似表示为一个无理数。
4. 计算以下二次根式的值:√(2√5 + √20)解:首先计算√5,得到一个无理数。
然后计算√20,得到另一个无理数。
接下来将两个无理数相加,并且进行化简。
最后计算得到的结果。
二次根式计算(可编辑修改word版)

二次根式计算匚已知呼S 埠荼’求值:材(20M •南漳县模拟)已知 . b=^(V5-V3> -求 a= - ab+b=的值.如图所示的RtAABC 中,ZB=90° •点P 从点B 开始沿BA 边以1厘米/秒的速度向 点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒 后△FBQ 的而枳为35平方厘米? PQ 的距离是多少厘米?(结果用最简二次根式表示)5. (1)已知*=迈 求x^+3x-l 的值:(2)已知0 = —2—历,h = y/3-2. (« + /?)- + (a-b)(2a + b)-3a" ®.{14-2 +艺6.若X, y 为实数,且y=71_4x +厶x_l+ 2求兀的值.7.已知 a=2+ 73 » b=2-73 •试求一一一的值• b a&已知大一 1 = 求代数式(x + l)--4(x + l) + 4的值. 9.求值:(1)已知, bj.,求丽-丽的值.2 4 y/~~Ct —yfu + y/h2. 3. 已知X = J5 + 1, y =试求的值. 4.⑵已知-戸*J+皿值.如果,一4JC +『2十 6y + Jz + 2 +13 = 0,求(xy):的值.{a + /?)" + (</ - /7)(2« + h)- 3«"» 其中 J a = 2 + JJ, b = y/3 - 2.13. 13.X 兀 2 — 4% + 4 yL先化简,再求值:(卡-一^"即其中-圧14. 计算:(1)伍亦•洽)+^^-|一81|-«^ + (-1円'(2)已知:10 + A/2=x+y,其中X 是整数,且0 VyVl,求兀-y 的柑反数.15. 已知X M T • v "+l •求下列代数式的值2 2(1) x'y+xy"(2) x'-xy+y'10. 11. 12. 先化简再求值:(1) 解方程:16 (x+1) - -1=0(2) -(X-3) '=27(3) (4) 实数b 在数轴上的位脊^如图所示,请化简:,其中 <7 = 30 = 2化简求值:16.化简:(1) V2(A ^-A /2) (2)皿七护-怎-评17- (本题10分〉根据题目条件,求代数式的值:(1) 已知_=3,求X y 5x + XV — 5 y 「亠• •的值.(2) y=』0二/L 求代数式x=-xy+y=的值.218- (本小题6分)(1) 计算J (—5/3)" — Vl6 + J(-2)2(2) 当ac 时,化陆Ji+ 4a-- 2aIZV3 (2) (5分) 先化简,再求值:(竺 站}亠7 ,其中甘邑 b=-l 5a-b 10肿 2cPb~ 2 23h 20-化简讣算:(本题满分题6分〉 (1) 275-(75 + 3/) (2)菸倉+ J(・3)2 •屁221. (8分)已知A- = 5^ + l,y = ^/3-b 求下列各式的值.(1)(2) X- +xy + y-22.在实数范帀内分解因式:(1) /-9;(2) 4x2-32;A /3(1)求ZAPB 的度数:(2)如果 AD=5cm, AP=8cm,求A APB 的周长.C 3) x~ — + 3 :(4) 3a^—2b^.23- (6分)先化简,再求值: L 壬.丄,其中"_2. «- +4« + 4 « +2 a +324.已知 0<x<l,化简:|(牙一»2+4_(兀+1)2-425.已知 11 X(-^5 +5/3),y=—( y[5~yf3),求 x^-xy+y •和一+ —的值•2 2 3' X 26.如图, ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分ZDAB 和ZCBA ・Cb 385【解析】Ax - y=8>/3i xy=b •I 原式=2(X - y) ■xy=385・考点:二次根式的化简求值:代数式求值.2- 3.5【解析】解 5 a' - ab-rb'.=(a " b) '+abr 7a= g (^\/5H /3) , b= g (・ A /S) »厶 厶/- a' - ab+b'.=c-| (V B -H /S ) r+[£ (V B -H /S ) X £(V^-V^)],=3.5考点:二次根式的化简求值.【解析】参考备案试题分析:先化简X, y 的值,成最简形式, 这样计算简单•再变换2s" - 3xy+2y"使它符合完全平方公式, (2+仞 2解:(2-V5)"(2+V5) (2-仞 2 尸(2+7^) (2-V5)h -试题分析:本题需先把a= - ab+b :进行整理, 求出结果•化成(a-b ) =+ab 的形式,再把得数代入即可试题分析:首先将所求的分式进行化简,然后将X和y的值代入化简后的式子进行讣算.