广东中考数学专题训练:解答题(三)(压轴题)

合集下载

(完整)中考数学压轴题精选及答案

(完整)中考数学压轴题精选及答案

一、解答题1.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点C ,顶点D 的坐标为(1,4)-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足,求点P 的坐标; (3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标2.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.3.在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.综合与探究如图,在平面直角坐标系中,点()0,10A ,点B 是x 轴的正半轴上的一个动点,连接AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(),0t(1)当6t =时,点M 的坐标是 ;(2)用含t 的代数式表示点C 的坐标;(3)是否存在点B ,使四边形AOBD 为矩形?若存在,请求出点B 的坐标;若不存在,请说明理由;(4)在点B 的运动过程中,平面内是否存在一点N ,使得以A 、B 、N 、D 为顶点的四边形是菱形?若存在,请直接写出点N 的纵坐标(不必要写横坐标);若不存在,请说明理由.5.如图(1),在菱形ABCD 中,∠ABC =60°,点E 在边CD 上(不与点C ,D 重合),连结AE ,交BD 于点F .(1)如图(2),若点M 在BC 边上,且DE =CM ,连结AM ,EM .求证:三角形AEM 为等边三角形;(2)设DF x BF=,求tan ∠AFB 的值(用x 的代数式表示); (3)如图(3),若点G 在线段BF 上,且FG =2BG ,连结AG 、CG ,DF x BF =,四边形AGCE 的面积为S 1,ABG 的面积为S 2,求12S S 的最大值.6.如图,在平面直角坐标系中,ABC 的边AB 在x 轴上,且OB OA >,以AB 为直径的圆过点C .若点C 的坐标为()0,4,10AB =,(1)求抛物线的解析式;(2)点P 为该函数在第一象限内的图象上一点(不与BC 重合),过点P 作PQ BC ⊥,垂足为点Q ,连接PC .若以点P 、C 、Q 为顶点的三角形与COA 相似,求点P 的坐标;(3)若ACB ∠平分线所在的直线l 交x 轴与点E ,过点E 任作一直线l '分别交射线CA ,CB (点C 除外)于点M ,N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.7.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点Q 称为⊙I 关于直线a 的“近点”,点P 称为⊙I 关于直线a 的“远点”把PQ ·QH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,3).半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“近点”“远点”分别是点_____和_____(填“A ”、“B ”、“C ”或“D ”),⊙O 关于直线m 的“特征数”为_____;②若直线n 的函数表达式为33y x =-+.求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,2),点F 是坐标平面内一点,以F 5为半径作⊙F .若⊙F 与直线l 相离,点N (1-,0)是⊙F 关于直线l 的“近点”.且⊙F 关于直线l 的“特征数”是6,求直线l 的函数表达式.8.如图,抛物线y=-x2+bx+c与x轴交于A,B两点,其中A(3,0),B(-1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A、C,连接CD.(1)分别求抛物线和直线AC的解析式;(2)在直线AC下方的抛物线上,是否存在一点P,使得△ACP的面积是△ACD面积的2倍,若存在,请求出点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且点A1恰好落在该抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.9.已知:如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,以OA,OC为边作矩形ABCO,矩形ABCO的面积是36.(1)求直线AC的解析式.(2)点P为线段AB上一点,点Q为第一象限内一点,连接PO,PQ,∠OPQ=90°,且OP=PQ,设AP的长为t,点Q的横坐标为d,求d与t的函数关系式.(不要求写出自变量t的取值范围)(3)在(2)的条件下,过点Q作QE∥PO交AB的延长线于点E,作∠POC的平分线OF 交PE于点F,交PQ于点K,若KQ=2EF,求点Q的坐标.10.如图,平面直角坐标系中,点O为原点,抛物线交x轴于()2,05,0B两点,交y轴于点C.A-、()(1)求抛物线解析式;(2)点P在第一象限内的抛物线上,过点P作x轴的垂线,垂足为点H,连AP交y轴于点E,设P点横坐标为t,线段EC长为d,求d与t的函数解析式;(3)在(2)条件下,点M在CE上,点Q在第三象限内抛物线上,连接PC、PQ、PM,PQ与y轴交于W,若,,,求点Q的坐标.11.已知:如图1,点A(a,b),AB x⊥轴于点B2++-+=.a b a b24(8)0(1)试判断△AOB的形状,并说明理由;(2)如图2,若点C为线段AB的中点,连OC并作OD OC⊥,且OD OC=,连AD交x轴于点E,试求点E的坐标;(3)如图3,若点M为点B的左边x轴负半轴上一动点,以AM为一边作45∠=︒交MANy轴负半轴于点N,连MN,在点M运动过程中,试猜想式子OM MN ON+-的值是否发生变化?若不变,求这个不变的值;若发生变化,试求它变化的范围.12.直角三角板ABC的斜边AB的两个端点在⊙O上,已知∠BAC=30°,直角边AC与⊙O 相交于点D,且点D是劣弧AB的中点.(1)如图1,判断直角边BC所在直线与⊙O的位置关系,并说明理由;(2)如图2,点P是斜边AB上的一个动点(与A、B不重合),DP的延长线交⊙O于点Q,连接QA、QB.①AD=6,PD=4,则AB= ;PQ= ;②当点P在斜边AB上运动时,求证:QA+QB=3QD.13.如图,已知四边形ABCD内接于⊙O,直径DF交BC于点G.(1)如图1,求证:∠BAD-∠BCF=90°;(2)如图2,连接AC,当∠BAC=∠CFD+∠ACD时,求证:CA=CB;(3)如图3,在(2)的条件下,AC交DF于点H,∠BAC=∠DGB,45CGBG,AC=9,求△CDH的面积.14.同学们学过正方形与等腰三角形发现它们都是轴对称图形,它们之间有很多相似,在正边形ABCD中,E是对角线AC上一点(不与点A、C重合),以AD、AE为邻边作平行四边形AEGD,GE交CD于点M,连接CG.(1)如图1,当12AE AC<时,过点E作EF BE⊥交CD于点F,连接GF并延长交AC于点H.求证:EB EF=;(2)在ABC中,AB AC=,90BAC∠=︒.过点A作直线AP,点C关于直线AP的对称点为点D,连接BD,CD直线BD交直线AP于点E.如图2,①依题意补全图形;②请用等式表示线段EB,ED,BC之间的数量关系,并予以证明.15.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式.(2)若点P为第三象限内抛物线上一动点,作PD⊥x轴于点D,交AC于点E,过点E作AC 的垂线与抛物线的对称轴和y轴分别交于点F、G,设点P的横坐标为m.①求PE2的最大值;②连接DF、DG,若∠FDG=45°,求m的值.16.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE =AD ,再连结BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是__________【应用】如图②,如图,在△ABC 中,D 为边BC 的中点、已知AB =10,AC =6,AD =4,求BC 的长.【拓展】如图③,在△ABC 中,∠A =90°,点D 是边BC 的中点,点E 在边AB 上,过点D 作D F⊥DE 交边AC 于点F ,连结EF .已知BE =5,CF =6,则EF 的长为__________.17.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点()03C -,.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,若点D 的横坐标为m ,ACD △的面积为S ,求S 与m 之间的函数关系式,并写出ACD △的面积取得最大值时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).18.如图,在平面直角坐标系中,已知二次函数图像222(1)2y x a x a a =-+++的顶点为P ,点B 39(2,)16- 是一次函数5119216y x =+上一点.(1)当a =0时,求顶点P 坐标;(2)若a >0,且一次函数2y x b =-+的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程);(3)作直线OC :12y x =与一次函数5119216y x =+交于点C .连结OB ,当抛物线与△OBC 的边有两个交点时,求a 的取值范围.19.已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S . ①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .20.如图,在ABCD 中,90ABD ∠=︒,5cm AD =,8cm BD =.点P 从点A 出发,沿折线AB BC -向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm/s 、5cm /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且2QM PQ =,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与ABCD 重叠部分的面积为()2cm S .(1)求边AB 的长.(2)当04t <<时,PQ = ,当48t <<时,PQ = .(用含t 的代数式表示)(3)当点M 落在BD 上时,求t 的值.(4)当矩形PQMN 与ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.【参考答案】参考答案**科目模拟测试一、解答题1.(1)223y x x =--;(2),; (3),;,;,;,; ,;,. 【解析】【分析】(1)根据顶点的坐标,设抛物线的解析式为y =a (x ﹣1)2﹣4,将点A (﹣1,0)代入,求出a 即可得出答案;(2)利用待定系数法求出直线BD 解析式为y =2x ﹣6,过点C 作CP 1∥BD ,交抛物线于点P 1,再运用待定系数法求出直线CP 1的解析式为y =2x ﹣3,联立方程组即可求出P 1(4,5),过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,证明△OCE ≌△GCF(ASA),运用待定系数法求出直线CF解析式为y=12x﹣3,即可求出P2(52,﹣74);(3)利用待定系数法求出直线AC解析式为y=﹣3x﹣3,直线BC解析式为y=x﹣3,再分以下三种情况:①当△QMN是以NQ为斜边的等腰直角三角形时,②当△QMN是以MQ为斜边的等腰直角三角形时,③当△QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可.(1)解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴,解得:,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC是正方形,∴OC=CG=BG=3,∠COE=∠G=90°,∠OCB=∠GCB=45°,∴∠OCB﹣∠BCE=∠GCB﹣∠BCF,即∠OCE=∠GCF,∴△OCE≌△GCF(ASA),∴FG=OE=32,∴BF=BG﹣FG=3﹣32=32,∴F(3,﹣32),设直线CF解析式为y=k1x+e1,∵C(0,﹣3),F(3,﹣32),∴,解得:,∴直线CF解析式为y=12x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=12x﹣3,解得:x1=0(舍),x2=52,∴P2(52,﹣74),综上所述,符合条件的P点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC解析式为y=m1x+n1,直线BC解析式为y=m2x+n2,∵A(﹣1,0),C(0,﹣3),∴,解得:,∴直线AC解析式为y=﹣3x﹣3,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为y=x﹣3,设M(t,t﹣3),则N(t,t2﹣2t﹣3),∴MN=|t2﹣2t﹣3﹣(t﹣3)|=|t2﹣3t|,①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,∵MQ∥x轴,∴Q(﹣13t,t﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43t,解得:t=0(舍)或t=53或t=133,∴,;,;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(,t2﹣2t﹣3),∴NQ=|t﹣|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,),∴Q(,),∴QH=|t﹣|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键.2.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APC S 的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标;(3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标.【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+ (2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y = (0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +, 2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APC C A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APC S 取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P - (3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++ ∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴= 解得2n =-设(,2)M m -,2242233x x ∴-=--+ 解得17x =-(17,2)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2 即(173,0)Q -±34(27,0),(27,0)Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.3.(1)B 2C 2;(233-3)OA 最小值为1,相应的3BC =OA 最大值为2,相应的6BC =【解析】【分析】(1)结合题意,根据旋转和圆的性质分析,即可得到答案;(2)根据题意,分B C ''在x 轴上方和x 轴上方两种情况;根据等边三角形、勾股定理、全等三角形的性质,得32AD OD ==,从而完成求解; (3)结合题意,得当AC '为⊙O 的直径时,OA 取最小值;当A 、B '、O 三点共线时,OA 取最大值;根据勾股定理、等腰三角形的性质计算,即可得到答案.【详解】(1)线段B 1C 1绕点A 旋转得到的11B C '',均不能成为⊙O 的弦∴线段B 1C 1不是⊙O 的以点A 为中心的“关联线段”;线段B 2C 2绕点A 旋转得到的22B C '',如下图:∴线段B 2C 2是⊙O 的以点A 为中心的“关联线段”;线段B 3C 3绕点A 旋转得到的33B C '',均不能成为⊙O 的弦∴线段B 3C 3不是⊙O 的以点A 为中心的“关联线段”;故答案为:B 2C 2;(2)∵△ABC 是边长为1的等边三角形,点A (0,t ),⊙O 的半径为1 ∴//B C x ''轴分B C ''在x 轴上方和x 轴上方两种情况:当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:∵1OB OC ''==∴1122B D B C '''== ∴2232OD OB B D ''=-=∵△ABC 是边长为1的等边三角形,即△AB C ''是边长为1的等边三角形, ∴AC D OC D ''∠=∠,AD B C ''⊥ ∴AC D OC D ''△≌△∴32AD OD == ∴3AO AD OD =+=∴3t =;当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:同理,3AO AD OD =+=∴()0,3A -;∴t 3=-;∴3t =或3-;(3)当AC '为⊙O 的直径时,OA 取最小值,如下图:∴OA 最小值为1,90AB C ''∠=︒ ∴223BC B C AC AB ''''==-=;当A 、B '、O 三点共线时,OA 取最大值,2OA AC '== ,如下图:作AE OC '⊥交OC '于点E ,作C F AO '⊥交AO 于点F ,如下图∵2OA AC '==∴1122OE OC '==∴2215AE AO OE - ∵11222AE OC OB C F '''⨯=⨯⨯ ∴1152C F AE '==∴2214OF OC C F ''=-=∴34B F OB OF ''=-=∴262BC B C C F B F ''''==+=∴OA 最小值为1,相应的3BC =;OA 最大值为2,相应的62BC =. 【点睛】本题考查了旋转、圆、等边三角形、勾股定理、全等三角形、等腰三角形的知识;解题的关键是熟练掌握旋转、圆周角、等腰三角形三线合一、勾股定理的性质,从而完成求解.4.(1)(3,5)M ,(2)1(5,)2C t t +;(3)(20,0)B ;(4)154或10. 【解析】 【分析】(1)利用中点坐标公式计算即可.(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .