2019-2020学年七年级数学上册 3.2 代数式教案 北师大版.doc

合集下载

北师大版数学七年级上册3.2 第1课时 代数式2教案与反思

北师大版数学七年级上册3.2 第1课时 代数式2教案与反思

3.2 代数式路漫漫其修远兮,吾将上下而求索。

屈原《离骚》江南学校李友峰第1课时代数式教学目标:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.有谁知道胡主席乘坐的是什么品牌的车吗?生:国产红旗大轿车.师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.同学们知道是谁吗?生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)师:(多媒体展示一张奚仲造车的图片.)师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?生:2个,4个,2x个.师:板书2x.设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题)下面请同学们快速完成导学案的第一题.二、自主探索,合作交流.1.温故而知新填空:⒈边长为a cm的正方形的周长是 cm,面积是cm2.2 . 钢笔每支2元,铅笔每支0.5元,m支钢笔和n支铅笔共____________元.⒊温度由2℃下降t℃后是℃.⒋小亮用t秒走了s米,他的速度是为米/秒生:(完成填空,如有疑难可在小组内交流、讨论.)生1:通过实物投影展示答案:4a , a2 , 2m +0.5n , t -2, t s 生2:第2、3题应该加上括号.师:板书正确答案.师:观察上面的这些式子有什么特点?生:(以小组为单位,进行组内交流、讨论.) 生1:含有数、字母、生2:含有运算符号.师:像2x,4a , a2 , 2m +0.5n , t -2,ts 等式子都是代数式(algebraic e x pression).单独一个数或一个字母也是代数式.师: 你还能举几个代数式的例子吗?生1:2,m,a ﹢b …生2: m-n,5, 2n …师:真棒.面再来考考你的眼力,请同学们快速完成导学案 : 自主探索,合作交流的第1题.2.考考你的眼力:师:下列各式中些是代数式?哪些不是?(1)m +5 (2)a +b =b +a (3)0(4) x 2+3x +4 (5)x +y >1(6)生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.(2)单独的一个数或字母也是代数式.师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:用代数式表示(1) f 的11倍再加上2可以表示为_____________.(2)数a 与它的的和可以表示为_________.(3)一个教室有2扇门和4扇窗户,n个这样的教室共有___________扇门和_________扇窗户.(4)小华、小明的速度分别为x米/秒,y米/秒,6分钟后它们一共走了米.生:(完成填空并回答,如有疑难可在小组内交流、讨论.)生1: 11f+2 ,a+a,2n,4n,6(x+y)生2:(4)小题也可以写成(6x+6y)生3:第(2)小题也可以写成1a,师: 1a通常写成a,带分数写成假分数.师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢?生: 以小组为单位,进行组内交流、讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;生2:在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.生3:带分数一定要写成假分数.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的代数式符合要求吗?生:自我检查,同位之间互查.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式的方法.师:我们知道了代数式,会列代数式,现在我们就来共同探究一下生活中的数学. 请同学们完成导学案的探究一.三、合作探究,拓展新知.内容:讨论教材上的例题.分析需要使用代数式表达信息的原因.通过解决具体问题,让学生感受代数式求值的含义.探究一:学习要求:请认真读题并完成题后的填空:1. (1)某公园的门票价格是:成人票每人10元,儿童票每人5元.一个旅游团有x名成人和y名儿童,用代数式表示这个旅游团应付的门票费.(分析:x名成人的门票费为;y名儿童的门票费为;解:这个旅游团应付的门票费为 .(2)如果这个旅游团有37名成人和15名儿童,那么应付门票费多少元?(分析:这个旅游团有37名成人即字母 =37;儿童15名即 =15;分别把它们代入(1)中的代数式,即可求出应付门票费)解: (学生口述)生: (先独立思考,再小组内交流后回答问题.)