试题解析:根据题意可得:品2» X—y=2r xy=l卄二竺出d"考点:分式化简求值.【解析】试题分析:首先设X秒后面积为35.然后得出BP=x, BQ=2x,根据题意列岀方程求出x的值. 然后根据RtABPQ的勾股;^理得出距离• 试题解析:设X后△PBQ的而积为35平方厘米.则有PB=x, BQ=2x依题意,得:_x・2x=35 X匚35 解得:X二后2J寿秒后△PBQ的而枳为35平方厘米.FQ= J PB^ + BQ・=y/ x~ + A-x~ = = J5*35 =5答:后秒后△PBQ的面枳为35平方厘米,PQ的距离为5jy厘米.考点:(1)勾股定理:(2)二次根式.5. (1)、-1:(2)、1.【解析】试题分析:(1)将X的值代入代数式进行计算:(2)首先将多项式进行化简计算,然后将a、b 的值代入化简后的式子进行讣算.试题解析:(1)当x=>/2-1 时,x2+3x-l=(.y/2-iy 2+3 (y/2-1)-1 =2—2 运+1 + 3 运—3 — 1= 5^—1(2)原式=<r +2ab+ Ir +2<r — ab — Ir —3a~ =ab当 a=—2—yl3 » — 2 •:原式=ab= (— 2 — -\/3 ) (-73—2) =4—3=1. 考点:代数式的化简求值.【解析】 试题分析:先利用二次根式意义求出X 值,进而求出y 值,代入后而的式子中计算结果即可.试题解析:由二次根式意义可得:l-4x>0. 4s-l>0.综合可得:x=4所以y=0+0+2 3X 41 y2 C 「 所以 2 , 4 ,所求式子=Y2 -V2考点:1.二次根式有意义的条件;2-二次根式的化简求值.【解析】 试题分析:首先根据题意求出a+b.a-b 和ab 的值,然后将所求的分式进行通分和因式分解, 然后利用整体代入的思想进行求解,得出答案- 试题解拆•••a+b=2+>/5+2-75=4, a-b=2+73 - (2 — 丁5)=2厲,ab=(2+75) (2-A /3 ) =1a 二 Q' -b- _ (a - b}{a +/?) _ 4 x _ %羽b a ab考点:(1)分式的化简;(2)二次根式的加数8. 3ab3V2羽 〒■丁=【解析】 试题分析:首先根据题意得出X 的值,然后将代数式进行化简,将X 的值代入化简后的式子 进行计算• 试题解析:由x-l = V3得.1・=丿^ + 1化 简 原 式 =X- +2x + \-4x-4 + 4 = x^ -2x + [ = (yf3+ 1)--2(73 + 1)+1 = 3 + 2\/3 +1 — 2A /3 — 2 + 1=3考点:代数式化简求值9- (1) 2: (2) 7+4>/5【解析】 试题分析:(1)首先根据二次根式的讣算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算:(2)首先根据二次根式的化简法则将X 进行化简,然后 将X 的值代入所求的代数式进行计算•试题解析J (1)原式=丽(&^ 必:b 血 JK )『 二+ + - 2ba-hA=X =-S +75=(75+2) '一(75+2) +75=5+4-75+4-75-2+75=7+475 -考点:化简求值10.—36【解析】当 a=\ b= 2 肌原式=1^1=2.41 1 (2) 7x=-试题分析把原方程可化为(工-2尸+ 0 + 3)2+后㊁=0,利用非负数的性质得出x、y、z 的值•然后代入计算即可.试题解析:原方程可化为a - 2尸+ {y + 3尸+ = 0,X = 2^ y =—3* z=—2, /. (xy)j = (-6)"- = _36考点:1.完全平方公式2.非负数的性质3.幕的运算.11. — 2,^/3 .【解析】试题分析:先进行二次根式的化简,然后再把a、b的值代入即可.一y/b j- -/ab = £' yfab一丘-Jab = 一Jab,= y/h -b-Ja,把a=3, b=2代入上式得:原爲.考点:二次根式的化简求值.12 - ab f 一【解析】试题分析:先按照整式混合运算的法则把原式进行化简,再把a. b的值代入进行让算即可・试题解析:原式=fl" +2ab + lr +2, -ab-b~ -3a~ =ab :当a = 2+氐h = yf3-2时,原^(2 + 73)(73-2)=-!考点:整式的混合运算一化简求值.13. <1) x = 或一2. (2) x=0 (3) 724 4【解析】(4) -b试题解析:原式=试题分析:(1)根据平方根解方程即可:(2) 根据立方根解方程即可:(3) 根摒分式的通分约分进行计算,化简即可,然后代入求值:(4) 根据二次根式的性质和数轴的特点,化简即可. 试题解析:解:(1)16 (x+1) = -1 = 0X+l=± -r(2) -(X-3) '=27x-3=-3 x=O(—2)2 1L X + 2(X + 2)(x - 2) ■X x-2\x+2=2 .x + 2 x+2(4)根据数轴可知a<0<b,因此可知-妒=_a- (-a) -b=-b・考点:平方根,立方根•分式的混合运算.