证明()MEB BFC AAS ∆≅∆,利用全等三角形的性质即可解决问题.(3)如图2中,存在.由题意当CF OA =时,可证四边形AOBD 是矩形,构建方程即可解决问题.(4)分三种情形:①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为6.③因为BD AB ≠,所以不存在以AD 为对角线的菱形. 【详解】解:(1)如图1中,(0,10)A ,(6,0)B ,AM BM =, (3,5)M ∴,(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .//ME OA ,AM BM =, 12OE EB t ∴==,152ME OA ==,90MEB CFB CBM ∠=∠=∠=︒,90MBE CBF ∴∠+∠=︒,90MBE BME ∠+∠=︒, BME CBF ∴∠=∠,()MEB BFC AAS ∴∆≅∆,5BF ME ∴==,12CF BE t ==,5OF OB BF t ∴=+=+, 1(5,)2C t t ∴+.(3)存在.如图2中,作ME OB ⊥于E ,CF x ⊥轴于F .理由:由题意当=10CF OA =时,//OA CF , ∴四边形AOFC 是平行四边形,90AOF ∠=︒,∴四边形AOFC 是矩形,90DAO AOB DBO ∴∠=∠=∠=︒,∴四边形AOBD 是矩形,又∵由(2)得12CF BE t ==, 即:1102t =,解得:20t =.(20,0)B ∴.(4)①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.AD BD =, BAD ABD ∴∠=∠,OAB ABD ∴∠=∠,OAB BAD ∴∠=∠. tan tan OAB BAD ∴∠=∠, ∴12OB BC OA BA ==,即1102t =,5t ∴=,5OB ∴=,设AN NB m ==,在Rt OBN △中,则有2225(10)m m =+-, 解得254m =, 25151044ON OA AN ∴=-=-=, ∴点N 的纵坐标为154. ②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为10.③BD AB ≠,∴不存在以AD 为对角线的菱形. 综上所述,满足条件的点N 的纵坐标为154或10. 【点睛】本题属于四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,翻折变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.5.(1)证明见解析;(23333xx;(3)194【解析】 【分析】(1)如图,连接,AC 证明,ACB ACD 都为等边三角形,可得,AC AD = 再证明,ACM ADE ≌从而可得答案;(2)如图,记,AC BD 交于点,O 设,,DFa OFb 四边形ABCD 为菱形,60,ABC ∠=︒表示33,33OA OB a b 利用,2DF ax BF a b则2,1a xb x再利用三角函数的定义可得答案;(3)如图,设,DFESn 证明,DFE BFA ∽ 2,BFAnSx 再表示2222,,33ABGAGFn nSS S x x 结合菱形的轴对称的性质可得:2=,3CBG nS x 表示,AFDn S x可得2=,BCD ABDn n S Sxx 可得2212243334,3nn n S x x x x n S x 再利用二次函数的性质可得答案.【详解】证明:(1)如图,连接,AC 菱形ABCD 中,∠ABC =60°,,60,120,60,AB BC CDAD ABC ADC BAD BCD BAC CAD ACB,ACB ACD 都为等边三角形,,AC AD ∴=,60,DE CM ACM ADE,ACM ADE ≌ ,,AMAE MAC EAD 60,MACCAECAEEADAME ∴是等边三角形(2)如图,记,AC BD 交于点,O设,,DF a OF b 四边形ABCD 为菱形,60,ABC ∠=︒,,30,ACBD OB OD a b ABO33,33OAOB a b ,2DF a x BFa b1221,a b bx a a 11,22b ax 则2,1ax bx333tan 13a b OAa AFBOFbb32331,3133xxxx(3)如图,设,DFESn四边形ABCD 是平行四边形,,DFE BFA ∽22=,BFAn DF x S BF2,BFAn SxFG =2BG , 2222,,33ABGAGFn n SS S xx根据菱形的轴对称的性质可得:2=,3CBG n S x ,AFD ABFS DF x SBF2,AFDn n S x x x 2=,BCDABD n n SSxx1222224=333n n n n n nS nn x x x x x x, 2212243334,3n n n S x x x x n S x 30,a所以12S S 有最大值, 当31232x时,最大值为:1119334.424【点睛】本题考查的是菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质,列二次函数关系式,二次函数的性质,锐角三角函数的应用,灵活运用以上知识解题是解本题的关键.6.(1)213442y xx =-++;(2)点P 的坐标为:(6,41,2);(3)11NC MC +=【解析】 【分析】(1)根据题意,先证明AOC ∆∽COB ∆,得到AO OCCO OB=,求出点A 、B 的坐标,然后利用待定系数法,即可求出抛物线解析式;(2)根据题意,可分为两种情况:AOC ∆∽PQC ∆或AOC ∆∽CQP ∆,结合解一元二次方程,相似三角形的判定和性质,分别求出点P 的坐标,即可得到答案;(3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,然后由角平分线的性质定理,得到EI =EJ ,再证明△MEI ∽△MNC ,△NEJ ∽△NMC ,得到111NC MC EI+=,然后求出EI 一个定值,即可进行判断. 【详解】解:(1)∵以AB 为直径的圆过点C , ∴∠ACB =90°, ∵点C 的坐标为()0,4, ∴CO ⊥AB ,∴∠AOC =∠COB =90°,∴∠ACO +∠OCB =∠ACO +∠OAC =90°, ∴∠OCB =∠OAC , ∴AOC ∆∽COB ∆,∴AO OCCO OB=, ∵4CO =,10AO BO AB +==, ∴10AO OB =-, ∴1044OB OB-=, 解得:2OB =或8OB =, 经检验,满足题意, ∵OB OA >, ∴8OB =,∴点A 为(2-,0),点B 为(8,0).设抛物线的解析式为2y ax bx c =++,把点A 、B 、C 三点的坐标代入,有44206480c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得:14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为213442y x x =-++;(2)根据题意,如图:当AOC ∆∽PQC ∆时, ∴ACO PCQ ∠=∠, ∵90ACO OCB ∠+∠=︒, ∴90PCQ OCB ∠+∠=︒, ∴PC ⊥OC , ∴点P 的纵坐标为4,当4y =时,有2134442x x -++=,解得:16x =或20x =(舍去); ∴点P 的坐标为(6,4);当AOC ∆∽CQP ∆时,则此时BC 垂直平分OP ,作PG ⊥y 轴,垂足为G ,如上图, ∴90CQP AOC ∠=∠=︒,∴AC ∥OP , ∴∠ACO =∠POG , ∵90PGO AOC ∠=∠=︒, ∴AOC ∆∽PGO ∆, ∴AO OCPG GO=, 设点P 为(x ,213442x x -++), ∴PG x =,213442GO x x =-++,∴22413442x x x =-++, 解得:171x =±-, ∵点P 在第一象限, ∴171x =-,∴2134217242x x -++=-,∴点P 的坐标为(171-,2172-);综合上述,点P 的坐标为:(6,4)或(171-,2172-); (3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,如图:∵CE 是∠ACB 的角平分线, ∴EI =EJ ,∵EI ∥CN ,EJ ∥CM ,∴△MEI ∽△MNC ,△NEJ ∽△NMC , ∴EI ME NC MN =,EJ NE MC MN =, ∴1EI EJ ME NENC MC MN MN +=+=, ∴1EI EI NC MC +=, ∴111NC MC EI+=, ∵△ACO ∽△AEI ,∴12AI AO EI CO ==,∵AC = ∵AC AI IC AI EI =+=+,12=,解得:EI =∴111NC MC EI +==∴11NC MC+是一个定值. 【点睛】本题考查了二次函数的综合应用,求二次函数的解析式,二次函数的性质,相似三角形的判定和性质,解一元二次方程,角平分线的性质定理等知识,解题的关键是熟练掌握题意,正确的作出辅助线,运用数形结合的思想进行解题.7.(1)①B ;D ;4;②1;(2)1522y x =-+或24y x =-+【解析】 【分析】(1)①根据“近点”、“远点”以及“ 特征数”的定义判断即可;②过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P .先分别求得点E 、F 的坐标,进而可求得EF 的长,再利用等积法求得OH 的长,进而即可解决问题;(2)如图,先求得“近点”N 到直线l 的距离NH AOB AHN △∽△即可求得答案. 【详解】解:(1)①由题意,点B 是O 关于直线m 的“近点”, 点D 是O 关于直线m 的“远点”, ∵点E 的坐标为(0,3).⊙O 的半径为1, ∴OE =3,OB =OD =1,∴BE =OE -OB =2,DB =OB +OD =2,O 关于直线m 的特征数224DB BE =⋅=⨯=, 故答案为:B ;D ;4;②如图,过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P ,设直线33y x =-+交x 轴于点F ,交y 轴于点E , 令y =0,则x =3;令x =0,则y =3, ∴(3F ,0),(0,3)E ,3OE ∴=,3OF =,22223(3)23EF OE OF ∴=+=+=,∵1122EOF S OE OF EF OH =⋅=⋅△, ∴11332322OH ⨯⨯=⨯⋅, 解得:32OH =, 12QH OH OQ ∴=-=, 又∵2PQ OQ OP =+=,O ∴关于直线n 的“特征数” 1212PQ QH =⋅=⨯=;(2)如图,设直线l 交x 轴于点A ,交y 轴于点B ,过点F 作FH ⊥直线l ,垂足为点H ,交⊙F 于N ,G ,∵⊙F 5,∴FN =FG 5,∴GN =FN +FG 5∵⊙F 关于直线l 的“特征数”是6, ∴GN·NH =6,NH =6, 解得:NH设直线l 的解析式是y kx b =+, ∵直线l 经过点M (1,2),∴将(1,2)代入y kx b =+,得:2k b +=, 2b k ∴=-,(2)y kx k ∴=+-,∴当0x =时,2y k =-,∴点B 坐标为(0,2-k ),|2|OB k ∴=-,当0y =时,(2)0kx k +-=, 解得:2k x k-=, ∴点A 坐标为(2k k-,0), 2||k OA k -∴=,22|(1)||1|k k AN k k--=--=+,AB ∴2||k k-= BAO NAH ∠=∠,90AOB AHN ∠=∠=︒, AOB AHN ∴△∽△,∴NH ANOB AB=,∴|2|522|1|||k k k k k-=--+, 整理,得:22520k k ++=,解得:12k =-或2k =-,∴直线l 的解析式为1522y x =-+或24y x =-+.【点睛】本题属于圆综合题,考查了一次函数的性质,相似三角形的判定和性质运用以及勾股定理的运用,远点,近点,特征数等新定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.8.(1)y =-x 2+2x +3,y =-x +3;(2)存在,(-1,0)或(4,-5);(3)存在,(1,2)或(1,-3) 【解析】 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD AD =,进而判断出ABC 的面积和ACP △的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】(1)把(30)A ,、(10)B -,代入2y x bx c =-++, 解得2b =、3c =∴抛物线的解析式为2y x 2x 3=-++则C 点为(0,3),又(30)A ,,代入1y kx b =+, 得1k =-,13b =, ∴直线AC 的解析式为3y x =-+, (2)如图,连接BC ,∵点D 是抛物线的对称轴与x 轴的交点, ∴AD BD =, ∴2ABCACDSS=,∵2ACP ACD S S =△△,∴ACP ABC S S =△△,此时,点P 与点B 重合, 即:(10)P -,, 过B 点作PB AC ∥交抛物线于点P ,则直线BP 的解析式为1y x =--①, ∵抛物线的解析式为2y x 2x 3=-++②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5); (3)由(1)可知,抛物线解析式为()214y x =--+ 把1x =代入直线AC 解析式3y x =-+得AC 与抛物线对称轴的交点(1,2)M ,如下图所示:22222BM AM ==+,4AB =即222BM AM AB +=则MAB △是等腰直角三角形,符合题意,M 点即为所求Q 点的一种情况,当Q 点在x 轴下方时,设Q 为(1,)m ,0m <, 因为线段AQ 绕Q 点顺时针旋转90°得到线段1QA 过A1作直线DQ 的垂线于E 点,则1ADQ QEA ≌ ∴2AD QE ==,1DQ EA m ==- ∴12(1)A m m --,∵点A1恰好落在抛物线2y x 2x 3=-++上, 代入,解得m=-3或2m = (舍去) ∴Q (1,-3)综上,Q 点坐标为(1,2)或(1,-3), 【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,全等三角形的判定与性质,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.9.(1)直线AC 的解析式为y =﹣x +6;(2)d =4-t ;(3)Q (212,1). 【解析】 【分析】(1)先由解析式求出得A 、C 点的坐标,得OA =OC ,得四边形ABCO 为正方形,再根据正方形的面积求得边长,便可得b 的值;(2)过点Q 作QG ⊥AB 交AB 延长沿于点G ,证明Rt △AOP ≌Rt △GPQ (AAS ),得到AP =GQ ,进而求得结论便可;(3)过点P 作PH ⊥OF 于点H ,延长PH 交EQ 的延长线于点R ,EQ 的延长线与x 轴交于点N ,过Q 作QM ⊥x 轴于点M .证明Rt △AOP ≌Rt △GPQ (CCS ),得PK =QR ,∠R=∠OKP,再证明∠R=∠FPR,得EP=ER,再证FE=NR,设FE=NR=k,NQ=m,在Rt△PQE中,由勾股定理列出方程,得到k与m的关系,解Rt△PQE得tan∠PEQ,进而把这个函数值运用到△OAP中,求得t的值,再运用(2)中结论得Q的纵坐标d的值,再运用到△QNM中求得NM,NQ的值,进而求得ON,便可得Q的横坐标的值.【详解】解:(1)∵直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,A b C b,∴(,0),(0,)∴OA=OC=b,∴矩形ABCO为正方形,∵矩形ABCO的面积是36.∴b=6,即直线AC的解析式为y=﹣x+6;(2)如图,过点Q作QG⊥AB交AB延长沿于点G,∵∠OPQ=90°,∴∠APO+∠GPQ=90°,∵∠APO+∠AOP=90°,∴∠AOP=∠GPQ,∵在矩形ABCO,∠OAP=90°,QG⊥AB,∴∠QGP=∠OAP=90°,∵PQ=OP,∴Rt△AOP≌Rt△GPQ(AAS),∴AP=GQ,∵AP=t,∴GQ=t,∴d=4-t;(2)过点P作PH⊥OF于点H,延长PH交EQ的延长线于点R,EQ的延长线与y轴交于点N,过Q作QM⊥y轴于点M.则AP=t,QM=d,且d=6-t.∵OF 平分∠POC , ∴∠POF =∠COF =∠PFO , ∴PF =PO ,∵PH ⊥OF ,∠OPQ =90°, ∴∠OPH =∠FPH ,∠KPH =∠POH , 在△OPK 和△PQR 中, 90OPK PQR PO QP POK QPR ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△OPK ≌△PQR (ASA ), ∴PK =QR ,∠R =∠OKP ,∵∠OKP +∠POK =∠POK +∠OPH =90°, ∴∠OKP =∠OPH , ∴∠R =∠OPH , ∵PO =PF ,PH ⊥OF , ∴∠OPH =∠FPH , ∴∠R =∠FPR , ∴EP =ER ,∵PE ∥ON ,OP ∥EN , ∴四边形OPEN 是平行四边形, ∴EN =PO =PF , ∴PE -PF =ER -EN , ∴FE =NR ,设FE =NR =k ,则KQ =2FE =2k , 又设NQ =m ,∴PK=QR=m+k,∴PQ=m+3k,∴PO=EN=PF=m+3k,∴QE=EN-QR=m+3k-m=3k,PE=PF+FE=4k+m,在Rt△PQE中,∵PE2=PQ2+QE2,∴(4k+m)2=(3k+m)2+(3k)2,∴k1=0(舍去),k2=m,∴PQ=4m,QE=3m,∴tan∠PEN=43 PQQE=,∵OP∥EN,∴∠OPA=∠PEN,∴tan∠APO=43,∵AO=6,∴AP=4.5,∴t=4.5,∴QM=d=6-t=1.5,∵PE∥OC,∴∠QNM=∠PEN,∴tan∠QNM=tan∠PEN=43,∴NM=9 tan8QMQNM=∠,∴m=NQ158 =,∴PE=ON=4k+m=5m=758,∴OM=ON+NM=212,∴Q(212,1).【点睛】本题是一次函数与四边形的综合题,主要考查了一次函数的图象与性质,全等三角形的性质与判定,正方形的性质,旋转的性质,解直角三角形的应用,等腰三角形的性质与判定,平行四边形的性质与判定,是一道综合性极强的题目,解决这类问题常用到数形结合、方程和转化等数学思想方法.构造全等三角形是解题的关键,也是问题的突破口.10.(1);(2);(3)【解析】 【分析】(1)由抛物线的二次项系数 再根据交点式可得抛物线为从而可得答案;(2)先画好图形,证明利用相似三角形的性质求解从而可得答案;(3)如图,过P 作轴于,K 过M 作于,N 证明即再求解则,再解方程可得 4,t = 再求解的解析式,再联立解析式解方程可得答案. 【详解】 解:(1) 抛物线交x 轴于()2,0A -、()5,0B 两点,所以可得抛物线为:(2)如图,过P 作于,H 连AP 交OC 于则,x 则令0,(3)如图,过P作轴于,K过M作于,N 由(2)得:,,轴,则轴,,即结合(1)可得:四边形为矩形,。

挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)

挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)

04 挑战压轴题(解答题二)3.(2021·广东广州·统考中考真题)已知抛物线()2123y x m x m =-+++(1)当0m =时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m 的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点()1,1E --、()3,7F ,若该抛物线与线段EF 只有一个交点,求该抛物线顶点横坐标的取值范围.1.已知梯形ABCD 中,AD ∥BC ,且AD BC <,5AD =,2AB DC ==.⑴如图,P 为AD 上的一点,满足∠BPC=∠A ,求AP 的长;⑵如果点P 在AD 边上移动(点P 与点D 不重合),且满足∠BPE=∠A ,BC 交直线BC 于点E ,同时交直线DC 于点Q .①当点Q 在线段DC 的延长线上时,设CQ y =,CQ=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;②写CE=1时,写出AP 的长(不必写解答过程)5.(2022·江苏苏州·苏州市振华中学校校考模拟预测)平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知()41M ,,()23,N -,点()P m n ,.(1)①若2m =,4n =,则点M ,N ,P 的“最佳三点矩形”的周长为_________,面积为_________;②若2m =,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值;(2)若点P 在直线25y x =-+上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围;②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点()P m n ,在抛物线2y ax bx c =++上,当且仅当点M ,N ,P 的“最佳三点矩形”面积为18时,21m -≤≤-或13m ≤≤,直接写出抛物线的解析式.6.如图,一条抛物线经过原点和点C (8,0),A 、B 是该抛物线上的两点,AB ∥x 轴,点A 坐标为(3,4),点E 在线段OC 上,点F 在线段BC 上,且满足∠BEF =∠AOC .(1)求抛物线的解析式;(2)若四边形OABE 的面积为14,求S △ECF ;(3)是否存在点E ,使得△BEF 为等腰三角形?若存在,求点E 的坐标;若不存在,请说明理由.7.(2020下·天津和平·九年级统考阶段练习)已知点()4,8A -和点()2,B n 在抛物线2y ax =上.(Ⅰ)求该抛物线的解析式和顶点坐标,并求出n 的值;(Ⅱ)求点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ QB +最短,求此时点Q 的坐标;(Ⅲ)平移抛物线2y ax =,记平移后点A 的对应点为A ',点B 的对应点为B ',点()2,0C -是x 轴上的定点.①当抛物线向左平移到某个位置时,A C CB ''+最短,求此时抛物线的解析式;②()4,0D -是x 轴上的定点,当抛物线向左平移到某个位置时,四边形A B CD ''的周长最短,求此时抛物线的解析式(直接写出结果即可)8.(2023上·陕西西安·九年级校考期中)问题探究(1)请在图1中过点A 画一条直线,将ABC V 分成面积相等的两部分;(2)如图2,在ABCD Y 中,3AB =,4=AD ,点E 在AD 的延长线上,且2DE =,过点E 作直线l 分别交边CD ,AB 于点M ,N .若直线l 将ABCD Y 的面积平分,则请求出CM 的长度;问题解决(3)某市为保护生态环境,方便市民观光游览,准备在秦岭北麓兴建一处“和谐观光园”,其形状为四边形ABCD ,如图3所示.在四边形ABCD 中,90B D ∠=∠=︒,实际长度5AD =公里,9AB =公里,13BC =公里,15CD =公里,点P 在CD 上且5PD =公里,根据用地需求,需在BC 上确定点E ,将五边形ABEPD 作为特色植物繁育展示区,使其面积为四边形ABCD 总面积的一半,并在AB 上确定点F ,在PEF !中修建游客休息区,剩余部分作为花卉展示区,为方便游客游览,要求修建PE 、PF 、EF 三条观光道路的总长度最小.请问这样的PEF !是否存在?若存在,请求出点E 到点B 的距离及PEF !周长的最小值;若不存在,请说明理由.(1)求点B 的坐标;(2)如果抛物线212y x bx c =-++经过点(1)求证:2AG OE =;(2)若tan 21CAE AE ∠==,,求AG 的长;(3)如图2,若1AE =,设tan CAE ∠=①用含有x 的代数式表示OB 的长;②求y 关于x 的函数关系式.11.(2021上·安徽六安·九年级校考阶段练习)南浔区某校增设拓展课程之“开心农场”,如图,准备利用现成的一堵“L ”字形的墙面(粗线ABC 表示墙面,已知AB ⊥BC ,AB =3米,BC =1米)和总长为11米的篱笆围建一个“日”字形的小型农场DBEF (细线表示篱笆,小型农场中间GH 也是用篱笆隔开),点D 可能在线段AB 上(如图1),也可能在线段BA 的延长线上(如图2),点E 在线段BC 的延长线上.(1)当点D 在线段AB 上时,①设DF 的长为x 米,请用含x 的代数式表示EF 的长;②若要求所围成的小型农场DBEF 的面积为9平方米,求DF 的长;(2)DF 的长为多少米时,小型农场DBEF 的面积最大?最大面积为多少平方米?12.(2022·陕西西安·西安市第三中学校考模拟预测)问题提出:(1)如图1,在矩形ABCD 中,4AB =,3AD =,P 是对角线AC 上的一点,连接PD ,将PD 绕点P 逆时针旋转90︒得到PM ,过点M 作MN AC ⊥于N ,求PN 的长.问题解决:(2)2022年3月我省局部发生疫情,为落实“科学防治、精准施策、分级管理”,我省某小区设计防疫区域,在道路CD 边固定柱子(点)Q ,道路AB 边确定一点P ,以PQ 为边,搭建正方形防疫区域PMNQ ,内部道路CD 上设点E 作为记录处,EPQ V 、EPM V 、EMN V 、ENQ V 分别为不同的防疫物资放置区域,设计图简化如图2所示,已知道路两边AB CD ∥,道路宽为6m ,Q 为CD 上一定点,P 为AB 上一动点,PE CD ⊥于E .请问是否存在符合设计要求且面积最小的EMN V ?若存在,请求出面积最小值及此时QE 的长;若不存在,请说明理由.13.(2022·四川巴中·统考模拟预测)为了提高巴中市民的生活质量,巴中市对老旧小区进行了美化改造.如图,在老旧小区改造中,某小区决定用总长27m的栅栏,再借助外墙围成一个矩形绿化带ABCD,中间用栅栏隔成两个小矩形,已知房屋外墙长9m.(1)当AB长为多少时,绿化带ABCD的面积为242m(2)当AB长为多少时,绿化带ABCD的面积最大,最大面积是多少?14.(2021·江苏常州·统考中考真题)如图,在平面直角坐标系xOy中,正比例函数()0=≠和二次函数y kx k(2)如图②,四边形ABCD 内接于O e ,AC 为直径,点B 是半圆AC 的三等分点(弧AB <弧BC ),连接BD ,若BD 平分ABC ∠,且8BD =,求四边形ABCD 的面积.(3)如图③,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O ,设计人员准备在内接四边形ABCD 区域内进行花卉图案设计,其余部分方便游客参观,按照设计要求,四边形ABCD 满足∠ABC=60°,AB=AD ,且AD+DC=10(其中24DC ≤≤ ),为让游客有更好的观体验,四边形ABCD 花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD ?若存在,求出这个最大值,不存在请说明理由.16.(2021·上海宝山·统考一模)已知抛物线()20y ax bx a =+≠经过 ()4,0A ,()1,3B -两点,抛物线的对称轴与x 轴交于点C ,点 D 与点B 关于抛物线的对称轴对称,联结BC 、BD .(1)求该抛物线的表达式以及对称轴;(2)点E 在线段BC 上,当CED OBD =∠∠时,求点 E 的坐标;(3)点M 在对称轴上,点N 在抛物线上,当以点O 、A 、M 、N 为顶点的四边形是平行四边形时,求这个平行四边形的面积.17.(2022上·河北沧州·九年级校考阶段练习)一名身高为1.8m 的篮球运动员甲在距篮筐(点B )水平距离4m 处跳起投篮,篮球准确落入篮筐,已知篮球的运动路线是抛物线,篮球在运动员甲头顶上方0.25m 处(点A )出手,篮球在距离篮筐水平距离为1.5m 处达到最大高度3.5m ,以水平地面为x 轴,篮球达到最大高度时的铅直方向为y 轴,建立如图所示的平面直角坐标系.(1)求篮球运动路线(抛物线)的函数解析式;(2)求篮球出手时,运动员甲跳离地面的高度是多少米?(3)已知运动员乙跳离地面时,最高能摸到3.3运动员乙在运动员甲与篮筐之间的什么范围内能在空中截住球?18.(2023下·浙江·八年级专题练习)在矩形ABCD 中,6cm AB =,12cm BC =,点P 从点A 出发,沿AB 边向点B 以1cm /秒的速度移动,同时,点Q 从点B 出发沿BC 边向点C 以2cm /秒的速度移动.如果P 、Q 两点在分别到达B 、C 两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,PBQ V 的面积等于28cm ?(2)设运动开始后第t 秒时,五边形APQCD 的面积为范围;写出t 为何值时,S 的值最小.(3)当t =32时,试判断DPQ V 的形状.(4)计算四边形DPBQ 的面积,并探索一个与计算结果有关的结论.(1)BD = ;(2)如图2,在运动过程中,连接OD ,将ODC V 沿OD 折叠,得到ODP V ,连接为 ,此时,AP 的值为 ;(3)如图3,在运动过程中,以O 为圆心,OC 的长为半径作半圆,交射线CB 于。

2021年广东省中考数学解答题压轴题练习及答案 (63)

2021年广东省中考数学解答题压轴题练习及答案 (63)

2021年广东省中考数学解答题压轴题练习1.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD 于H,CH与过A点的直线相交于点F,∠F AD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.【分析】(1)欲证明AF为⊙O的切线,只需推知CA⊥AF;(2)如图2,连接OD.理由圆周角定理和等量代换推知:∠DOA=∠DOC,则DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P.构造全等三角形:△ODE≌△OCM,则OE=OM,设OM=m,所以AE=2﹣m,AP=PE=2﹣m,DP=2+m;由△EAN∽△DPE的对应边成比例推知:=,所以=,利用方程求得m 的值,易得AN=,AE=;结合勾股定理得NE=.【解答】(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠F AD=∠ABD,∴∠F AD=∠DCA,∴∠F AD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠F AC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.。

2021年广东省中考数学解答题压轴题练习及答案 (98)

2021年广东省中考数学解答题压轴题练习及答案 (98)

2021年广东省中考数学解答题压轴题练习1.如图Rt△ABC中,∠ABC=90°,P是斜边AC上一个动点,以BP为直径作⊙O交BC 于点D,与AC的另一个交点E,连接DE.(1)当时,①若=130°,求∠C的度数;②求证AB=AP;(2)当AB=15,BC=20时①是否存在点P,使得△BDE是等腰三角形,若存在,求出所有符合条件的CP的长;②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在∠CPH内,则CP的取值范围为7<CP<12.5.(直接写出结果)【分析】(1)①连接BE,由圆周角定理得出∠BEC=90°,求出=50°,=100°,则∠CBE=50°,即可得出结果;②由=,得出∠CBP=∠EBP,易证∠C=∠ABE,由∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,得出∠APB=∠ABP,即可得出结论;(2)①由勾股定理得AC==25,由面积公式得出AB•BC=AC•BE,求出BE=12,连接DP,则PD∥AB,得出△DCP∽△BCA,求出CP==CD,△BDE是等腰三角形,分三种情况讨论,当BD=BE时,BD=BE=12,CD=BC﹣BD=8,CP=CD=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,得出CD=BC=10,CP=CD=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,求出AE==9,CE=AC﹣AE=16,CH=20﹣BH,由EH∥AB,得出=,求出BH=,BD=2BH=,CD=BC﹣BD=,则CP=CD=7;②当点Q落在∠CPH的边PH上时,CP最小,连接OD、OQ、OE、QE、BE,证明四边形ODQE是菱形,求出PC=AC﹣PE﹣AE=7;当点Q落在∠CPH的边PC上时,CP最大,连接OD、OQ、OE、QD,同理得四边形ODQE是菱形,连接DF,求出PC=AC=12.5,即可得出答案.【解答】(1)①解:连接BE,如图1所示:∵BP是直径,∴∠BEC=90°,∵=130°,∴=50°,∵=,∴=100°,∴∠CBE=50°,∴∠C=40°;②证明:∵=,∴∠CBP=∠EBP,∵∠ABE+∠A=90°,∠C+∠A=90°,∴∠C=∠ABE,∵∠APB=∠CBP+∠C,∠ABP=∠EBP+∠ABE,∴∠APB=∠ABP,∴AP=AB;(2)解:①由AB=15,BC=20,由勾股定理得:AC===25,∵AB•BC=AC•BE,即×15×20=×25×BE∴BE=12,连接DP,如图1﹣1所示:∵BP是直径,∴∠PDB=90°,∵∠ABC=90°,∴PD∥AB,∴△DCP∽△BCA,∴=,∴CP===CD,△BDE是等腰三角形,分三种情况:当BD=BE时,BD=BE=12,∴CD=BC﹣BD=20﹣12=8,∴CP=CD=×8=10;当BD=ED时,可知点D是Rt△CBE斜边的中线,∴CD=BC=10,∴CP=CD=×10=;当DE=BE时,作EH⊥BC,则H是BD中点,EH∥AB,如图1﹣2所示:AE===9,∴CE=AC﹣AE=25﹣9=16,CH=BC﹣BH=20﹣BH,∵EH∥AB,∴=,即=,解得:BH=,∴BD=2BH=,∴CD=BC﹣BD=20﹣=,∴CP=CD=×=7;综上所述,△BDE是等腰三角形,符合条件的CP的长为10或或7;②当点Q落在∠CPH的边PH上时,CP最小,如图2所示:连接OD、OQ、OE、QE、BE,由对称的性质得:DE垂直平分OQ,∴OD=QD,OE=QE,∵OD=OE,∴OD=OE=QD=QE,∴四边形ODQE是菱形,∴PQ∥OE,∵PB为直径,∴∠PDB=90°,∴PD⊥BC,∵∠ABC=90°,∴AB⊥BC,∴PD∥AB,∴DE∥AB,∵OB=OP,∴OE为△ABP中位线,∴PE=AE=9,∴PC=AC﹣PE﹣AE=25﹣9﹣9=7;当点Q落在∠CPH的边PC上时,CP最大,如图3所示:连接OD、OQ、OE、QD,同理得:四边形ODQE是菱形,∴OD∥QE,连接DF,∵∠DBC=90°,∴DF是直径,∴D、O、F三点共线,∴DF∥AQ,∴∠OFB=∠A,∵OB=OF,∴∠OFB=∠OBF=∠A,∴P A=PB,∵∠OBF+∠CBP=∠A+∠C=90°,∴∠CBP=∠C,∴PB=PC=P A,∴PC=AC=12.5,∴7<CP<12.5,故答案为:7<CP<12.5.。

中考数学专题复习二次函数压轴题(三)

中考数学专题复习二次函数压轴题(三)