生: (通过实物投影展示答案.)生1:(1) x名成人的门票费为10x, y名儿童的门票费为5y,这个旅游团应付的门票费为,(10x+5y)元.生2:(2) 如果这个旅游团有37名成人和15名儿童,那么应付门票费445元. 师: 在回答(2)题时,我们要注意解题的格式.(板书解题过程,并加以强调.) 师:刚才我们解决了生活中的一个问题,下面我们再来探究一下生物世界的奥秘吧.请同学们快速完成导学案的探究二.探究二:1.请认真读题,参照1题的答题格式,完成下题的解答过程.----相信你能行!在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后加上3,就近似地得到该地当时的气温(℃).(1)用代数式表示该地当时的气温;(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约是多少?(结果保留整数)生: 先独立思考,再小组内交流后回答问题.x生1: 口答1. 用x表示蟋蟀1分钟叫的次数,则该地当时的气温为(7+3) ℃.生2: 通过实物投影展示(2)小题答案.设计意图:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x=80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.教学效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.小组讨论:代数式10x+5y还可以表示什么?想一想, 比一比!看谁说的既多又准!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)①如果用x(元)1支铅笔的价格,用y(元)1个练习本的价格,那么10x+5y 可以表示的总钱数②如果,那么生:(先完成①小题,然后仿照上题完成②小题.)生1:老师有 x张10元,有y 张5元的钱,则(10x+5y)元就表示老师有多少钱. 生2:一辆车以x千米/小时的速度行驶了10小时,然后又以y千米/小时的速度行驶了5小时,则 (10x+5y)千米表示这辆车所走的路程.生3:某种数学资料每本要10元,英语资料每本要5元,小明买了x本数学资料,y本英语资料,则( 10x+5y)元表示共用了多少钱.师:同学们真棒,举出这么多代数式10x+5y所表示的实际背景.设计意图:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x+5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.四、拓展延伸讨论回答下列问题:1.写出一个你最喜欢的一个两位数.2.一个两位数的个位数字是a,十位数字是2,请用代数式表示这个两位数;3.一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数如何用代数式表示一个三位数?生:( 以小组为单位,进行组内交流、讨论后回答问题.)生1: 通过实物投影展示答案1.我喜欢362.这个两位数是20+a3.这个两位数是10b+a4.设这个三位数的个位数字是a,十位数字是b,百位数字是c,这个三位数是100c+10b+a.生2: 通过实物投影展示答案1.我喜欢96 ,第2,3题答案和上面的同学相同,第4题.设这个三位数的个位数字是x,十位数字是y,百位数字是z,这个三位数是100z+10y+x.师: 总结:两位数表示:10十位数字+个位数字三位数表示: 100百位数字+10十位数字+个位数字设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;让学生进一步把握本章的重点,明确学习的方向.教学效果:学生分层次独立完成,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1,2,3题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.五、小结回顾:师:请同学们谈一谈,通过本节课的学习,你有哪些收获?(生1、生2、生3自发站起来谈学习收获,教师作出点评、补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六、作业:1. P108 读一读“代数”的由来2. P109 第1题板书设计:教学反思:本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展.当然本节课在教学过程中也有遗憾的地方,在今后的教学中,我将努力克服自己在教学中的不足之处,争取在今后的教学工作中做到更好.【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。