数轴与二次根式的性质33314. (1) ----- : (2) 5/1-124【解析】试题分析:(1)将所给各式的值代入或化简,然后计算即可.(2)先确过出S、y 的值,然后代入计算即可.试题解析:(1)•吉)+也齐^一|一81卜』^ + (-1严' = 5-1-4-81』4333⑵ 因为\Q + y/2=x+y.且X是整数,所以Eh所以7=10 + 72-11=72-1 ,所以x- y=ll-(迈-1 ) =12-72 .所以—y的相反数为y-xM-12 考点:实数的计算.15-(1) 5/5 :(2) 2,【解析】试题分析:先求得x+y=JJ, sy=l・(1)把所求的代数式转化为xy (x+y),然后将英代入求值即可:(2)把所求的代数式转化为(x+y) =-3xy,然后将克代入求值即可・试题解析J (1) x'y+xy0y (x+^=(2) x"-xy+y'= (s+y) '-3x7=4^" -3x1 =5-3=2 -考点:二次根式的化简求值.16- (1) 2; <2) 4.【解析】 试题分析:(1〉先把化简,然后把括号内合并后进行二次根式的乘法运算;(2)先把各二次根式化为最简二次根式,然后根据二次根式的除法法则和零指数幕的意义 进行计算.试题解析:(1)原式=40 H 逅)=2:(2)原式二诟+严 =5-1 =4.考点:1•二次根式的混合运算:2•零指数幕.17- (1) 3・ 5; (2) 8,【解析】(2)由 X 和 y 的值求得 x+y= JTT • xy=b 整体代入 x^—xy+y"=(x+-3xy^ 求值.(2)由题意得,x+y=7n , xy=b试题分析:(1〉由=3得x-y= -3xy,整体代入求值;试题解析:解:(1)由J-1 X V3 得 x-y= -3xy»所以 5K +XV _5丫 _5(x-y)+xv xn {x-y)-xyg □占=土—3.5:-3xy - xy -4xy试题分析:根据实数的计算法则进行汁算就可以得到答案.试题解析:(1)原雁2循一4亦=-2(2)原式=-2+3+JJ-2=JJ-l考点:实数的计算.21. (1) 4^3 : (2) 10-【解析】试题分析:(1)先代入分别求出x+y, s-y的值,根据平方差公式分解因式,代入求出即可: (2)先代入分别求出x+y, xy的值,根据完全平方公式代入求出即可;试题解析J x = A^ + l , y = y/3 -1» :. x + y = 2© > xy = 2, x-y = 2(1) X- - y- =(X + y}(x - y) = 2^3 X 2 = 4>/3 :(2)“ +小+严=(兀+刃2一小=(昉)2-2 = 10・考点:二次根式的化简求值.22.解J (1)(犬2 + 3)Cv + — J^):(2 ) 4Cv + — 2->/y :(3)(X(4)(宓 + 迈b)(五-^/5初.【解析】解:(1)x4—9= (*2+3〉(x2-3) =(%" + 3)(x + J?)(x - JJ):(2) 4x- - 32 = 4(x- - 8) = 4(x V8)(x(3) A" - 2/3x + 3 = F - Mi + (3? =(X-沖厂(4) 3«" 一2/?" = + 忑b)(五一迈b)・23. ],迺.a + 2 5【解析】试题分析:先分解因式,再把除法运算转化为乘法运算,约去分子分母中的公因式,化为展简形式,再把a的值代入求解.试题解析:原式二(3严(;;0)^二(4+2)2 3 — " a+3 a + 2当2时,原式二是h护晳考点:分式的化简求值.24 - 2x・[解析]卜|(4一4 二卜+土2 一卜+$2 二卜+> -因为OVxVl.所以原式=x+—-(亠x〉=x+X X —--*x=2s ・. • 7 X y25 - x'-sy+y'=〒_ + —=8・【解析】由已知有x+y=V5,xy=-(4X V (x+y)- -2xy -+- = =&y X26. (1) ZAPB=90^ (2) △APB 的周长是【解析】 试题分析:(1)根据平行四边形性质得出AD 〃CB ・ AB 〃CD,推出ZDAB+ZCBA=180\求 出 ZPAB+ZPBA=90% 在A A PB 中求出 ZAPB 即可:(2)求出AD=DP=5» BC=PC=5,求出DC=10=AB,即可求出答案•A ZDAB+ZCBA=180\又TAP 和BP 分别平分ZDAB 和ZCBA, 「•ZPAB+ZPBA 号 ZDAB+ZCBA)知,在AAPB 中,A ZAPB=180"- (ZPAB+Z PBA) =90°;(2) TAP 平分ZDAB,A ZDAP=Z PAB ・VAB//CD, •••ZP AB=ZD PA ••• Z DAP 二 Z DPA •••△ADP 是等腰三角形• /. AD=DP=5cm 同理:PC=CB=5cm即 AB=DC=DP+PC=10cm.在 RtAAPB 中,AB=10cm» AP=8cm>BP^VlO? - 8 乙6 (cm •••△APB 的周长是 6+8+10=24 (cm)考点:平行四边形的性质;等腰三角形的判定与性质:勾股定理.6+8+10=24 (cm)・解:(1) 7四边形ABCD 是平行四边形,C。