中考数学专题复习二次函数压轴题(三)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.如图,抛物线y=x2+bx+c交x轴于A、B两点(点A在点B的左侧),交y轴于点C (0,5),连接BC,其中OC=5OA.(1)求抛物线的解析式;(2)如图1,将直线BC沿y轴向上平移6个单位长度后与抛物线交于D、E两点,交y轴于点G,若点P是抛物线上位于直线BC下方(不与A、B重合)的一个动点,连接PE,交直线BC于点F,连接PD、DF、PB、PC.若S△PBC=1021S△EDF,求点P的坐标;(3)如图2,当点P满足(2)问条件时,将△CBP绕点C逆时针旋转α(0°<α<90°)得到△CB'P',此时点B′恰好落到直线ED上,已知点M是抛物线上的动点,在直线ED 上是否存在一点N,使得以点C、B′、M、N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标,若不存在,请说明理由.2.如图,抛物线y=24x2+2x﹣62交x轴于A、B两点(点A在点B的左侧),交y 轴于C点,D点是该抛物线的顶点,连接AC、AD、CD.(1)求△ACD的面积;(2)如图,点P是线段AD下方的抛物线上的一点,过P作PE△y轴分别交AC于点E,交AD于点F,过P作PG△AD于点G,求EF+52FG的最大值,以及此时P点的坐标;(3)如图,在对称轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以BN 为直角边的等腰Rt△BMN?若存在,求出点M的横坐标,若不存在,请说明理由.3.在平面直角坐标系中,抛物线y=﹣ax2+2ax+c与x轴相交于A(﹣1,0)、B两点(A点在B点左侧),与y轴相交于点C(0,32),点D是抛物线的顶点.(1)如图1,求抛物线的解析式;(2)如图1,点F(0,b)在y轴上,连接AF,点Q是线段AF上的一个动点,P是第一象限抛物线上的一个动点,当b=﹣2时,求四边形CQBP面积的最大值与点P 的坐标;(3)如图2,点C1与点C关于抛物线对称轴对称.将抛物线y沿直线AD平移,平移后的抛物线记为y1,y1的顶点为D1,将抛物线y1沿x轴翻折,翻折后的抛物线记为y2,y2的顶点为D2.在(2)的条件下,点P平移后的对应点为P1,在平移过程中,是否存在以P1D2为腰的等腰△C1P1D2,若存在请直接写出点D2的横坐标,若不存在请说明理由.4.如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x 轴的上方,将△BCD沿直线BD翻折得到△BC′D,若点C′恰好落在抛物线的对称轴上,求点C′和点D的坐标;5.如图,直线与轴交于点,与轴交于点,抛物线经过点,.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,△点在线段上运动,若以,,为顶点的三角形与相似,求点△点在轴上自由运动,若三个点,,中恰有一点是其它两点所连线段的中点(三点重合除外),则称,,三点为“共谐点”.请直接写出使得,,三点成为“共谐点”的的值.6.如图,抛物线y=x 2+bx+c 与x 轴交于点A 和点B (3,0),与y 轴交于点C (0,3). (1)求抛物线的解析式;(2)若点M 是抛物线在x 轴下方上的动点,过点M 作MN△y 轴交直线BC 于点N ,求线段MN 的最大值;(3)在(2)的条件下,当MN 取得最大值时,在抛物线的对称轴l 上是否存在点P ,使△PBN 是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.7.如图1,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于()10A -,,0(4)B ,两点,与y 轴交于()023C ,.(1)求函数表达式;(2)点D 是线段BC 中点,点E 是BC 上方抛物线上一动点,连接CE ,DE .当CDE △的面积最大时,过点E 作y 轴垂线,垂足为F ,点p 为线段EF 上一动点,将CEF △绕点C 顺时针方向旋转90°,点F ,P ,E 的对应点分别是F ',P ',E ',点Q 从点P 出发,先沿适当的路径运动到点F '处,再沿F C '运动到点C 处,最后沿适当的路径运动到点P 处停止.求CDE △面积的最大值及点Q 经过的最短路径的长;参考答案:1.(1)y =x 2-6x +5;(2)P (4,-3);(3)存在,(2,9)或(12,-1)或⎝⎭或⎝⎭. 【解析】【分析】(1)先求出点A 的坐标,然后代入y =x 2+bx +c ,即可求抛物线的解析式;(2)先求出B 点的坐标,继而得到直线BC 的解析式,然后BC 向上平移6个单位为DE ,得到直线DE 的解析式,根据直线DE 和抛物线的交点,可求出点D 和点E 的坐标,进而得到DE 和BC 的长,连接BD ,CD ,则EDF BCD S DE S BC =△△,继而得到23PBC BCD S S =△△,可求得P 在直线y =-x +1上,通过联立方程,可求出P 点的坐标;(3)根据BC可求出CB '=,设(,11)B a a '-+,则222(6)50CB a a '=+-+=,分情况讨论,△当B C '为对角线时,△当B M '为对角线时,△当MC 为对角线时,分别求出对应的N 点坐标即可.【详解】解:(1)△C (0,5),OC =5OA ,△OC =5,OA =1,A (1,0)将C (0,5),A (1,0)代入y =x 2+bx +c 中,得510c b c =⎧⎨++=⎩解得:65b c =-⎧⎨=⎩△抛物线的解析式为:y =x 2-6x +5;(2)令y =0,则有x 2-6x +5=0,解得:x 1=5,x 2=1△B (5,0)设直线BC 为:y =kx +b ,则有550b k b =⎧⎨+=⎩ 解得:51b k =⎧⎨=-⎩, △直线BC :y =-x +5,△BC 向上平移6个单位为DE△直线DE 为:y =-x +11,联立21165y x y x x =-+⎧⎨=-+⎩, 得x 2-5x -6=0△x 1=6,x 2=-1,△D (6,5),E (-1,12),△DE =△BC=△BC //DE ,△如图,连接BD ,CD ,△75EDF BCD S DE S BC ===△△,△1021PBC EDF S S =△△, △10722153PBC BCD BCD S S S =⨯=△△△, 过C 作CR DE ⊥于,R 过P 作//PQ BC 交y 轴于,Q 过Q 作QQ BC '⊥于Q ', 则2,3PBC BCD S QQ S CR '== 5,OB OC ==45,BCO ∴∠=︒由平移的性质及//PQ BC 可得:45,OQP OCB CGD ∴∠=∠=∠=︒:11,DE y x =-+ 则()0,11,G 而()0,5,C6,CG ∴= sin 45CR CG∴=︒QQ '∴=同理可得:4,CQ =()1,0,Q ∴:1,PQ y x ∴=-+△联立2165y x y x x =-+⎧⎨=-+⎩ 解得:124,1x x ==,△P (4,-3)或(1,0),△当P 为(1,0)时与点A 重合,故舍去,△P (4,-3);(3)△BC =,△CB '=设(,11)B a a '-+,则222(6)50CB a a '=+-+=,解得:127,1a a ==-,△090α<<,△B '(7,4),设M (m ,m 2-6m +5),N (n ,-n +11),△当B C '为对角线时,2765119m n m m n +=⎧∴⎨-+-+=⎩解得:07m n =⎧⎨=⎩(舍去)或52m n =⎧⎨=⎩ △N (2,9);△当B M '为对角线时,27465511m n m m n +=⎧∴⎨+-+=-+⎩, 解得:07m n =⎧⎨=⎩(舍去)或5,12m n =⎧⎨=⎩ △N (12,-1);△当MC 为对角线时,27655411n m m m n +=⎧∴⎨-++=-+⎩,解得:m n ⎧=⎪⎪⎨⎪=⎪⎩m n ⎧=⎪⎪⎨⎪=⎪⎩△N ⎝⎭或N ⎝⎭, 综上可知,N 点坐标为(2,9)或(12,-1)或⎝⎭或⎝⎭. 【点睛】本题考查二次函数综合,涉及到的知识点有待定系数法求函数解析式、一次函数图像的平移、两点间的距离等,解题的关键是综合利用相关知识.2.(1)24;(2)点P (﹣,);(3)存在,点M的横坐标为-.【解析】 【分析】(1)先求出抛物线与坐标轴的交点坐标和顶点坐标,再用待定系数法求得AC 的解析式,进而求出点N 、D 的坐标,再根据三角形的面积公式求出结果;(2)证明FG 即为EP 的长度,即可求解; (3)分△BNM 为直角、△MBN 为直角,利用三角形全等即可求解. 【详解】解:(1)令x =0,得020y =+⨯-=-△C (0,﹣,令y =0,得2204y x x =+-,解得1x =-2x =△A(-0),点B (0), 设直线AC 的解析式为:y =kx+b (k ≠0),则0b b ⎧-+=⎪⎨=-⎪⎩, △1k b =-⎧⎪⎨=-⎪⎩△直线AC 的解析式为:y x =--△22244y x x x =+-+-△D(--,过D 作DM△x 轴于点M ,交AC 于点N ,如图,令x =-(y =---=-N(--,△DN =△112422ACDSDN AO =⋅=⨯=; (2)如图,过点D 作x 轴的平行线交FP 的延长线于点H ,由点A 、D 的坐标得,直线AD的表达式为:2y x =--△tan△FDH =2,则sin△FDH=, △△HDF+△HFD =90°,△FPG+△PFG =90°, △△FDH =△FPG ,在Rt△PGF 中,PF =FG sin G FP ∠= FG sin FDH∠=FG ,则FG =EF+PF =EP , 设点P (x22x +-,则点E (x,x --, 则FG =EF+PF =EP=2223x x x x --+-=-⎝, △0,故EP 有最大值,此时x =﹣2b a =﹣当x=-22y x x =+- 故点P(-2-); (3)存在,理由:设点M 的坐标为(m ,n ),则22n m +-,点N (0,s ), (△)当点M 在x 轴下方时,△当△MNB为直角时,如图,过点N作x轴的平行线交过点B与y轴的平行线于点H,交过点M与y轴的平行线于点G,△△MNG+△BNH=90°,△MNG+△GMN=90°,△△GMN=△BNH,△△NGM=△BHN=90°,MN=BN,△△NGM△△BHN(AAS),△GN=BH,MG=NH,-=-,即n s-=m s联立并解得:m=故m=M(;△当△NBM为直角时,如图,过点B作y轴的平行线交过点N与x轴的平行线于点G,交过点M与x轴的平行线于点H,同理可证:△MHB△△BGN(AAS),则BH=NG,即n=-,当n=-22m+-=-m=,故m =M (,-; (△)当点M 在x 轴上方时,同理可得:m =-或-综上,点M 的横坐标为-. 【点睛】本题考查二次函数的综合题,涉及三角形面积的求解,用胡不归原理求最值,等腰直角三角形的存在性问题,解题的关键是需要掌握这些特定题型的特定解法,熟练运用数形结合的思想去解决问题.3.(1)y 2(2)当m =32时,S 四边形CQBP ,此时P点坐标为(32;(3)存在,满足要求的D 2【解析】 【分析】(1)将A 、C 两点坐标代入抛物线解析式当中求出a 与c 的值即可;(2)先求出B 、F 坐标,然后可以证明AF 与BC 平行,于是△QBC 的面积就等于△ABC 的面积,问题就转化为求△PBC 的面积的最大值,作PE△y 轴交直线BC 于E ,设P 点的横坐标为未知数m ,将E 点坐标也用m 表示,PE 的长度用P 、E 纵坐标之差表示,于是△PBC 的面积就可以表示成关于m 的二次函数,通过配方法即可求出最值及P 点坐标. (3)由于限定了以P 1D 2为腰,因此分两大类分别列方程计算即可. 【详解】(1)将A (﹣1,0)、C (0, 20a a c c --+=⎧⎪⎨=⎪⎩解得:a c ⎧=⎪⎨=⎪⎩△抛物线的解析式为y 2. (2)如图1,连接BC ,AC ,作PE△y 轴交BC 于E .△y 2x+1)(x ﹣3). △B (3,0),△b△F (0),△OF OCOA OB=, △AF△BC ,△S △QBC =S △ABC =12AB•OC =,由B 、C 两点坐标可得直线BC 的解析式为:y设P (m 2),则E (m ,PE =y P ﹣y E m 2,△S △PBC =12(x B ﹣x C )(y P ﹣y E m 2m (m ﹣32)2△S 四边形CQBP =S △QBC +S △PBC =S △ABC +S △PBC =﹣2(m ﹣32)2,△当m =32时,S 四边形CQBP ,此时P 点坐标为(32,4).(3)△y 221)x -+ △D(1,,抛物线对称轴为x =1, △C 1与C 关于直线x =1对称, △C1(2,),由A 、D 两点坐标可求得直线AD 的解析式为y =,设D 1(m ,,则P 1(m+12,2m+724),D 2(m ,﹣22m ﹣22), △221222732m 60m 8PD =++,221293654C D m m =++, 221143P C 9m 13m 8=-+,当P 1C 1=P 1D 2时,2439138m m -+=222732m 60m 8++,解得1m =2m =当C 1D 2=P 1D 2时,9m 2+36m+54=222732m 60m 8++,解得3m =3m =综上所述,满足要求的D 2,【点睛】本题为二次函数综合题,主要考查了待定系数法求一次函数与二次函数的解析式、二次函数图象的基本性质、铅垂高法求三角形面积、配方法求二次函数最值、等腰三角形的存在性问题,解一元二次方程等重要知识点,综合性强,难度较大,特别是第二问,有一定计算量,解答时容易出错.同时注意分类讨论思想在本题中的应用.4.(1)y =x 2﹣2x ﹣3;(2)点C ′的坐标为(1,,点D 的坐标为(1) 【解析】 【分析】(1)根据抛物线2y ax bx c =++经过点(2,5)A -,与x 轴相交于(1,0)B -,(3,0)C 两点,利用待定系数法求得该抛物线的解析式即可;(2)先确定二次函数对称轴,BC 长度,根据题意和翻折的性质,得到B C′长度,利用三角函数求出△C′BC ,再根据角平分线求出△DBC ,解直角三角形可以求得点C '和点D 的坐标,本题得以解决. 【详解】解:(1)△抛物线y =ax 2+bx +c 经过点A (﹣2,5),与x 轴相交于B (﹣1,0),C (3,0)两点,△4250930a b c a b c a b c -+=⎧⎪-+=⎨⎪++=⎩,得123a b c =⎧⎪=-⎨⎪=-⎩,即抛物线的函数表达式是y =x 2﹣2x ﹣3;(2)△与x 轴相交于B (﹣1,0),C (3,0)两点, △BC =3﹣(﹣1)=3+1=4,该抛物线的对称轴是直线x =132-+=1, 设抛物线的对称轴与x 轴的交点为H , 则点H 的坐标为(1,0), △BH =2,△将△BCD 沿直线BD 翻折得到△BC ′D ,点C ′恰好落在抛物线的对称轴上, △BC =BC ′=4,△C ′HB =90°,△C ′BD =△DBC , △OCcos△C ′BH ='BH BC =24=12, △C ′的坐标为(1,,△C ′BH =60°, △△DBC =30°, △BH =2,△DBH =30°, △OD =BH△点D 的坐标为(1, 由上可得,点C ′的坐标为(1,,点D 的坐标为(1.【点睛】本题考查待定系数法求抛物线解析式,图形翻折变化、二次函数的性质、特殊角的三角函数值,解答本题的关键是明确题意,利用数形结合的思想解答.5.(1)B (0,2),2410233y x x =-++;(2)△点M 的坐标为(118,0)或M (52,0);△m=-1或m=14-或m=12.【解析】 【分析】(1)把点(3,0)A 代入23y x c =-+求得c 值,即可得点B 的坐标;抛物线243y x bx c =-++经过点,即可求得b 值,从而求得抛物线的解析式;(2)由轴,M (m ,0),可得N(2410233z m m m -++),△分△NBP=90°和△BNP =90°两种情况求点M 的坐标;△分N为PM 的中点、P 为NM 的中点、M 为PN 的中点3种情况求m 的值. 【详解】(1)直线23y x c =-+与轴交于点(3,0)A ,△2303c -⨯+=,解得c=2△B (0,2),△抛物线243y x bx c =-++经过点(3,0)A ,△2433203b -⨯++=,△b=103△抛物线的解析式为2410233y x x =-++;(2)△MN x ⊥轴,M (m ,0),△N(2410233z m m m -++)△有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2△在△APM 中和△BPN 中,△APM=△BPN, △AMP=90°, 若使△APM 中和△BPN 相似,则必须△NBP=90°或△BNP =90°, 分两种情况讨论如下:(I )当△NBP=90°时,过点N 作NC 轴于点C ,则△NBC+△BNC=90°,NC=m , BC=22410410223333m m m m -++-=-+△△NBP=90°,△△NBC+△ABO=90°,△△BNC=△ABO , △Rt△NCB△ Rt△BOA△NC CB OB OA =,即24103323m mm -+=,解得m=0(舍去)或m=118△M (118,0); (II )当△BNP=90°时, BN MN ,△点N 的纵坐标为2, △24102233m m -++=解得m=0(舍去)或m=52△M (52,0);综上,点M 的坐标为(118,0)或M (52,0);△由△可知M(m,0),P(m,223m -+),N(m,2410233m m -++),△M ,P ,N 三点为“共谐点”,△有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有2(223m -+)=2410233m m -++,解得m=3(三点重合,舍去)或m=12;当M 为线段PN 的中点时,则有223m -++(2410233m m -++)=0,解得m=3(舍去)或m=−1;当N 为线段PM 的中点时,则有223m -+=2(2410233m m -++),解得m=3(舍去)或m=14-;综上可知当M,P,N 三点成为“共谐点”时m 的值为12或−1或14-.考点:二次函数综合题.6.(1)抛物线的解析式为y=x 2﹣4x+3.(2)当m=32时,线段MN 取最大值,最大值为94.(3)点P 的坐标为(2,12)、(2)、(2)、(2)或(2).【解析】 【分析】(1)把点B 、C 的坐标代入2y x bx c =++列出方程组,解方程组求得,b c 的值即可得到二次函数的解析式;(2)由点B 、C 的坐标可求出直线BC 的解析式,设点M 的横坐标为m ,由此可用含m 的代数式表示出点M 、N 的纵坐标,从而可用含m 的式子表达出MN 的长度,由点M 在x 轴下方可求得m 的取值范围为:14m <<,由此即可求出线段MN 的最大值;(3)由题意结合(2)可得点N 的坐标,由点P 在抛物线对称轴上,可设其坐标为(2,n),结合点B 和点N 的坐标即可表达出PB 、PN 、BN 的长度,再分PB=PN 、PB=BN 、PN=BN 三种情况讨论计算即可求得符合题意的点P 的坐标. 【详解】 解:(1)将点B (3,0)、C (0,3)代入抛物线y=x 2+bx+c 中,得9303b c c ++=⎧⎨=⎩,得43b c =-⎧⎨=⎩,△抛物线的解析式为y=x 2-4x+3.(2)由题意可设点M 的坐标为(m ,m 2-4m+3),设直线BC 的解析式为y=kx+3, 把点(3,0)代入y=kx+3,中, 得:0=3k+3,解得:k=-1, △直线BC 的解析式为y=-x+3. △MN△y 轴,△点N 的坐标为(m ,-m+3),△MN==-m+3-(m 2-4m+3)=-(m -32)2+94.△当m=32时,MN 最大=94. (3)由(2)可得:当m=32时,点N 的坐标为(32,32),△点P 在抛物线的对称轴上, △可设点P 坐标为(2,n ),=,, 若PBN 为等腰三角形,则存在以下三种情况:△当PB PN =时,12n = ,此时点P 的坐标为(2,12);△当PB BN =,解得:n 2=± ,此时点P 的坐标为(2,)或(2);△当PN BN =n =,此时点P 的坐标为或. 综上可知:在抛物线的对称轴l 上存在点P ,使PBN 是等腰三角形,点P 的坐标为(2,12),(2,),(2). 点睛:解本题第2小题时,当利用设出的点P 的坐标和已知的点B 、N 的坐标表达出线段PB 、PN 和BN 的长度时,需注意题目中没有指明△PBN 为等腰三角形时的底和腰,因此要分:(1)PB=PN ;(2)PB=BN ;(3)PN=BN 三种情况分别讨论计算,不要忽略了其中任何一种情况,避免丢解.7.(1)2y x =+(2)最大面积为Q 【解析】【分析】(1)根据题意可设二次函数顶点式,再用待定系数法求解即可.(2)观察图形发现CDE △本身的面积不易表示,由条件点D 是线段BC 中点想到三角形的中线将其面积分为相等的两部分,所以将求CDE △面积最大值转化为求 CED 的面积最大值,方法可过E 作x 轴的垂线,交BC 于点H ,通过二次函数解析式与直线BC 的解析式分别设出点E 与点H 的坐标,再表示出CEB S 的面积转化为新的二次函数求最值;求点Q 经过的最短路径,先要确定点P 的位置,可作点C 关于EF 的对称点C ',连接F C ''交EF 于一点,该点即为点Q 运动路径最短时的点P ,原因是此时F P '与PC '共线,最后根据点的坐标求出线段长度即可.【详解】因为抛物线与x 轴交于10A -(,),0(4)B ,两点, 可设函数解析式为:()()()22343414y a x a x x ax ax a x =---==--+,根据题意得:4a -=解得:a =△解析式为:2y x =+(2)△点D 是线段BC 中点△2CEB CED S S =△当CEB △面积最大时,CED 的面积最大;过E 作x 轴的垂线,交BC 于点H ,易得直线BC 的直线方程为:y =+设2(E m +,(H m +△211422CEB S =⨯⨯⎡⎤⎛⎢⎥ ⨯⎢⎥⎝⎣++⎦+)222m =+=-+当2m =时,CED 有最大面积,最大面积为△(2E ,(F ,作点C 关于EF 的对称点C ',连接F C ''交EF 于一点,该点即为点Q 运动路径最短时的点P ,因为(0C , (F ,所以CF =根据旋转的性质,C F CF '=,所以F '因为C '与C 关于EF 对称,所以(0C '△在Rt CC F'中,F C''=△点Q运动最短路径为F C F C'+''【点睛】本题结合一次函数和二次函数的图象与性质,旋转与轴对称的性质,三角形的性质等内容,考查了最值问题与动点问题,熟练掌握各个知识点,结合图形合理作出辅助线,将难解的问题适当转化是解答的关键.。