(新北师大)2_代数式_教案10

(新北师大)2_代数式_教案10

3.2.2 代数式教案1.能熟练地求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法;2.会利用代数式求值推断代数式所反应的规律;3.能解释代数式值的实际意义.教学重点与难点:重点:会求代数式的值并解释代数式值的实际意义.难点:利用代数式求值推断代数式所反应的规律.教法与学法:教法:应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型,重视对代数式求值推断代数式所反应的规律.学法:应重视在具体情境中去体验、理解知识;注重过程,提倡在学习过程中自主探究,逐步掌握从实际问题中建立数学模型,抽象出数学问题的方法,增强利用数学的意识,体验数学与实际生活的密切关系,提高学习数学的积极性和主动性.课前准备:多媒体课件.教学过程:一、创设情境,复习引入1.水稻a亩,计划每亩施肥n千克,玉米b亩,计划每亩施肥m千克,共施肥________千克.2.a与b的和的平方可以表示为___________.3.x的4倍与3的差可以表示为____________.4.汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有__________名乘客.5.温度由2℃上升t℃后的温度__________℃.6.小亮用t秒走了s米,他的速度是__________米/秒.7.为了开展体育活动,学校要添置一批篮球,每个班级配2个,学校另外留10个,n 个班级总共需要多少个篮球?(学生独立完成列代数式,然后小组交流,纠正.)师:若班级数是15(即n=15),则篮球总数是:2102151040n+=⨯+=;若班级数是20(即n=20),则篮球总数是:2102201050n+=⨯+=.这说明n取不同的值,代数式2n +10的计算结果也不同.师:大家知道数值转换机吗?今天我们一起来探究.(板书课题:代数式(2))实际效果:通过复习上一节知识内容,直接点出本节主题,在于降低教学难度,向学生介绍数值转换机,激发学生兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.目的在于引导学生体验字母取值和代数式值的对应思想.设计意图:学生在通过上一节知识的回顾,知道代数式和代数式值的概念,而当老师提出数值转换机时,学生明显的充满了兴趣,一个个摩拳擦掌跃跃欲试,极大地调动了学生学习数学的积极性.二、自主探究,激发兴趣师:你能说出第一台转换机是按一种什么算法来进行转换的?生:用输入的数先乘以6,再减去3,就得到最后的结果.师:你能用一个代数式来表示这个转换过程吗?生:用x表示输入的数字,这个过程就表示为(6x一3).师:很好.那么第二台转换机是按一种什么算法来转换的呢?生:我知道,这台转换机是先用输入的值减去3,再乘以6.师:(填写一3,×6)通过两台数值转换机的分析,你对求代数式的值有什么认识?生:用数值代替代数式里的字母计算代数式的值时,必须按代数式指明的运算顺序进行计算.师:利用上面数值转换机,填写下表:生:书写计算过程,并得出答案.师:强调求代数式值的格式.第一步:当……时,… (“当……时”,不能丢;)第二步:代入;第三步:计算.观察上表,回答问题:(1)一般地,对于同一个数值转换机,当输入的字母χ的值不同时,输出的结果相同吗?(2)上面的两个数值转换机,当输入字母χ的值相同时,输出的结果相同吗?说说你的理由.设计意图:引入数值转换机,使学生亲身感受代数式求值可以理解为一个转换过程或某种算法,同时了解数值转换机由于转换的步骤不一样,因此输出的代数式一般也不一样,又通过活动与探究加强对算法的理解,明白虽然转换的步骤不一样,但输出的代数式也有可能相同.实际效果:通过两个不同的数值转换机(运算顺序不同,列出代数式会不同,代入相同字母的值时所求代数式值也不同)进一步提高学生的兴趣.三、变式训练,拓展思维议一议:填写下表,并观察下面两个代数式的值的变化情况:(1)随着n的值逐渐变大,两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100,你能简单地说说你的想法吗?(学生分组合作完成计算,填表,得出结果.)师:通过观察,随着n的俩逐渐变大,两个代数式的值有什么变化?生:随着n的值逐渐变大,两个代数式的值都随着增大.师:哪个代数式的值增长得快一些?生:n.师:你估计一下,哪个代数式的值会先超过100?生:n.师:当n的值达到100时,5n+6的值是多少?生:56.师:通过比较,你有什么体会?生:当底数越来越大时,平方运算的结果增加得越快.设计意图:经过这个填表问题,学生进一步感受到求代数式值的过程和方法,进一步理解代数式值的概念,并感知字母和代数式值之间的对应思想.通过比一比,看谁算得又快有准极大地调动学生学习的主动性、积极性.实际效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,在回答教材上表格下面的两个问题后,老师可以适当增加问题,比如:如果这两个代数式分别表示甲乙两家公司给一个打工者所发的总工资(n代表他上班的总天数),你将选择在哪家公司打工?事实上,学生们非常有兴趣,说甲乙的都有,还有学生说要根据打工天数的多少分情况讨论,这个题,显然可以向学生渗透数学里面分类讨论的思想.同时,根据学生的学习情况,可以适当加问:当n=-3时,分别求n2、-n2的值,进一步让学生理解两个不同代数式的含义.四、巩固练习,强化新知1.人体血液的质量约占人体体重的6%~7.5%.(1)如果某人体重是a千克,那么他的血液质量大约在什么范围内?(2)亮亮的体重是35千克,他的血液质量大约在什么范围内?(3)估计你自己的血液质量?2.物体自由下落的高度h米和下落的时间t秒的关系,在地球上大约是:h=4.9t,在月球上大约是:h=0.8t.(1)填写下表:(2)物体在哪儿下落得快?(3)当h=20米时,比较物体在地球上和月球上自由下落所需的时间.设计意图:根据老师们平时的教学经验,课后的这个第2题是学生做的最差的一道题。