(word完整版)二次根式单元测试题(模拟卷)二

二次根式21。
1 二次根式:1. 使式子有意义的条件是。
2。
当__________时,.3.若11m+有意义,则m的取值范围是。
4。
当__________x时是二次根式.5。
在实数范围内分解因式:429__________,2__________x x-=-+=.6. 若2x=,则x的取值范围是。
7. 2x=-,则x的取值范围是。
8. 化简:)1x的结果是 .9。
当15x≤5_____________x-=.10。
把的根号外的因式移到根号内等于。
11.11x=+成立的条件是。
12。
若1a b-+互为相反数,则()2005_____________a b-=。
13。
在式子)()()230,2,12,20,3,1,x y y x x x x y+=--++中,二次根式有()A。
2个 B. 3个 C。
4个 D. 5个14. 下列各式一定是二次根式的是( )B。
C。
D。
15。
若23a( )A. 52a- B. 12a- C。
25a- D. 21a-16. 若A==()A. 24a+ B. 22a+ C. ()222a+ D. ()224a+17。
若1a≤)A. (1a-B。
(1a-C。
(1a- D.(1a-18.=成立的x的取值范围是( )A。
2x≠ B. 0x≥ C。
2x D。
2x≥19. 计算)A. 0 B。
42a- C。
24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是( )()()()()231233224=-∴=-∴=-A. ()1 B。
()2 C。
()3 D。
()421.2440y y-+=,求xy的值。
22。
当a 1取值最小,并求出这个最小值。
23。
去掉下列各根式内的分母:())10x())21x24.已知2310x x-+=,25.25。
已知,ab(10b-=,求20052006a b-的值。
21。
2 二次根式的乘除1。
当0a≤,0b时__________=。
2.和,则_____,______m n==.3。
(完整版)二次根式单元测试题八年级(可编辑修改word版)

- x - 2xx 2 + 23m - 1 2 2 25aa 2 +b 2a 2x x - 6 x 22x + 5 2 - x 二次根式测试题一、单项选择题1. 下列式子一定是二次根式的是( )A.B.C.D.2. 若= 3 - b ,则( )A.b>3B.b<3C.b ≥3D.b ≤33. 若有意义,则 m 能取的最小整数值是( )A.m=0B.m=1C.m=2D.m=34. 化简- 2( + 2) 得( )A.—2B.- 2 C.2 D. 4- 25. 下列根式中,最简二次根式是()A.B.C.D.6. 如果⋅ = 那么( )A. x ≥0B.x ≥6C.0≤x ≤6D.x 为一切实数1a310.已知 x + 2 + = 10 ,则 x 等于( )A.4B.±2C.2D.±4二、填空题(每小题 3 分,共30 分)1. 2 -的绝对值是,它的倒数 .2. 当 x时,有意义,若有意义,则 x.x3. 化简=,=.x 2 - 2(3 - b )2 8 2 0.5x (x - 6) 2 x 18x 5 225 ⨯ 0.04 1172 - 1082 7.若 x <2,化简 (x - 2)2+ 3 - x 的正确结果是() A.-1 B.1C.2x-5D.5-2x 8.设 a = 2 2 - 3, b = ,则 a 、b 大小关系是() A.a=bB.a >bC.a <bD.a >-b9.是同类二次根式,则 a 的值为( )A. a = - 3 4 4B. a =C. a = 1D. a = -12xy 123 - 23 x + 1 3 2 - 118 x 4 1xx 3 - 18x - 1 (a + b - c )2 (b - c - a )2 (b + c - a )2 x 2 + 7x - 8 x + 1 4.⋅ =,⋅ =.5.比较大小: (填“>”、“=”、“<”)6.在实数范围内分解因式1x 4 - 9 =.8.与 + 的关系是.9.当 x= 时,二次根式取最小值,其最小值为. 10.若的整数部分是 a ,小数部分是 b ,则 三、计算题(每小题 4 分,共 16 分) 23a - b = .1.+ - 4 2. (6- 2x ) ÷ 3 .;四、化简并求值(每小题 5 分,共 10 分)1. 已知: x =2 ,求 x 2- x + 1 的值.2. 已知: y = + + 1 2 , 求代数式- x + y y- 2的值. x3. 已知 a ,b ,c 为三角形的三边,化简+ + .4. 已知 x 为奇数,且⋅ 的值.8 y 27 2 121 - 8x x + y +2 y xx - 6 9 - x =求 1 + 2x + x 210一、填空题勾股定理(一)1. 