2021年广东省中考数学解答题压轴题练习及答案 (96)

2021年广东省中考数学解答题压轴题练习及答案 (96)

2021年广东省中考数学解答题压轴题练习1.如图,四边形ABCD的边AB在x轴上,A与O重合,CD∥AB,D(0,),直线AE与CD交于E,DE=6.以BE为折痕,把点A翻恰好与点C重合;动点P从点D出发沿着D→C→B→O路径匀速运动,速度为每秒4个单位;以P为圆心的⊙P半径每秒增加个单位,当点P在点D处时,⊙P半径为;直线AE沿y轴正方向向上平移,速度为每秒个单位;直线AE、⊙P同时出发,当点P到终点O时两者都停止,运动时间为t;(1)求点B的坐标;(2)求当直线AE与⊙P相切时t的值;(3)在整个运动过程中直线AE与⊙P相交的时间共有几秒?(直接写出答案)【分析】(1)根据勾股定理可求出AE长,易证△ABE是等边三角形,从而得到AB=AE,就可求出点B的坐标.(2)由于点P在不同的线段上运动,需分情况讨论,可分四种情况(点P在DE上、点P 在EC上、点P在BC上、点P在OB上)进行讨论,然后利用三角函数建立方程,就可求出相应t的值.(3)在(2)的基础上,可得到直线AE与⊙P相交时t的范围,就可求出相交时间.【解答】解:(1)连接BE,如图1,∵CD∥AB,∴∠CDO+∠BOD=90°.∵∠BOD=90°,∴∠CDO=90°.∵D(0,),∴AD=6.∵DE=6,∴AE==12.∴sin∠AED==.∴∠AED=60°.∵CD∥AB,∴∠EAB=∠AED=60°.由轴对称的性质可得:AE=EC,AB=BC,∠AEB=∠CEB==60°.∴△ABE是等边三角形.∴AB=AE.∵AE=12,∴BC=AB=AE=EC=12.∴B(12,0).(2)①当圆心P在线段DE上时,过点P作PH⊥AE于H,如图2,则有DP=4t,OA=t,AD=6﹣t,PH=+t.在Rt△ADE中,∵tan∠AED==,∴DE=6﹣t.∴PE=DE﹣DP=6﹣t﹣4t.在Rt△PHE中,则有,解得:t1=.②当圆心P在线段EC上时,过点P作PH⊥AE于H,如图3,同理可得:PH=+t,PE=DP﹣DE=4t﹣6+t.在Rt△PHE中,则有,解得:t2=.③当圆心P在线段BC上时,过点P作PH⊥AE于H,过点C作CG⊥AE于G,如图4,∵AE∥BC,PH⊥AE,CG⊥AE,∴GC=PH.(平行线之间的垂线段相等)在Rt△EGC中,∵GC=PH═+t,EC=DC﹣DE=18﹣(6﹣t)=12+t,∴.解得:t3=6.④当圆心P在线段BO上时,∵EC∥BF,EF∥BC,∴四边形ECBF是平行四边形.∴FB=EC=12+t.∵PB=4t﹣18﹣12=4t﹣30,∴PF=FB﹣PB=42+t﹣4t.在Rt△FHP中,∵∠HFP=60°,PH=+t,PF=42+t﹣4t,∴.解得:t4=∵点P在OB上,∴≤t≤,即≤t≤.∵<,∴t4=不符合要求,故舍去.综上所述:当直线AE与⊙P相切时t的值为秒或秒或6秒.(3)由(2)可知:当<t<和6<t≤时,直线AE与⊙P相交.则相交的时间为(﹣)+(﹣6)=(秒).所以在整个运动过程中直线AE与⊙P相交的时间共有秒.。

广东省中考数学压轴题全解全析

2019年广东省中考数学压轴题全解全析2020年中考在即,备受广大师生关注的中考数学中的压轴题,因为这些试题有较强的选拔性,往往在很大的程度上决定了考试的成败,为帮助大家迎接今年的中考,特对2007年广东省各市中考数学压轴题加以整理,希望对大家有所帮助。

1.(深圳) 如图7,在平面直角坐标系中,抛物线2164y x =-与直线12y x =相交于A B ,两点. (1)求线段AB 的长.(2)若一个扇形的周长等于(1)中线段AB 的长,当扇形的半径取何值时,扇形的面积最大,最大面积是多少?(3)如图8,线段AB 的垂直平分线分别交x 轴、y 轴于C D ,两点,垂足为点M ,分别求出OM OC OD,,的长,并验证等式222111+=是否成立.(4)如图9,在Rt ABC △中,90ACB =∠,CD AB⊥,垂足为D,设BC a =,AC b=,AB c =.CD b =,试说明:222111a b h +=.解(1) ∴A (-4,-2),B (6,3) 分别过A 、B 两点作x AE ⊥轴,y BF ⊥轴,垂足分别为E 、F∴AB =OA+OB 22223624+++=55=(2)设扇形的半径为x ,则弧长为)255(x -,扇形的面积为y则)255(21x x y -=x x 5252+-=16125)455(2+--=x∵01<-=a ∴当455=x 时,函数有最大值16125=最大y (3)过点A 作AE ⊥x 轴,垂足为点E ∵CD 垂直平分AB ,点M 为垂足 ∴255225521=-=-=OA AB OM∵COM EOA OMC AEO ∠=∠∠=∠, 图7 图8图9∴△AEO ∽△CMO ∴CO AO OM OE = ∴CO52254=∴45415225=⋅⋅=CO 同理可得 25=OD∴542520)52()54(112222==+=+OD OC ∴5412=OM ∴222111OM OD OC =+(4)等式222111hb a =+成立.理由如下:∵AB CD ACB ⊥=∠,90∴2222121b a AB h AB ab +=⋅= ∴h c ab ⋅=∴ 2222h c b a ⋅= ∴22222)(h b a b a += ∴22222222222)(h b a h b a h b a b a +=∴222221b a b a h += ∴222111b a h += ∴222111h b a =+2. (梅州 11分)如图12,直角梯形ABCD 中,90643AB CD A AB AD DC ∠====∥,°,,,,动点P 从点A 出发,沿A D CB →→→方向移动,动点Q 从点A 出发,在AB 边上移动.设点P 移动的路程为x ,点Q 移动的路程为y ,线段PQ 平分梯形ABCD 的周长.(1)求y 与x 的函数关系式,并求出x y ,的取值范围;(2)当PQ AC ∥时,求x y ,的值;(3)当P 不在BC 边上时,线段PQ 能否平分梯形ABCD 的面积?若能,求出此时x 的值;若不能,说明理由. 解:(1)过C 作CE AB ⊥于E ,则34CD AE CE ===,,可得5BC =,所以梯形ABCD 的周长为18. ····················································································· 1分PQ 平分ABCD 的周长,所以9x y +=, ··································································· 2分 因为06y ≤≤,所以39x ≤≤, 所求关系式为:939y x x =-+,≤≤. ················ 3分(2)依题意,P 只能在BC 边上,79x ≤≤.126PB x BQ y =-=-,,因为PQ AC ∥,所以BPQ BCA △∽△,所以BP BQBC BA=,得 ······································ 4分12656x y --=,即6542x y -=, 解方程组96542x y x y +=⎧⎨-=⎩, 得87121111x y ==,. ······ 6分图12(3)梯形ABCD 的面积为18. ························································································ 7分 当P 不在BC 边上,则37x ≤≤(a )当34x <≤时,P 在AD 边上,12APQ S xy =△.如果线段PQ 能平分梯形ABCD 的面积,则有192xy = ······················································· 8分可得:918.x y xy +=⎧⎨=⎩,解得36x y =⎧⎨=⎩,;(63x y ==,舍去). ····················································· 9分(b )当47x ≤≤时,点P 在DC 边上,此时14(4)2ADPQ S x y =⨯-+. 如果线段PQ 能平分梯形ABCD 的面积,则有14(4)92x y ⨯-+=,可得92217.x y x y +=⎧⎨+=⎩,此方程组无解. 所以当3x =时,线段PQ 能平分梯形ABCD 的面积.11分3. (韶关 9分)如图6,在平面直角坐标系中,四边形OABC 是矩形,OA=4,AB=2,直线32y x =-+与坐标轴交于D 、E 。

2024年中考数学压轴题型(广东专用)专题04特殊平行四边形中全等相似与最值问题(学生版)

专题04特殊平行四边形中全等相似与最值问题通用的解题思路:一、四边形与全等相似1.三角形与全等之六大全等模型:(1)一线三等角模型锐角一线三等角(2)手拉手模型(3)半角模型(4)倍长中线模型模型(6)雨伞等模型(5)平行线中等模型2.三角形与相似之四大相似模型:(1)A字模型(3)手拉手模型(2)8字模型(4)一线三等角模型B 二、四边形线段最值问题囹 1 C B D 02B (1)将军饮马模型两定一动模型一定两动模型两线段相减的最大值模型(三点共线)• B(2)费马点模型:将边以A 为顶点逆时针旋转60。

,得到AQE,连接P0则^APQ 为等边三角形,PA=PQ O1. (2023-r 东深圳•中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE,①若= 过C 作CFLBE 交BE 于点、F ,求证:AABE^AFCB ;②若S 矩形倔8 = 2。

时,则BECF=(2)如图,在菱形ABCD 中,cosA = |,过。

作CE1AB 交A8的延长线于点E,过E 作EF _LAD 交AD 于点、F ,若S 菱形*d =24时,求EF BC 的值.(3)如图,在平行四边形ABCD 中,匕4 = 60。

,AB = 6, AD=5,点E 在CD 上,且CE = 2,点F 为BC 上一点,连接时,过E 作EGLEF 交平行四边形ABCD 的边于点G,若EF ・EG = 70时,请直接写出AG 的长.D,E E a C C A B AB备用图2.(2022广东广州•中考真题)如图,在菱形ABCQ中,0BAD=120°,AB=6,连接8Q.⑴求BQ的长;⑵点E为线段BQ上一动点(不与点B,。

重合),点E在边AQ上,且BE二也DF,①当CE±AB时,求四边形的面积;②当四边形的面积取得最小值时,CE+右CT的值是否也最小?如果是,求CE+也CF的最小值;如果不是,请说明理由.题型一特殊平行四边形中全等相似计算1.(2024-P东汕头•一模)(1)如图1,在矩形ABCD中,E为AD边上一点,连接8E,①若BE=BC,过。

2020年广东省中考数学压轴题专题训练(含解析)