如果直角三角形的两直角边长分别为 a 、b ,斜边长为 c ,那么 =c 2;这一定理在我国被称为 .2. △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边.(1)若 a =5,b =12,则 c = ;(2)若 c =41,a =40,则 b = ;(3)若∠A =30°,a =1,则 c = ,b = ;(4)若∠A =45°,a =1,则 b = ,c = .3. 如图是由边长为 1m 的正方形地砖铺设的地面示意图,小明沿图中所示的折线从 A →B →C 所走的路程为.4. 等腰直角三角形的斜边为 10,则腰长为,斜边上的高为 .5. 在直角三角形中,一条直角边为 11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 二、选择题6. Rt △ABC 中,斜边 BC =2,则 AB 2+AC 2+BC 2 的值为( ). (A) 8 (B)4 (C)6 (D)无法计算7. 如图,△ABC 中,AB =AC =10,BD 是 AC 边上的高线,DC =2,则 BD 等于( (A)4(B)6(C)8(D) 2 8. 如图,Rt △ABC 中,∠C =90°,若 AB =15cm ,则正方形 ADEC 和正方形 BCFG 的面积和为( ).(A)150cm 2(B)200cm 2(C)225cm 2(D)无法计算三、解答题9. 在 Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为 a 、b 、c . (1)若 a ∶b =3∶4,c =75cm ,求 a 、b ; (3)若 c -a =4,b =16,求 a 、c ;(5)若 a 、b 、c 为连续整数,求 a +b +c .综合、运用、诊断一、选择题10. 若直角三角形的三边长分别为 2,4,x ,则 x 的值可能有(). (A)1 个(B)2 个 (C)3 个(D)4 个二、填空题 11. 如图直,线l 经过正方形ABCD 的顶点B 点,A C 、到直线l 的距离分别是12、,则正方形的边长是 . 13.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,A D =20求,BC 的长.测试 2 勾股定理(二)一、填空题).1.若一个直角三角形的两边长分别为12 和5,则此三角形的第三边长为.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).5 题图(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ).(A)12 (B)10 (C)6 (D)8三、解答题7.在一棵树的10 米高B 处有两只猴子,一只猴子爬下树走到离树20 米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1 米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2 米,求这里的水深是多少米?11.长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了m.12.如图,在高为3 米,斜坡长为5 米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2 米,地毯每平方米30 元,那么这块地毯需花多少元?2 3 5 5。
二次根式单元测试题及答案word

二次根式单元测试题及答案word一、选择题(每题3分,共30分)1. 下列选项中,哪一个是二次根式?A. \(\sqrt{2}\)B. \(2\sqrt{2}\)C. \(\sqrt{2} + 1\)D. \(\sqrt{2} \times 3\)答案:A2. 计算 \(\sqrt{4}\) 的值是多少?A. 1B. 2C. 4D. -2答案:B3. 如果 \(x = \sqrt{9}\),那么 \(x\) 的值是多少?A. 3B. -3C. 3或-3D. 9答案:A4. 将 \(\sqrt{3} \times \sqrt{3}\) 化简,结果是多少?A. \(\sqrt{9}\)B. \(3\sqrt{3}\)C. 3D. \(\sqrt{3}\)答案:C5. 计算 \(\sqrt{16} - \sqrt{4}\) 的值是多少?A. 2B. 4C. 0D. 2\(\sqrt{2}\)答案:A6. 根据二次根式的性质,\(\sqrt{a^2} = |a|\),下列哪个选项是正确的?A. \(\sqrt{(-2)^2} = 2\)B. \(\sqrt{(-2)^2} = -2\)C. \(\sqrt{(-2)^2} = \pm 2\)D. \(\sqrt{(-2)^2} = -\sqrt{2}\)答案:A7. 计算 \(\sqrt{2} + \sqrt{2} = ?\)A. \(2\sqrt{2}\)B. \(\sqrt{4}\)C. 4D. \(\sqrt{8}\)答案:A8. 已知 \(a = \sqrt{7}\),\(b = \sqrt{3}\),那么 \(a^2 - b^2\) 的值是多少?A. 4B. 7C. 10D. 14答案:C9. 下列哪个表达式可以化简为 \(\sqrt{2}\)?A. \(\sqrt{4}\)B. \(\sqrt{8} \div 2\)C. \(\sqrt{2} \times \sqrt{2}\)D. \(\sqrt{2} + \sqrt{2}\)答案:B10. 计算 \(\sqrt{25} \times \sqrt{4}\) 的值是多少?A. 10B. 20C. 50D. 100答案:A二、填空题(每题4分,共20分)1. \(\sqrt{81}\) 的值是 ________。
(完整word版)【精华版】二次根式计算专题训练(附答案)(可编辑修改word版)

﹣ ﹣ ﹣ 二次根式计算专题训练一、解答题(共 30 小题)1. 计算:(1)+; (2)( +)+( ).2. 计算:(1)(π﹣3.14)0+| ﹣2|﹣ +()-2. (2) ﹣4 ﹣( ).(3)(x ﹣3)(3﹣x )﹣(x ﹣2)2.3. 计算化简:(1) ++ (2)2 ﹣6 +3.4. 计算(1) +(2) ÷×.5. 计算:(1)×+3×2 (2)2 ﹣6 +3.6. 计算:(1)( )2﹣20+|﹣ |(2)()×﹣﹣ ﹣ ﹣ ﹣ (3)2 ﹣3 +; (4)(7+4 )(2﹣ )2+(2+ )(2﹣ )7. 计算(1)•(a ≥0) (2) ÷(3)+ (4)(3+ )( )8. 计算::(1) +(2)3+()+ ÷ .9. 计算(1)﹣4 +÷ (2)(1﹣ )(1+ )+(1+ )2.10. 计算:(1) ﹣4 + (2) +2﹣( )﹣﹣﹣ ﹣﹣(3)(2+)(2); (4) +﹣( ﹣1)0.11. 计算:(1)(3 + ﹣4 )÷ (2) +9﹣2x 2• .12. 计算:①4 +﹣ +4 ; ②(7+4 )(7﹣4 )﹣(3 ﹣1)2.13. 计算题(1) ×× (2)+2(3)(﹣1﹣ )(﹣+1) (4)÷( )(5)÷ ×+(6).﹣14.已知:a=,b= ,求a2+3ab+b2的值.15.已知x,y 都是有理数,并且满足,求的值.16.化简:﹣a .17.计算:(1)9 +5﹣3 ;(2)2 ;﹣(3)()2016()2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c 是△ABC 的三边长,化简.= = ﹣1 == ==﹣21.已知 1<x <5,化简:﹣|x ﹣5|.22. 观察下列等式:①= ③; ②==;=………回答下列问题:(1)利用你观察到的规律,化简:(2)计算: +++…+ .23. 观察下面的变形规律:= ,= ,= ,= ,…解答下面的问题:(1)若 n 为正整数,请你猜想= ;(2)计算:(++…+)×()24. 阅读下面的材料,并解答后面的问题:;(1)观察上面的等式,请直接写出 (n 为正整数)的结果 ;(2)计算()( )=;==﹣﹣(3)请利用上面的规律及解法计算:(+ + +…+ )().25. 计算:(1)6﹣2 ﹣3(2)4+26. 计算(1)| ﹣2|﹣ +2(2)27. 计算.+4.×+.28. 计算(1)9 +7 ﹣5 +2 (2)(2 ﹣1)(2 +1)﹣(1﹣2 )2.29. 计算下列各题.(1)(30. 计算)×+3 (2)× .﹣ ﹣ ﹣(1)9 +7 ﹣5 +2 (2)( ﹣1)( +1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共 30 小题) 1.计算:(1)+ = 2+5= 7;(2)(+)+(= 4+2+2= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+( )﹣2 =1+2﹣﹣4 +9(2)﹣4﹣()= 2﹣4× =12﹣5; +2=+(3)(x ﹣3)(3﹣x )﹣(x ﹣2)2 =﹣x 2+6x ﹣9﹣(x 2﹣4x +4)=﹣2x 2+10x ﹣133.计算化简: (1) ++ = 2+3+2 = 5+2; (2)2﹣6+3= 2×2﹣6× +3×4 = 144.计算(1) += 2+4﹣2 = 6﹣2.(2)÷× = 2÷3×3 = 2.5.计算:(1)×+3×2 = 7+30 = 37 (2)2﹣6+3 = 4﹣2+12= 146.计算:(1)( )2﹣20+|﹣ | = 3﹣1+ =(2)()× =(3 )× = 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4 )(2﹣ )2+(2+ )(2﹣ )﹣﹣ ﹣ ﹣﹣ ﹣ ﹣﹣ =(2+ )2(2﹣ )2+(2+ )(2﹣ ) = 1+1 = 27.