2020年(广东)中考数学压轴题专题训练1.如图,AB为⊙O的直径,P为BA延长线上一点,点C在⊙O上,连接PC,D为半径OA上一点,PD=PC,连接CD并延长交⊙O于点E,且E是的中点.(1)求证:PC是⊙O的切线;(2)求证:CD•DE=2OD•PD;(3)若AB=8,CD•DE=15,求P A的长.2.已知:矩形ABCD内接于⊙O,连接BD,点E在⊙O上,连接BE交AD于点F,∠BDC+45°=∠BFD,连接ED.(1)如图1,求证:∠EBD=∠EDB;(2)如图2,点G是AB上一点,过点G作AB的垂线分别交BE和BD于点H和点K,若HK=BG+AF,求证:AB=KG;(3)如图3,在(2)的条件下,⊙O上有一点N,连接CN分别交BD和AD于点M和点P,连接OP,∠APO=∠CPO,若MD=8,MC=3,求线段GB的长.3.如图,AB是⊙O的直径,CD⊥AB,交⊙O于C、D两点,交AB点E、F是弧BD上一点,过点F作一条直线,交CD的延长线于点G,交AB的延长线于点M.连结AF,交CD于点H,GF=GH.(1)求证:MG是⊙O的切线;(2)若弧AF=弧CF,求证:HC=AC;(3)在(2)的条件下,若tan G=,AE=6,求GM的值.4.如图,已知AC是半径为2的⊙O的一条弦,且AC=2,点B是⊙O上不与A、C重合的一个动点,(1)请计算△ABC的面积的最大值;(2)当点B在优弧上,∠BAC>∠ACB时,∠ABC的平分线交AC于D,且OD⊥BD,请计算AD的长;(3)在(2)条件下,请探究线段AB、BC、BD之间的数量关系.5.如图,△ABC为⊙O的内接三角形,BC为⊙O的直径,在线段OC上取点D(不与端点重合),作DG⊥BC,分别交AC、圆周于E、F,连接AG,已知AG=EG.(1)求证:AG为⊙O的切线;(2)已知AG=2,填空:①当四边形ABOF是菱形时,∠AEG=°;②若OC=2DC,△AGE为等腰直角三角形,则AB=.6.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的弦,AD=BC,AD与BC相交于点E.(1)求证:CB平分∠ACD;(2)过点B作BG⊥AC于G,交AD于点F.①猜想AC、AG、CD之间的数量关系,并且说明理由;②若S△ABG=S△ACD,⊙O的半径为15,求DF的长.7.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,交y轴于点A,以AC为直角边作等腰Rt△ACD,连接BD分别交y轴和AC于E、F两点,连接AB.(1)求证:AB=AD;(2)若BF=4,DF=6,求线段CD的长;(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D 三点的⊙O交AB于另一点E,连结AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连结EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,抛物线y=x2+mx+n与x轴交于A,B两点,与y轴交于点C,若A(﹣1,0),且OC=3OA.(1)求抛物线的解析式;(2)若点M为抛物线上第四象限内一动点,顺次连接AC,CM,MB,是否存在点M,使四边形MBAC的面积为9,若存在,求出点M的坐标,若不存在,请说明理由.(3)将直线BC沿x轴翻折交y轴于N点,过B点的直线l交y轴、抛物线分别于D、E,且D在N的上方,将A点绕O顺时针旋转90°得M,若∠NBD=∠MBO,试求E的的坐标.10.已知:如图,直线y=﹣x﹣3交坐标轴于A、C两点,抛物线y=x2+bx+c过A、C两点,(1)求抛物线的解析式;(2)若点P为抛物线位于第三象限上一动点,连接P A,PC,试问△P AC的面积是否存在最大值,若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.11.如图,二次函数y=a(x2+2mx﹣3m2)(其中a,m是常数a<0,m>0)的图象与x轴分别交于A、B(点A位于点B的右侧),与y轴交于点C(0,3),点D在二次函数的图象上,CD∥AB,连结AD.过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)求a与m的关系式;(2)求证:为定值;(3)设该二次函数的图象的顶点为F.探索:在x轴的正半轴上是否存在点G,连结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,抛物线y=ax2+4ax+与x轴交于点A、B(A在B的左侧),过点A的直线y=kx+3k交抛物线于另一点C.(1)求抛物线的解析式;(2)连接BC,过点B作BD⊥BC,交直线AC于点D,若BC=5BD,求k的值;(3)将直线y=kx+3k向上平移4个单位,平移后的直线交抛物线于E、F两点,求△AEF的面积的最小值.13.如图1,二次函数y=﹣x2+x+3的图象交x轴于A、B两点(点A在点B的左侧),交y轴于C点,连结AC,过点C作CD⊥AC交AB于点D.(1)求点D的坐标;(2)如图2,已知点E是该二次函数图象的顶点,在线段AO上取一点F,过点F作FH ⊥CD,交该二次函数的图象于点H(点H在点E的右侧),当五边形FCEHB的面积最大时,求点H的横坐标;(3)如图3,在直线BC上取一点M(不与点B重合),在直线CD的右上方是否存在这样的点N,使得以C、M、N为顶点的三角形与△BCD全等?若存在,请求出点N的坐标;若不存在,请说明理由.14.如图,已知二次函数y=ax2﹣8ax+6(a>0)的图象与x轴分别交于A、B两点,与y 轴交于点C,点D在抛物线的对称轴上,且四边形ABDC为平行四边形.(1)求此抛物线的对称轴,并确定此二次函数的表达式;(2)点E为x轴下方抛物线上一点,若△ODE的面积为12,求点E的坐标;(3)在(2)的条件下,设抛物线的顶点为M,点P是抛物线的对称轴上一动点,连接PE、EM,过点P作PE的垂线交抛物线于点Q,当∠PQE=∠EMP时,求点Q到抛物线的对称轴的距离.15.如图,已知抛物线y=a(x+2)(x﹣4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+与抛物线的另一交点为D,且点D的横坐标为﹣5.(1)求抛物线的函数表达式;(2)该二次函数图象上有一点P(x,y)使得S△BCD=S△ABP,求点P的坐标;(3)设F为线段BD上一点(不含端点),连接AF,求2AF+DF的最小值.16.二次函数y=x2﹣x﹣与x轴分别交于A、B两点,与y轴交于点C,点D 为抛物线的顶点,连接BD.(1)如图1,点P为抛物线上的一点,且在线段BD的下方(包括线段的端点),连接P A,PC,AC.求△P AC的最大面积;(2)如图2,直线l1过点B、D.过点A作直线l2∥l1交y轴于点E,连接点A、E,得到△OAE,将△OAE绕着原点O顺时针旋转α°(0<α<180)得到△OA1E1,旋转过程中直线OE1与直线l1交于点M,直线A1E1与直线l1交于点N.当△E1MN为等腰三角形时,直接写出点E1的坐标并写出相应的α值.17.如图,在平面直角坐标系中,四边形ABCD是平行四边形,点A、B在x轴上,点C、D在第二象限,点M是BC中点.已知AB=6,AD=8,∠DAB=60°,点B的坐标为(﹣6,0).(1)求点D和点M的坐标;(2)如图①,将▱ABCD沿着x轴向右平移a个单位长度,点D的对应点D′和点M的对应点M′恰好在反比例函数y=(x>0)的图象上,请求出a的值以及这个反比例函数的表达式;(3)如图②,在(2)的条件下,过点M,M′作直线l,点P是直线l上的动点,点Q 是平面内任意一点,若以B′,C′,P、Q为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.18.如图,过原点的直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B 两点,点A在第二象限,且点A的横坐标为﹣1,点D在x轴负半轴上,连接AD交反比例函数图象于另一点E,AC为∠BAD的平分线,过点B作AC的垂线,垂足为C,连接CE,若AD=2DE,△AEC的面积为.(1)根据图象回答:当x取何值时,y1<y2;(2)求△AOD的面积;(3)若点P的坐标为(m,k),在y轴的轴上是否存在一点M,使得△OMP是直角三角形,若存在,请直接写出点M的坐标;若不存在,请说明理由.19.阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC中,∠ACB=90°,AC=BC,分别过A、B向经过点C直线作垂线,垂足分别为D、E,我们很容易发现结论:△ADC≌△CEB.(1)探究问题:如果AC≠BC,其他条件不变,如图②,可得到结论;△ADC∽△CEB.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y=x与直线CD交于点M(2,1),且两直线夹角为α,且tanα=,请你求出直线CD的解析式.(3)拓展应用:如图④,在矩形ABCD中,AB=3,BC=5,点E为BC边上一个动点,连接BE,将线段AE绕点E顺时针旋转90°,点A落在点P处,当点P在矩形ABCD 外部时,连接PC,PD.若△DPC为直角三角形时,请你探究并直接写出BE的长.20.笛卡尔是法国数学家、科学家和哲学家,他的哲学与数学思想对历史的影响是深远的.1637年,笛卡尔发表了《几何学》,创立了直角坐标系.其中笛卡尔的思想核心是:把几何学的问题归结成代数形式的问题,用代数的方法进行计算、证明,从而达到最终解决几何问题的目的.某学习小组利用平面直角坐标系在研究直线上点的坐标规律时,发现直线y=kx+b(k≠0)上的任意三点A(x1,y1),B(x2,y2),C(x3,y3)(x1≠x1≠x3),满足===k,经学习小组查阅资料得知,以上发现是成立的,即直线y=kx+b(k≠0)上任意两点的坐标M(x1,y1)N(x2,y2)(x1≠x2),都有的值为k,其中k叫直线y=kx+b的斜率.如,P(1,3),Q(2,4)为直线y=x+2上两点,则k PQ==1,即直线y=x+2的斜率为1.(1)请你直接写出过E(2,3)、F(4,﹣2)两点的直线的斜率k EF=.(2)学习小组继续深入研究直线的“斜率”问题,得到如下正确结论:不与坐标轴平行的任意两条直线互相垂直时,这两条直线的斜率之积是定值.如图1,直线GH⊥GI于点G,G(1,3),H(﹣2,1),I(﹣1,6).请求出直线GH 与直线GI的斜率之积.(3)如图2,已知正方形OKRS的顶点S的坐标为(6,8),点K,R在第二象限,OR 为正方形的对角线.过顶点R作RT⊥OR于点R.求直线RT的解析式.参考答案一.解答题(共20小题)1.(1)证明:连接OC,OE,∵OC=OE,∴∠E=∠OCE,∵E是的中点,∴=,∴∠AOE=∠BOE=90°,∴∠E+∠ODE=90°,∵PC=PD,∴∠PCD=∠PDC,∵∠PDC=∠ODE,∴∠PCD=∠ODE,∴∠PCD+∠OCD=∠ODE+∠E=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)证明:连接AC,BE,BC,∵∠ACD=∠DBE,∠CAD=∠DEB,∴△ACD∽△EBD,∴=,∴CD•DE=AD•BD=(AO﹣OD)(AO+OD)=AO2﹣OD2;∵AB为⊙O的直径,∴∠ACB=90°,∵∠PCO=90°,∴∠ACP+∠ACO=∠ACO+∠BCO=90°,∴∠ACP=∠BCO,∵∠BCO=∠CBO,∴∠ACP=∠PBC,∵∠P=∠P,∴△ACP∽△CBP,∴,∴PC2=PB•P A=(PD+DB)(PD﹣AD)=(PD+OD+OA)(PD+OD﹣OA)=(PD+OD)2﹣OA2=PD2+2PD•OD+OD2﹣OA2,∵PC=PD,∴PD2=PD2+2PD•OD+OD2﹣OA2,∴OA2﹣OD2=2OD•PD,∴CD•DE=2OD•PD;(3)解:∵AB=8,∴OA=4,由(2)知,CD•DE=AO2﹣OD2;∵CD•DE=15,∴15=42﹣OD2,∴OD=1(负值舍去),∴AD=3,由(2)知,CD•DE=2OD•PD,∴PD==,∴P A=PD﹣AD=.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∠BAD=90°,∴∠BDC=∠DBA,BD是⊙O的直径,∴∠BED=90°,∵∠BFD=∠ABF+∠BAD,∠BFD=∠BDC+45°,∴∠ABF+90°=∠DBA+45°,∴∠DBA﹣∠ABF=45°,∴∠EBD=45°,∴△BED是等腰直角三角形,∴∠EBD=∠EDB;(2)证明:过点K作KS⊥BE,垂足为R,交AB于S,如图2所示:∵KG⊥AB,∴∠BGH=∠KRH=∠SRB=∠KGS=90°,∴∠SBR=∠HKR,∵∠BED=90°,∴∠RBK=∠RKB=45°,∴BR=KR,在△SRB和△HRK中,,∴△SRB≌△HRK(ASA),∴SB=HK,∵SB=BG+SG,HK=BG+AF,∴BG+SG=BG+AF,∴SG=AF,在△ABF和△GKS中,,∴△ABF≌△GKS(AAS),∴AB=KG;(3)解:过点O分别作AD与CN的垂线,垂足分别为Q和T,连接OC,如图3所示:∵∠APO=∠CPO,∴OQ=OT,在Rt△OQD和Rt△OTC中,,∴Rt△OQD≌Rt△OTC(HL),∴DQ=CT,∴AD=CN,∵四边形ABCD是矩形,∴AD=CN=BC,连接ON,在△NOC和△BOC中,,∴△NOC≌△BOC(SSS),∴∠BCO=∠NCO,设∠OBC=∠OCB=∠NCO=α,∴∠MOC=2α,过点M作MW⊥OC于W,在OC上取一点L,使WL=OW,连接ML,∴MO=ML,∴∠MOL=∠MLO=2α,∴∠LCM=∠LMC=α,∴ML=CL,设OM=ML=LC=a,则OD=a+8=OC,∴OL=8,OW=WL=4,∴CW=4+a,由勾股定理得:OM2﹣OW2=MW2=MC2﹣CW2,即a2﹣42=(3)2﹣(4+a)2,整理得:a2+4a﹣45=0,解得:a1=﹣9(不合题意舍去),a2=5,∴OM=5,∴MW=3,WC=9,∴OB=OC=OD=13,BD=26,∵∠GKB=∠CBD=∠ADB=∠BCO=∠MCW,tan∠MCW===,∴tan∠GKB=tan∠CBD=tan∠ADB=tan∠BCO=tan∠MCW=,设AB=b,则AD=3b,由勾股定理得:b2+(3b)2=262,解得b=,∴CD=GK=AB=,在Rt△GKB中,tan∠GKB==,∴GB=GK=×=.3.(1)证明:连接OF.∴AB⊥CD,∴∠AEH=90°,∴∠EAH+∠AHE=90°,∵GF=GH,∴∠GFH=∠GHF=∠AHE,∵OA=OF,∴∠OAF=∠OF A,∴∠OF A+∠GFH=90°,∴OF⊥GM,∴MG是⊙O的切线.(2)证明:∵=,∴OF垂直平分线段AC∵OF⊥MG,∴AC∥GM,∴∠CAH=∠GFH,∵∠CHA=∠GHF,∠HGF=∠GFH,∴∠CAH=∠CHA,∴CA=CH.(3)解:∵AC∥GM,∴∠G=∠ACH,∴tan∠CAH=tan∠G==,∵AE=6,∴EC=8,AC===10,设GF=GH=x,则CG=CH+GH=AC+GH=10+x,∵CD=2EC=16,∴GD=10+x﹣16=x﹣6,∵GF2=GD•GC,∴x2=(x﹣6)(x+10),解得x=15,∴EG=CG﹣CE=25﹣8=17,∵tan∠G==,∴EM=,∴GM===.4.解:(1)如图1中,当点B在优弧AC的中点时,△ABC的面积的最大,连接AB,BC,OB,延长BO交AC于H.∵=,∴BH⊥AC,∴AH=HC=,∴OH==1,∴BH=OB+OH=2+1=3,∴△ABC的最大面积=×AC×BH=×2×3=3.(2)如图2中,延长BD交⊙O于E,连结OE交AC于F,连结OC.由BD平分∠ABC可得,E为弧AC中点,∴OE⊥AC,∴AF=CF=∴OF===1=EF,∴DF垂直平分OE,又∵OD⊥BD,∴△ODE是等腰直角三角形,∴DF=OE=1,∴AD=.(3)如图3,连结AE、CE,由已知得AE=CE,∠AEC=120〫,将△EAB绕点E顺时针旋转120〫得△ECF,∵∠BAE=∠ECF,∠BAE+∠BCE=180〫,∴∠ECF+∠BCE=180〫,∴BF=BC+CF,∵AB=CF,∴BF=AB+BC,∵BE=FE,∠BEF=∠AEC=120〫,∴BF=BE,∵OD⊥BD,∴BE=2BD,∴BF=2BD,∴BA+BC=2BD.5.(1)证明:连接OA.∵OA=OC,∴∠OAC=∠OCA,∵GA=GE,∴∠GAE=∠GEA,∵DG⊥BC,∴∠EDC=90°,∴∠OCA+∠DEC=90°,∵∠CED=∠GEA=∠GAE,∴∠OAC+∠GAE=90°,∴∠OAG=90°,∴OA⊥AG,∴AG是⊙O的切线.(2)①如图2中,连接OA,AF,OF.∵四边形ABOF是菱形,∴AB=BO=OF=AF=OA,∴△ABO是等边三角形,∴∠B=60°,∵BC是直径,∴∠BAC=90°∴∠ACB=90°﹣60°=30°,∵ED⊥BC,∴∠DEC=90°﹣∠ACB=60°,∴∠AEG=∠DEC=60°.故答案为60.②如图3中,当AB=4时,△AGE是等腰直角三角形.理由:连接OA.∵△AGE是等腰直角三角形,∴∠AEG=∠DEC=∠DCE=45°,∴△EDC,△ABC都是等腰直角三角形,∵OB=OC,∴AO⊥OC,∴∠AOD=∠ODG=∠G=90°,∴四边形AODG是矩形,∴AG=OD=2,∴OC=2OD=4,∴BC=2OC=8,∴AB=AC=4,故答案为4.6.(1)证明:如图1中,∵AD=BC,∴=,∴=,∵AB=AC,∴=,∴=,∴∠ACB=∠BCD,∴CB平分∠ACD.(2)①结论:AC﹣2AG=CD.理由:如图2中,连接BD,在GC上取一点H,使得GH=GA.∵BG⊥AH,GA=GH,∴BA=BH,∴∠BAH=∠BHA,∵∠BAH+∠BDC=180°,∠BHG+∠BHC=180°,∴∠BDC=∠BHC,∵∠BCH=∠BCD,CB=CB,∴△BCH≌△BCD(AAS),∴CD=CH,∴AC﹣2AG=AC﹣AH=CH=CD.②如图3中,过点G作GN⊥AB于G,过点D作DM⊥AC交AC的延长线于M,连接AO,延长AO交BC于J,连接OC.∵=,∴∠BAD=∠ADC,∴AB∥CD,∴S△ACD=S△BCD,∵△BCH≌△BCD,∴S△BCH=S△BCD,∵AG=GH,∴S△ABG=S△BGH,∵S△ABG=S△ACD,∴S△ABG=S△BGH=S△BCH,∴AG=GH=CH,设AG=GH=HC=a,则AB=AC=3a,BG===2a,∵BG⊥AC,∴•BG•AG=•AB•GN,∴GN==a,在Rt△BGC中,BC===2a,∵AB=AC,∴=,∴AJ⊥BC,∴BJ=JC=a,∴AJ===a,在Rt△OJC中,∵OC2=OJ2+JC2,∴152=(a﹣15)2+(a)2,∴a=,∵S△ABG=S△ACD,AB=AC,GN⊥AB,DM∠AC,∴DM=GN=a=,∵BC=AD=2a=20,∴AM===,∵FG∥DM,∴=,∴=,∴AF=6,∴DF=AD=AF=20﹣6=14. 