计算(1)•(a ≥0)== 6a (2)÷ = =(3)+(4)(3+)(8.计算:(1) +(2)3+( = 2+3﹣2 ﹣4 = 2﹣3)= 3﹣3+2﹣5 =﹣2=+3﹣2 =2 ; )+÷ =+﹣2+ =.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣ )(1+ )+(1+ )2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4 + =3 ﹣2 + =2 ;(2) +2﹣( (3)(2 +)(2 )=2+2﹣3+=3;)=12﹣6 =6;(4)+﹣( ﹣1)0 =+1+3﹣1 =4.11. 计算:(1)(3+﹣4 )÷=(9 +﹣2)÷4=8÷4=2;12. 计算:(2)+9﹣2x 2•=4+3﹣2x 2×=7 ﹣2=5.①4+ +4 =4 +3﹣2 +4 =7 +2;②(7+4 )(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6) =﹣45+6.13. 计算题(1) ×× = ==2×3×5 =30;﹣ ﹣﹣ ﹣ ﹣﹣ ﹣﹣ ﹣﹣ ÷ ﹣×+=4=(2)+2= ×4 ﹣2 +2× =2 ﹣2 + =;(3)(﹣1﹣ )(﹣+1)=﹣(1+ )(1﹣ )=﹣(1﹣5) =4;(4)÷((5))=2 ÷( ÷ )=2 ÷ =12;+2 =4+ ;(6)==.14. 已知:a=,b= ,求 a 2+3ab +b 2 的值. 解:a==2+,b=2﹣,则 a +b=4,ab=1, a 2+3ab +b 2=(a +b )2+ab=17.15. 已知 x ,y 都是有理数,并且满足,求的值.【分析】观察式子,需求出 x ,y 的值,因此,将已知等式变形:,x ,y 都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x ,y 都是有理数,∴x 2+2y ﹣17 与 y +4 也是有理数, ∴ 解得∵有意义的条件是 x ≥y ,∴取 x=5,y=﹣4, ∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16. 化简:﹣a . 【分析】分别求出=﹣a,=﹣,代入合并即可.﹣ ﹣﹣﹣ 【解答】解:原式=﹣a + =(﹣a +1) .【点评】本题考查了二次根式性质的应用当 a ≥0 时,=a ,当 a ≤0 时,=﹣a .17. 计算:(1)9 +5﹣3 = 9+10 ﹣12 = 7;(2)2= 2×2×2×=;(3)( )2016( =[( +)( )2015.)]2015•( +)=(5﹣6)2015•( +)=﹣( +)=﹣ .18. 计算:.解:原式=+()2﹣2+1﹣ +=3+3﹣2 +1﹣2+=4﹣ .19. 已知 y=+﹣4,计算 x ﹣y 2 的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得 x 的值,进而可求出 y 的值,然后代入 x ﹣y 2 求值即可.【解答】解:由题意得:, 解得:x=, 把 x=代入 y=+﹣4,得 y=﹣4,当 x=,y=﹣4 时 x ﹣y 2=﹣16=﹣14 .20. 已知:a 、b 、c 是△ABC 的三边长,化简.﹣ ﹣==【解】解:∵a 、b 、c 是△ABC 的三边长,∴a +b >c ,b +c >a ,b +a >c , ∴原式=|a +b +c |﹣|b +c ﹣a |+|c ﹣b ﹣a |=a +b +c ﹣(b +c ﹣a )+(b +a ﹣c ) =a +b +c ﹣b ﹣c +a +b +a ﹣c=3a +b ﹣c .21.已知 1<x <5,化简:﹣|x ﹣5|. 解:∵1<x <5,∴原式=|x ﹣1|﹣|x ﹣5| =(x ﹣1)﹣(5﹣x )= 2x ﹣6. 22.观察下列等式: ①= ;② == ;③=…回答下列问题:(1)利用你观察到的规律,化简:(2)计算: +++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化. 【解答】解:(1)原式= =;)(2)原式=+ ++…+=(﹣1).23. 观察下面的变形规律: = , = , = ,=,…解答下面的问题: (1) 若 n 为正整数,请你猜想=﹣ ;(2) 计算:(+ +…+ )×()= ﹣1 ==﹣ 解:原式=[(﹣1)+( )+( )+…+( )](+1)=( ﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24. 阅读下面的材料,并解答后面的问题:==; =(1)观察上面的等式,请直接写出 (n 为正整数)的结果﹣ ;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+ + +…+ )().