7.(1)证明:∵OA⊥BC,且OA过圆心点P,∴OB=OC,在△AOB和△AOC中,,∴△AOB≌△AOC(SAS),∴AB=AC,∵以AC为直角边作等腰Rt△ACD,∴AD=AC,∴AB=AD;(2)如图1,过点A作AM⊥BD于M,由(1)知,AB=AD,∴DM=BD,∵BF=4,DF=6,∴BD=10,∴DM=5,∵∠AMD=90°=∠DAF,∠ADM=∠FDA,∴△ADM∽△FDA,∴,∴,∴AD=,在等腰直角三角形ADC中,CD=AD=2;(3)的值是不发生变化,理由:如图2,过点D作DH⊥y轴于H,作DQ⊥x轴于Q,∴∠AHD=90°=∠COA,∴∠ADH+∠DAH=90°,∵∠CAD=90°,∴∠CAO+∠DAH=90°,∴∠ADH=∠CAO,∵AD=AC,∴△ADH≌△ACO(AAS),∴DH=AO,AH=OC,∵∠OHD=∠QOH=∠OQD=90°,∴四边形OQDH是矩形,DH=OQ,DQ=OH,又∵HO=AH+AO=OC+DH=OB+DH=OB+OQ=BQ,∴DQ=BQ,∴△DBQ为等腰直角三角形,∴∠DBQ=45°,∴∠DEH=∠BEO=45°,∴sin∠DEH=,∴=,∴,∴.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)∵A(﹣1,0),∴OA=1,OC=3OA=3,∴C(0,﹣3),将A(﹣1,0)、C(0,﹣3)代入y=x2+mx+n中,得,解得,∴y=x2﹣2x﹣3;(2)存在,理由:令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴B(3,0),∴直线BC的解析式为y=x﹣3,设M(m,m2﹣2m﹣3),过点M作MN∥y轴交BC于N,如图1,∴N(m,m﹣3),∴MN=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,∴S四边形MBAC=S△ABC+S△BCM=AB×OC+MN×OB=×4×3×(﹣m2+3m)×3=9,解得:m=1或2,故点M的坐标为(1,﹣4)或(2,﹣3);(3)∵OB=OC=ON,∴△BON为等腰直角三角形,∵∠OBM+∠NBM=45°,∴∠NBD+∠NBM=∠DBM=45°,∴MB=MF,过点M作MF⊥BM交BE于F,过点F作FH⊥y轴于点H,如图2,∴∠HFM+∠BMO=90°,∵∠BMO+∠OMB=90°,∴∠OMB=∠HFM,∵∠BOM=∠MHF=90°,∴△BOM≌△MHF(AAS),∴FH=OM=1,MH=OB=3,故点F(1,4),由点B、F的坐标得,直线BF的解析式为y=﹣2x+6,联立,解得,∴E(﹣3,12).10.解:(1)y=﹣x﹣3交坐标轴于A、C两点,则点A、C的坐标分别为:(﹣3,0)、(0,﹣3);将点A、C的坐标代入抛物线表达式得:,解得,故抛物线的表达式为:y=x2+2x﹣3;(2)存在,理由:如图1,过点P作y轴的平行线交AC于点H,设点P(x,x2+2x﹣3),则点H(x,﹣x﹣3),△APC面积S=S△PHA+S△PHC=×PH×OA=(﹣x﹣3﹣x2﹣2x+3)×3=﹣x2﹣x,∵﹣<0,故S有最大值,当x=﹣时,S的最大值为,此时点P(﹣,﹣);(3)如图2,设点N(﹣1,s),点M(m,n),n=m2+2m﹣3,过点M作y轴的平行线交过点C与x轴的平行线于点H,交过点N与x轴的平行线于点G,∵∠GMN+∠GNM=90°,∠GMN+∠HMC=90°,∴∠HMC=∠GNM,∵∠MGN=∠CHM=90°,MN=MC,∴△MGN≌△CHM(AAS),∴GN=MH,即GN=|﹣1﹣m|=MH=|n+3|,①当﹣1﹣m=n+3时,即m+n+4=0,即m2+3m+1=0,解得:m=,故点P(,);②当﹣1﹣m=﹣(n+3)时,即m=n+2,同理可得:点P(,);故点P的坐标为:(,)或(,)或(,)或(,).11.解:(1)将点C的坐标代入抛物线表达式得:﹣3am2=3,解得:am2=﹣1;(2)对于二次函数y=a(x2+2mx﹣3m2),令y=0,则x=m或﹣3m,∴函数的对称轴为:x=﹣m,∵CD∥AB,∴点D、C的纵坐标相同,故点D(﹣2m,3),故点A、B的坐标分别为:(m,0)、(﹣3m,0),设点E(x,y),y=a(x2+2mx﹣3m2),分别过点D、E作x轴的垂线,垂足分别为M、N,∵AB平分∠DAE,∴∠DAM=∠EAN,∴RtADM△∽Rt△ANE,∴,即,解得:y=,故点E(x,),将点E的坐标代入抛物线表达式并解得:x==﹣4m,则y==﹣5,故点E(﹣4m,﹣5),故===为定值;(3)存在,理由:函数的对称轴为x=﹣m,当x=﹣m时,y=a(x2+2mx﹣3m2)=4,即点F(﹣m,4),由点F、C的坐标得,直线FC的表达式为:y=﹣x+3,令y=0,则x=3m,即点G(3m,0),GF2=(3m+m)2+42=16m2+16,同理AD2=9m2+9,AE2=25m2+25,故AE2=AD2+GF2,GF、AD、AE的长度为三边长的三角形是直角三角形,点G的横坐标为3m.12.解:(1)∵直线y=kx+3k过点A,∴y=0时,0=kx+3k,解得x=﹣3,∴A(﹣3,0),把点A的坐标代入y=ax2+4ax+,得9a﹣12a+=0,解得a=,∴抛物线解析式为y=x2+x+;(2)如图1,过点D作DF⊥x轴于F,过点C作CG⊥x轴于G,∴∠DFB=∠CGO=90°=∠DBC,∴∠DBF+∠BDF=90°,又∵∠DBF+∠CBG=90°,∴∠BDF=∠CBG,∴△BDF∽△CBG,∴,∵CB=5BD,∴CG=5BF,BG=5DF,联立方程组,解得:,(舍去),∴点C(4k﹣1,4k2+2k),∴CG=4k2+2k,OG=4k﹣1,设BF=m,则CG=5m,DF=2k﹣km,BG=5(2k﹣km),∴,解得k=﹣(舍去)或k=0(舍去)或k=1,∴k的值为1;(3)∵将直线y=kx+3k向上平移4个单位,∴平移后解析式为y=kx+3k+4,∴kx+3k+4=x2+x+,∴x E+x F=4k﹣4,x E•x F=﹣12k﹣13,∴|x F﹣x E|==,∵△AEF的面积=×4×,∴当k=﹣时,△AEF的面积的最小值为16.13.解:(1)令x=0,则y=3,∴C(0,3),∴OC=3.令y=0,则﹣x2+x+3=0,解得:x1=﹣4,x2=6,∴A(﹣4,0),B(6,0),∴OA=4,OB=6.∵CD⊥AC,∴∠ACD=90°,∵CO⊥AD,∴OC2=OA•OD,∴OD=,∴D(,0).∴E(1,).如图2,连接OE、BE,作HG⊥x轴于点G,交BE于点P.由B、E两点坐标可求得直线BE的解析式为:y=﹣x+.设H(m,﹣m2+m+3),则P(m,﹣m+).∴HG=﹣m2+m+3,HP=y H﹣y P=﹣m2+m﹣.∴S△BHE=(x B﹣x E)•HP=(﹣m2+m﹣)=﹣m2+m﹣.∵FH⊥CD,AC⊥CD,∴AC∥FH,∴∠HFG=∠CAO,∵∠AOC=∠FGH=90°,∴△ACO∼△FHG,∴==,∴FG=HG=﹣m2+m+4,∴AF=AG﹣FG=m+4+m2﹣m﹣4=m2+m,∴S△AFC=AF•OC=(m2+m)=m2+m,∵S四边形ACEB=S△ACO+S△OCE+S△OEB=×4×3+×3×1+6×=,∴S五边形FCEHB=S四边形ACEB+S△BHE﹣S△AFC=+(﹣m2+m﹣)﹣(m2+m)∴当m=时,S五边形FCEHB取得最大值.此时,H的横坐标为.(3)∵B(6,0),C(0,3),D(,0),∴CD=BD=,BC=3,∴∠DCB=∠DBC.①如图3﹣1,△CMN≌△DCB,MN交y轴于K,则CM=CN=DC=DB=,MN=BC=3,∠CMN=∠CNM=∠DBC=∠DCB,∴MN∥AB,∴MN⊥y轴,∴∠CKN=∠COB=90°,MK=NK=MN=,∴△CKN∼△COB,∴==,∴CK=,∴OK=OC+CK=,∴N(,).②如图3﹣2,△MCN≌△DBC,则CN=CB=3,∠MCN=∠DBC,∴CN∥AB,∴N(3,3).③如图3﹣3,△CMN≌△DBC,则∠CMN=∠DCB,CM=CN=DC=DB=,MN=BC=3,∴MN∥CD,作MR⊥y轴于R,则===,∴CR=,RM=,∴OR=3﹣,作MQ∥y轴,NQ⊥MQ于点Q,则∠NMQ=∠DCO,∠NQM=∠DOC=90°,∴△COD∼△MQN,∴==,∴MQ=MN=,NQ=MN=,∴NQ﹣RM=,OR+MQ=,∴N(﹣,).综上所述,满足要标的N点坐标有:(,)、(3,3)、(﹣,).14.解:(1)对称轴为直线x=﹣=4,则CD=4,∵四边形ABDC为平行四边形,∴DC∥AB,DC=AB,∴DC=AB=4,∴A(2,0),B(6,0),把点A(2,0)代入得y=ax2﹣8ax+12得4a﹣16a+6=0,解得a=,∴二次函数解析式为y=x2﹣4x+6;(2)如图1,设E(m,m2﹣4m+6),其中2<m<6,作EN⊥y轴于N,如图2,∵S梯形CDEN﹣S△OCD﹣S△OEN=S△ODE,∴(4+m)(6﹣m2+4m﹣6)﹣×4×6﹣m(﹣m2+4m﹣6)=12,化简得:m2﹣11m+24=0,解得m1=3,m2=8(舍),∴点E的坐标为(3,﹣);(3)Ⅰ、当点Q在对称轴右侧时,如图2,过点E作EF⊥PM于F,MQ交x轴于G,∵∠PQE=∠PME,∴点E,M,Q,P四点共圆,∵PE⊥PQ,∴∠EPQ=90°,∴∠EMQ=90°,∴∠EMF+∠HMG=90°,∵∠HMG+∠HGM=90°,∴∠EMF=∠HGM,在Rt△EFM中,EF=1,FM=,tan∠EMF==2,∴tan∠HGM=2,∴,∴HG=HM=1,∴点G(5,0),∵M(4,﹣2),∴直线MG的解析式为y=2x﹣10①,∵二次函数解析式为y=x2﹣4x+6②,联立①②解得,(舍)或,∴Q(8,6),∴点Q到对称轴的距离为8﹣4=4;Ⅱ、当点Q在对称轴左侧时,如图3,过点E作EF⊥PM于F,过点Q作QD⊥PM于D,∴∠DQP+∠QPD=90°,∵∠EPQ=90°,∴∠DPQ+∠FPE=90°,∴∠DQP=∠FPE,∵∠PDQ=∠EFP,∴△PDQ∽△EFP,∴,由Ⅰ知,tan∠PQE==2,∵EF=1,∴=,∴DP=,PF=2QD,设Q(n,n2﹣4n+6),∴DQ=4﹣n,DH=n2﹣4n+6,∴PF=DH+FH﹣DP=n2﹣4n+6+﹣=n2﹣4n+7,∴n2﹣4n+7=2(4﹣n),∴n=2+(舍)或n=2﹣,∴DQ=4﹣n=2+,即点Q到对称轴的距离为4或2+.15.解:(1)抛物线y=a(x+2)(x﹣4),令y=0,解得x=﹣2或x=4,∴A(﹣2,0),B(4,0).∵直线y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),∵点D(﹣5,3)在抛物线y=a(x+2)(x﹣4)上,∴a(﹣5+2)(﹣5﹣4)=3,∴a=.∴抛物线的函数表达式为:y=x2﹣x﹣.(2)如图1中,设直线BD交y轴于J,则J(0,).连接CD,BC.∵S△BDC=××9=10,∴S△P AB=10,∴×6×|y P|=10y P=±,当y=时,=x2﹣x﹣,解得x=1±,∴P(,)或(,),当﹣=x2﹣x﹣,方程无解,∴满足条件的点P的坐标为(,)或(,).(3)如图2中,过点D作DM平行于x轴,∵D(﹣5,3),B(4,0),∴tan∠DBA==,∴∠DBA=30°∴∠BDM=∠DBA=30°,过F作FJ⊥DM于J,则有sin30°=,∴HF=,∴2AF+DF=2(AF+)=2(AF+HF),当A、F、H三点共线时,即AH⊥DM时,2AF+DF=2(AF+HF)取最小值为=.16.解:(1)∵y=x2﹣x﹣=(x2﹣2x﹣3)=(x﹣1)2﹣2,∴顶点D的坐标为(1,﹣2),令y=0,则(x2﹣2x﹣3)=0,∴x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0,则y=﹣,∴C(0,﹣),∴AC是定值,要△ACP的面积最大,则点P到AC的距离最大,即当点P在点B位置时,点P到AC的距离最大,∴S△ACP最大=S△ABC=AB•OC=(3+1)•=3;(2)由(1)知,B(3,0),D(1,﹣2),∴直线l1的解析式为y=x﹣3,∵l1∥l2,且l1过点A,∴直线l2的解析式为y=x+,∴E(0,),∴OE=,在Rt△AOE中,OA=1,∴tan∠AEO==,∴∠AEO=30°,∵l1∥l2,∴∠DBO=60°,由旋转知,OE1=OE=,∠A1E1O=∠AEO=30°,∴∠ME1N=30°如图,∵△E1MN为等腰三角形,∴①当E1N1=M1N1时,∴∠E1M1N1=∠A1E1O=30°,∴α=∠BOM=60°﹣30°=60°,过点E1作E1F⊥x轴于F,∴E1F=OE1=,∴OF=E1F=,∴E1(,),②当E2M2=E2N2时,∠E2N2M2=∠E2M2N2=(180°﹣30°)=75°,∴∠BOM2=75°﹣60°=15°,∴α=105°,过点E2作E2H⊥x轴,在OH上取一点Q,使OQ=E2Q,∴∠E2QH=30°,设E2H=a,则E2Q=2a,HQ=a,∴OQ=E2Q=2a,OH=(2+)a,在Rt△OHE2中,根据勾股定理得,[(2+)a]2+a2=3,∴a=(舍去负值),∴E2(,﹣).③当E3M3=M3N3时,∠E3N3M3=∠M3E3N3=30,∴∠E3M3N3=120°,∴∠BOM3=60°,∴α=150°,∵∠OBM3=60°,∠E3N3M3=30°,∴∠N3GB=90°,∴OG=,E3G=,∴E3(,﹣).17.解:(1)∵AB=6,点B的坐标为(﹣6,0),∴点A(﹣12,0),如图1,过点D作DE⊥x轴于点D,则ED=AD sin∠DAB=8×=4,同理AE=4,故点D(﹣8,4),则点C(﹣2,4),由中点公式得,点M(﹣4,2);(2)图象向右平移了a个单位,则点D′(a﹣8,4)、点M′(a﹣4,2),∵点D′M′都在函数上,∴(a﹣8)×4=(a﹣4)×2,解得:a=12,则k=(12﹣8)×4=16,故反比例函数的表达式为=;(3)由(2)知,点M′的坐标为(8,2),点B′、C′的坐标分别为(6,0)、(10,4),设点P(m,2),点Q(s,t);①当B′C′是矩形的边时,如图2,求解的矩形为矩形B′C′PQ和矩形B′C′Q′P′,过点C′作C′H⊥l交于点H,C′H=4﹣2=2,直线B′C′的倾斜角为60°,则∠M′PC′=30°,PH=C′H÷tan∠M′PC′=故点P的坐标为(16,2),由题意得:点P、Q′关于点C′对称,由中点公式得,点Q的坐标为(12,﹣4);同理点Q、Q′关于点M′对称,由中点公式得,点Q′(4,6);故点Q的坐标为:(12,﹣4)或(4,6);②当B′C′是矩形的对角线时,∵B′C′的中点即为PQ的中点,且PQ=B′C′,∴,解得:,,故点Q的坐标为(4,2)或(12,2);综上,点Q的坐标为:(12,﹣4)或(4,6)或(4,2)或(12,2).18.解:(1)∵直线y1=mx(m≠0)与反比例函数y2=(k<0)的图象交于A、B两点,且点A的横坐标为﹣1,∴点A,点B关于原点对称,∴点B的横坐标为1,∴当x取﹣1<x<0或x>1时,y1<y2;(2)连接OC,OE,由图象知,点A,点B关于原点对称,∴OA=OB,∵AC⊥CB,∴∠ACB=90°,∴OC=AB=AO,∴∠OAC=∠OCA,∵AC为∠BAD的平分线,∴∠OAC=∠DAC,∴∠OCA=∠DAC,∴AD∥OC,∴S△AEO=S△ACE=,∴AE=DE,∴S△AOD=2S△AOE=3;(3)作EF⊥x轴于F,作AH⊥x轴于H,则EF∥AH,∵AD=2DE,∴DE=EA,∵EF∥AH,∴==1,∴DF=FH,∴EF是△DHA的中位线,∴EF=AH,∵S△OEF=S△OAH=﹣,∴OF•EF=OH•HA,∴OH=OF,∴OH=HF,∴DF=FH=HO=DO,∴S△OAH=S△ADO=3=1,∴﹣=1,∴k=﹣2,∴y=﹣,∵点A在y=﹣的图象上,∴把x=﹣1代入得,y=2,∴A(﹣1,2),∵点A在直线y=mx上,∴m=﹣2,∴P(﹣2,﹣2),在y轴上找到一点M,使得△OMP是直角三角形,当∠OMP=90°时,PM⊥y轴,则OM=2,∴点M的坐标为(0.﹣2);当∠OPM=90°时,过P作PG⊥y轴于G,则△OPM是等腰直角三角形,∴OM=2PG=4,∴点M的坐标为(0.﹣4);综上所述,点M的坐标为(0.﹣2)或(0,﹣4).19.解:(1)理由:∵∠ACB=90°,∴∠ACD=∠BCE=90°,又∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,且∠ADC=∠BEC=90°,∴△ADC∽△CEB;(2)如图,过点O作ON⊥OM交直线CD于点N,分别过M、N作ME⊥x轴NF⊥x轴,由(1)可得:△NFO∽△OEM,∴,∵点M(2,1),∴OE=2,ME=1,∵tanα==,∴,∴NF=3,OF=,∴点N(﹣,3),∵设直线CD表达式:y=kx+b,∴∴∴直线CD的解析式为:y=﹣x+;(3)当∠CDP=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,∵∠ADC+∠CDP=180°,∴点A,点D,点P三点共线,∵∠BAP=∠B=∠H=90°,∴四边形ABHP是矩形,∴AB=PH=3,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠H=90°,AE=EP,∴△ABE≌△EHP(AAS),∴BE=PH=3,当∠CPD=90°时,如图,过点P作PH⊥BC,交BC延长线于点H,延长HP交AD的延长线于N,则四边形CDNH是矩形,∴CD=NH=3,DN=CH,设BE=x,则EC=5﹣x,∵将线段AE绕点E顺时针旋转90°,∴AE=EP,∠AEP=90°,∴∠AEB=∠PEH=90°,且∠BAE+∠AEB=90°,∴∠BAE=∠PEH,且∠B=∠EHP=90°,AE=EP,∴△ABE≌△EHP(AAS),∴PH=BE=x,AB=EH=3,∴PN=3﹣x,CH=3﹣(5﹣x)=x﹣2=DN,∵∠DPC=90°,∴∠DPN+∠CPH=90°,且∠CPH+∠PCH=90°,∴∠PCH=∠DPN,且∠N=∠CHP=90°,∴△CPH∽△PDH,∴,∴∴x=∵点P在矩形ABCD外部,∴x=,∴BE=,综上所述:当BE的长为3或时,△DPC为直角三角形.20.解:(1)∵E(2,3)、F(4,﹣2),∴k EF==﹣,故答案为﹣.(2)∵G(1,3),H(﹣2,1),I(﹣1,6),∴k GH==,k GI==﹣,∴k GH•k GI=﹣1.(3)如图2中,过点K作KM⊥x轴于M,过点S作SN⊥x轴于N,连接KS交OR于J.∴S(6,8),∴ON=6,SN=8,∵四边形OKRS是正方形,∴OK=OS,∠KPS=∠KMO=∠SNO=90°,KJ=JS,JR=JO,∴∠KOM+∠SON=90°,∠SON+∠OSN=90°,∴∠KOM=∠OSN,∴△OMK≌△SNO(AAS),∴KM=ON=6,OM=SN=8,∴K(﹣8,6),∵KJ=JS,∴J(﹣1,7),∵JR=OJ,∴R(﹣2,14),∵k OR==﹣7,∵RT⊥OR,∴k RT=﹣=,设直线RT的解析式为y=x+b.。

2010年广东省中考数学压轴题(全)

2010年广东省中考数学压轴题(全)1.(2010年广东、汕头、中山市)如图(1),(2)所示,矩形ABCD 的边长AB=6,BC=4,点F 在DC 上,DF=2。

动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动。

连接FM 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PQW 。

设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒。

试解答下列问题: (1)说明△FMN ∽△QWP ;(2)设0≤x ≤4(即M 从D 到A 运动的时间段)。

试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值。

第22题图(1) A B M C F D N WP Q 第22题图(2) A B C D F M N W P Q图11OxyCDBAE2.(2010年广州市)如图11,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0)、(0, 1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E 。

(1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C ,试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出重叠部分的面积;若改变,请说明理由。

3.(2010年深圳市)如图10,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-33 x - 533与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F . (1)请直接写出OE 、⊙M 的半径r 、CH 的长;(2)如图11,弦HQ 交x 轴于点P ,且DP:PH =3:2,求cos ∠QHC 的值; (3)如图12,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.xD A BHCEM O F 图10xyD A BHCEM O F 图11P Q xy DABHC EM O F 图12NKy4.(2010年佛山市)一般来说,数学研究对象本质属性的共同点和差异点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题训练(一):代数综合题(函数题)一、命题特点与方法分析以考纲规定,“代数综合题”为数学解答题(三)中的题型,一般出现在该题组的第1题(即试卷第23题),近四年来都是对函数图像的简单考察.近四年考点概况:年份考点2014 一次函数、反比例函数、一元二次方程2015 一次函数、反比例函数、轴对称(路径最短问题)2016 一次函数、反比例函数、二次函数2017 二次函数、三角函数、平行截割、一次函数由此可见,近年来23题考点围趋向综合,命题主体可以是一次函数与反比例函数或者一次函数与二次函数,但难度基本都不太大.主要的命题形式有以下3种:1.求点的坐标或求直线解析式中的待定系数.这种题一般考查列方程解答,难度较低,在试题的前两问出现.2.考察图像的性质.如14年第(1)问和16年第(2)(3)问,都是对函数图象的性质来设问,要求对图像性质有清晰的记忆.3.考查简单的几何问题.考查简单的解析几何的容,基本上出现在试题的第(3)问,一般都利用基本的模型出题,几何部分难度不会太大,可以尝试了解高中解析几何的基础知识.二、例题训练1.如图,在直角坐标系中,直线y=x5与反比例函数y=bx(x>0)交于A1,4、B两点.(1)求b的值;(2)求点B的坐标;(3)直线y=3与反比例函数图像交于点C,连接AC、CB,另有直线y=m与反比例函数图像交于点D,连接AD、BD,此时△ACB与△ADB面积相等,求m的值.2.如图,在直角坐标系中,直线y =x +b 与反比例函数y =1x (x <0)交于点A m ,1.直线与x 轴、y 轴分别交于点B 、C .(1)求m 的值;(2)求点B 、C 的坐标;(3)将直线y =x +b 向上平移一个长度单位得到另一条直线,求两直线之间的距离.3.如图,在直角坐标系中,抛物线y =1m x 2mx m 24经过原点且开口向下,直线y =x +b 与其仅交于点A .(1)求抛物线的解析式;(2)求点A 的坐标;(3)求直线y =x +b 关于x 轴对称的直线的解析式.4.如图,在直角坐标系中,抛物线y =x 23x 与x 轴交于点A 、B ,与y 轴交于点C ,连接BC .(1)求点A 、B 和C 的坐标;(2)求∠OBC 的度数;(3)将直线BC 向上平移5个单位,再向左平移m 个单位,得到的直线与原直线重合,求m 的值.三、例题解析答案:1.(1)b=4;(2)4,1;(3)m=43.【考点:一次函数、反比例函数,一元二次方程】2.(1)m=1;(2)B2,0,C0,2;(3)22.【考点:一次函数、反比例函数、相似三角形】3.(1)y=x2+2x;(2)A 12,34;(3)y=x 14.【考点:二次函数、一次函数、一元二次方程、轴对称】4.(1)A1,0,B2,0,C0,2;(2)45°;(3)m=5.【考点:二次函数、一次函数、等腰三角形】解析:主要的命题形式与例题对应:1.求点的坐标或求直线解析式中的待定系数.【题1(1)(2),题2(1)(2),题4(1)】2.考察图像的性质.【题3(1)】3.考查简单的几何问题.【题1(3),题2(3),题3(3),题4(2)(3)】中考数学专题训练(二):几何综合题(圆题)一、命题特点与方法分析以考纲规定,“几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第2题(即试卷第24题),近四年来都是以圆为主体图形,考察几何证明.近四年考点概况:年份考点 2014圆的性质、全等三角形、平行四边形、圆的相关计算 2015圆的性质(垂径定理)、全等三角形、平行四边形、三角函数2016 圆的性质(切线)、相似三角形、三角函数2017 圆的性质(切线)、相似三角形、角平分线的性质、圆的相关计算、三角函数也相对复杂.难度也较高(尤其是14、15年),考查学生综合多方面知识进行几何证明的能力.本题除了常规的证明以外,主要的命题特点有以下两种:1.改编自常考图形,有可能成为作辅助线的依据.如16年的构图中包含弦切角定理的常用图,17年第(2)问则显然是“切线垂直半径相等”得出角平分线的考察,依此就不难判断出辅助线的构造,应该对常考图形有一定的识别能力.2.利用数量关系求出特殊角.如15年第(1)问,17年第(3)问,这常常是容易被遗忘的点,在做这类题目的时候,首先要通过设问推敲,其次在观察题干中是否有给出角度的条件,如果没有,一般就是通过数量关系求出特殊角.二、例题训练1.如图,⊙O 为 ABC 外接圆,BC 为⊙O 直径,BC =4.点D 在⊙O 上,连接OA 、CD 和BD ,AC 与BD 交于点E ,并作AF ⊥BC 交BD 于点G ,点G 为BE 中点,连接OG .(1)求证:OA ∥CD ;(2)若∠DBC =2∠DBA ,求BD 的长;(3)求证:FG =2DE .2.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径,AB =4.⊙O 切线CD 交BA 延长线于点D ,∠ACB 平分线交⊙O 于点E ,并以DC 为边向下作∠DCF =∠CAB 交⊙O 于点F ,连接AF .(1)求证:∠DCF =∠D +∠B ;(2)若AF =32,AD =52,求线段AC 的长;(3)若CE,求证:AB ⊥CF .3.如图,⊙O为 ABC外接圆,BC为⊙O直径.作AD=AC,连接AD、CD和BD,AB与CD交于点E,过点B作⊙O切线,并作点E作EF⊥DC交切线于点G.(1)求证:∠DAC=∠G+90°;(2)求证:CF=GF;(3)若EFBD=23,求证:AE=DE.4.如图,⊙O 为 ABC 外接圆,AB 为⊙O 直径.连接CO ,并作AD ∥CO 交⊙O 于点D ,过点D 作⊙O 切线DE 交CO 延长线于点E ,连接BE ,作AF ⊥CO 交BC于点G ,交BE 于点H ,连接OG .(1)若CF =2,OF =3,求AC 的长;(2)求证:BE 是⊙O 的切线;(3)若2AF AH DE =23,求证:OG ⊥AB .三、例题解析答案:1.(1)难度中等,关键是推出∠DBA =∠ACB ;(2)难度中等,关键是推出∠DBC =45°;(3)难度大,OA 与BD 交于点H ,关键是利用OG 为∆BEC 中位线推出GH =2DE ,再利用全等三角形推出FG =GH .【考点:圆的性质(垂径定理)、三角函数、三角形中位线、全等三角形】2.(1)难度中等,关键是推出∠DCA =∠B ;(2)难度中等,关键是推出∠F =∠B ,从而得出∆AFC ∽∆ACD ;(3)难度大,关键是通过作下角平分线的常规辅助线得到全等三角形,通过转化边长和∠ACE =45°的条件推出AC +BC =2+23,联立AB =4解出AC =2,BC =23,进而推出30°.【考点:圆的性质、三角函数、相似三角形、全等三角形、角平分线的性质】3.(1)难度低,关键是推出∠G =∠DCB ;(2)难度中等,关键是推出BF =EF ,再推出三角形全等;(3)难度较大,利用平行截割推出2BF =FC ,再利用第(2)问结论转换边长推出∠G =30°,进而推出∠ADC =∠BAD =30°.【考点:圆的性质(切线)、三角函数、全等三角形、平行截割、等腰三角形】4.(1)难度中等,关键是推出∆AFC ∽∆ACB ;(2)难度中等,关键是利用AD ∥CO 得到∆DOE ≌∆BOE ;(3)难度大,关键是推出∆AFO ∽∆ABH ,进而推出AF AH =2OB 23=BE ,推出∠AOC =60°,利用∆ACG ≌∆AOG 得出OG ⊥AB .【考点:圆的性质(切线)、相似三角形、全等三角形、三角函数】解析:主要的命题特点与例题对应:1.改编自常考图形.【题1(1),题2(1),题4(2)】2.利用数量关系求出特殊角.【题1(2),题2(3),题3(3),题4(3)】中考数学专题训练(三):代数与几何综合题(动态压轴题)一、命题特点与方法分析以考纲规定,“代数与几何综合题”为数学解答题(三)中出现的题型.一般出现在该题组的第3题(即试卷压轴第25题),近四年都是以简单几何图形的动态问题作背景,综合考察几何证明与代数计算问题.题较为灵活,几何部分的难度一般比24题要低,重点在于对数形结合的考察.前些年的25题对计算量要求较高(尤其是15年),近两年有所降低.本题第(1)问近3年都是送分题,用于拉高平均分,基本没有讨论价值,而其余两问基本采取以下命题形式:1.最值问题,基本是必考问题,如14年第(2)问,15年第(3)问,16年第(3)问,17年第(3)问②.此处的最值问题基本是通过二次函数关系式求得,所以一般会先要求推出关系式.一般而言这类题是面积最值问题,用字母表示出面积的做法,无外乎作高现和割补,而17年求面积的思路则有较高要求.2.特殊时刻,如14年第(1)(3)问,17年第(2)问.对特殊时刻的设问无外乎某图形成为等腰、直角和相似三角形或者某点落在边上等.这类问题一般分两类做法:一是重代数,抓住各边的等量关系,列出式子解方程;二是重几何,寻找该时刻的特殊几何意义(全等,相似和特殊角),利用几何推理得出结果.第一种做法计算量大,第二种做法则更重视几何推理,两种做法没有绝对的界限,一般两种都有涉猎.3.纯几何证明,如16年第(2)问,17年第(3)问①.要注重几何证明与接下来的设问的关系,类似于17年第(3)问,①中的结论用于②,降低难度,几何证明的结论很可能对接下来的解答有所帮助.此类问题有以下命题特点:1.对基本图形的考察,而且常常需要作辅助线来补全基本图形.例如13年“触礁问题”,14年相似求高,15年面积割补,17年“一线三等角”,这些基本图形大多出自课本且常见,像“一线三等角”,即便考过也应该加强,很可能改头换面再出现.2.结合几何证明在近年来,动态问题中的构图慢慢复杂,比起类似于13、15年的纯计算动态问题,类似于16、17年的几何意义比较丰富的动态问题更加受到重视.16、17年都是改编自经典的正方形证明问题,平时应该重视这类问题的改编题.3.基本出现分类讨论,而且常有提示.特别是16、17年都配有两个图作为提示,在解答时一定注意解答的方法是否在不同配图下都适用,必要时要写下“图(2)也是同理”.二、例题训练1.如图,在平面直角坐标系中,四边形AOBC为正方形,点A0,2.点D 为OB边上一动点,连接AD,向上作DE ⊥AD并在DE 上取DE=AD 交BC 于点F ,连接CD 、CE 和BE ,设点D 的坐标为x ,0.(1)填空:点C 的坐标为____;(2)设y =S ∆CDE ,求y 关于x 的关系式,并求y 的最小值;(3)是否存在这样的x 值,使∆CBE 为等腰三角形?若存在,求出对应的x 值;若不存在,请说明理由.2.如图,Rt ∆ABC 和Rt ∆CDE 全等(点B 、C 、E 共线),∠B =∠E =90°,AB=CE =2cm,∠ACB=∠CDE =30°,连接CE ,并取CE 中点F.点M 、N分别为BC 、CD边上动点,分别用3cm /s 和2cm /s 的速度以点B →C ,点C →D 的方向运动,连接FM 、MN 和FN ,设运动的时间为t s 0≤t ≤2.(1)填空:∠CAD =____°;(2)设S =S ∆FMN cm 2,求S 关于t 的关系式,并求S 的最大值;(3)是否存在这样的t 值,使FN 与CD 的夹角为75°?若存在,求出对应的t 值;若不存在,请说明理由.3.如图,在平面直角坐标系中,四边形OABC是矩形,点A(23,0),点C0,2.点D为BC边上一动点,将COD沿OD对折成EOD,将点B沿点O和BA边上一点F的连线对折使其落在射线DE上的点G处.(1)填空:∠ODF=____°;(2)设点D x,2,点F23,y,求y关于x的关系式,并求出当x从0增大到3时,点F的运动路程;(3)在(2)的条件下,当点G落在x轴上时:①求证:CD=AG;②求出此时x的值.. .4.如图,在等腰三角形ABC中,BC=6cm,AB=23cm.点M、N分别从点B、C出发,分别用1cm/s、3cm/s的速度在BA、CD边上运动到点A、B停止,以MN为斜边以如图所示方式在其右上方作等腰直角三角形MNO,设运动时间为t t s0≤t≤23.(1)填空:∠BAC=____°;(2)设S=S∆MNO cm2,求S关于t的关系式,并求S的最大值;()是否存在这样的t值,使点O落在∆ABC的边上?若存在,求出对应的图(1)图(2)t 值;若不存在,请说明理由.三、例题解析答案:1.(1)2,2;(2)把∆CDE 分割成∆CDF 和∆CFE ,分别作出CF 边上的高,把面积的变化转化为CF 长度的变化,再利用∆AOD ∽∆DBF 表示BF 的长度;y=22xx+2=12x12+32;(3)①当CE=BE时,x=1;②当BC=BE时,x=2;③当BC=CE时,x=2.【考点:正方形的性质、全等三角形、相似三角形、二次函数、等腰三角形】2.(1)45;(2)连接FC,S∆FMN=S∆FCM+S∆FCN S∆MCN,利用二次函数的性质求出S的最大值;S=332-t2-532+t33,S max=3+3;(3)用含t的式子表示FC的长;①当∠FND=75°,t=3;②当∠FNC=75°,t=33.【考点:全等三角形、三角函数、二次函数、解直角三角形】3.(1)90;(2)利用相似求出关系式,路程分开y从2到最小值和从最小值到2两段;y=22x3x+2=12x32+12;运动路程长为3;(3)①连接BG,四边形BGOD为平行四边形;②利用①和相似得出结论,此时x=233.【考点:矩形的性质、相似三角形、平行四边形、二次函数】4.(1)120;(2)把∆MNO的面积用MN2表示,而MN2用勾股定理求得;S=74x932+243196;(3)①当落在AB边上,t 18324-;②当落在BC边上,t1836+③当落在AC边上,过点M、N向AC边做垂直,证出全等,t 333-.【考点:等腰三角形、三角函数、勾股定理、二次函数、全等三角形、解直角三角形】解析:主要的命题形式与例题对应:1.最值问题.【题1(2),题2(2),题3(2),题4(2)】2.特殊时刻.【题1(3),题2(3),题3(3),题4(3)】3.纯几何证明.【题1(2)过程,题3(3)①,题4(3)过程】。

相关文档
最新文档