=( ﹣1+ +…+)()=( ﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣ 3 = 6﹣ 5 = 6﹣ ;(2)4+ +4= 4+3﹣2 +4 = 7+2.26.计算(1)| ﹣2|﹣ +2= 2﹣﹣2+2 =;(2)×+= ×5+ =﹣1+ =﹣ .27.计算.=(10 ﹣6 +4)÷ =(10 ﹣6 +4)÷=(40 ﹣18 +8)÷=30 ÷ =15.﹣ ﹣ ﹣ ﹣﹣ ﹣ ﹣ ﹣ ﹣﹣ 28.计算(1)9+7 ﹣5 +2 = 9 +14 ﹣20 + = ; (2)(2﹣1)(2 +1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29. 计算下列各题.(1)( )×+3 = + =6﹣6 + =6﹣5 ;(2)×=+1﹣= 2+1﹣2.30. 计算(1)9 +7 ﹣5 +2 = 9 +14 ﹣20 + = ;(2)( ﹣1)( +1)﹣(1﹣2 )2=3﹣1﹣(1+12﹣4 )=2﹣13+4 =﹣11+4.﹣ ﹣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上学期数学测试题(二次根式)
班级________姓名______
一、选择题:(每题3分,共30分)
1.在15,6
1,211,40中最简二次根式的个数是………………( ) A .1个 B .2个 C .3个 D .4个
2.下列各组二次根式中是同类二次根式的是………………( )
A .2112与
B .2718与
C .3
13与 D .5445与 3.下列各式正确的是………………( )
A .a a =2
B .a a ±=2
C .a a =2
D .22a a =
4.32-的一个有理化因式是………………( )
A .3
B .32-
C .32+
D .32+-
5.若1<x <2,则()213-+-x x 的值为………………( )
A .2x-4
B .-2
C .4-2x
D .2
6.(10与(9乘积的结果是………………( )。
A 、
B 、
C 、
D 、7.下列二次根式中,可以合并的是………………( ) A .23a a a 和 B .232a a 和 C .a
a a a 132和 D .2423a a 和 8.如果1122=+-+a a a ,那么a 的取值范围是…………( )
A .0=a
B .1=a
C .1≤a
D .10==a a 或
9.若化简|1-x|-2x-5,则x 的取值范围是………( )
A .x 为任意实数
B .1≤x ≤4
C .x ≥1
D .x <4
10.已知三角形三边为a 、b 、c ,其中a 、b 两边满足0836122=-++-b a a ,那么这个三角形的最大边c 的取值范围是…………………( )
A .8>c
B .148<<c
C .86<<c
D .142<<c
二、填空题:(每题2分,共20分)
2.36的算术平方根是 。
3.计算( 2 =____________,当a ≥0=_____________。
4.若,则x=__________,y=____________。
5.计算())=__________。
6.已知xy <0= ;比较大小:-721
_________-341。
7.最简二次根式b a 34+与162++-b b a 是同类二次根式,则a = ,b = .
8.已知5的整数部分是a ,小数部分是b ,则b
a 1-的值为__________。
9.把二次根式__________。
10===请你将发现的规律用含自然数n (n ≥1)的等式表示出来______________________。
三、解答题
1.计算下列各式:(每题4分,共16分)
(1)
; (2)22)25()25(--+
(3)((2005200622 (4)
2.已知:实数a ,b 在数轴上的位置如图所示,(5分)
化简:a b -
3.已知
(6分)
(1)a 2-ab+b 2 (2)a 2-b 2
4.若x ,y 为实数,且y =x 41-+14-x +21,求x
y y x ++2-x y y x +-2的值。
(8分)
5.如图所示,面积为48cm 2的正方形四个角是面积为3cm 2的小正方形,现将四个角前剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少(保留根号)(5分)
6
.化简(10分)
a b
能力拓展(每题10分,共20分)
1
m 、n ,使22m n a +=
且
mn
则将a ±222m n mn +±,即变成2()m n ±开方,
简。
例如,5±
32++
222++,
请仿照上例解下列问题:
(1
(2
2、在矩形ABCD 中,,,AB a BC b M ==是BC 的中点,DE AM ⊥,垂足为E 。
(1) 如图①,求DE 的长(用a ,b 表示);
(2) 如图②,若垂足E 落在点M 或AM 的延长线上,结论是否与(1)相同?
(2)
(1)。