七年级数学上册 3.2.1 代数式教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教案

七年级数学上册 3.2.1 代数式教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教案

课题:.1代数式教学目标:1.了解代数式的概念,能用代数式表示简单问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义;3.能解释一些简单代数式的实际背景或几何意义,发展符号感.教学重点与难点:重点:理解具体代数式的意义,能用代数式表示简单的数量关系,并能进行简单代数式求值. 难点:准确列出代数式,从不同的角度给代数式赋予实际意义.课前准备:多媒体课件.教学过程:一、创设情境,引入新课活动:复习回顾问题:用字母表示下列数量关系1.用火柴棒拼摆正方形,如下图所示,如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴棒?请用不同式子来表示这个数量关系?2.填空:(1)边长为a cm 的正方形的周长是cm,面积是cm 2;(2)钢笔每支2元,铅笔每支0.5元,m 支钢笔和n 支铅笔共____________元;(3)温度由2℃下降t ℃后是℃;(4)小亮用t 秒走了s 米,他的速度是为米/秒.处理方式:让学生独立思考理解题意,学生在黑板上写出数量关系式.其他纠错互评,规X 答案.[1.〔4+3(x-1)〕根;〔x+x+(x+1)〕根;(3x+1)根.2.①4a ,a 2;② (2m +n );③ (t -2);④ts . 问题:仔细观察以上式子,它们有什么共同的特点?处理方式:学生畅所欲言对数量关系式的特点,教师引入课题.(课题:代数式(1)) 设计意图:通过复习上一节知识内容,承接先前的若干实例,回顾具体代数式所表达的含义.在于降低教学难度,激发兴趣,调动了学生学习数学的积极性.二、自主探索,合作交流活动1:认识代数式问题:谈谈你对代数式的认识?处理方式:学生自主学习,畅所欲言,师给予评价,教师从而归纳代数式的意义:用运算符号把数字和字母连接而成的式子称为代数式.教师进而强调:①运算符号包括:加、减、乘、除、乘方; ②单独的一个数或字母也是代数式. ③ 用具体数值代替代数式中的字母,就可以求出代数式的值.设计意图:让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识结构,获得对概念的理解,发展数学能力.巩固练习:1.判断下列各式哪些是代数式31ab ,7,4x -3,2y +7=4,321x y -+,q ,x -2>5,7-3=4,0,2a +3b . 2.用代数式表示:(1)圆的半径为r cm ,它的周长为______cm,它的面积为______cm 2;(2)某种瓜子的单价为16元/千克,则n 千克需_______元;(3)某市出租车收费标准为:起步价10元,3千米后每千米价1.8元,则某人乘坐出租车x(x >3)千米的付费为______元;(4)在一次募捐活动中,七年级每位同学捐款m ,共有n 名学生,则一共捐款_____元.3. 当x =6,y =2时,求代数式2x-5y 的值.处理方式:对学生的解答给予反馈,尤其对于(1)中的2y +7=4,x -2>5,7-3=4很多学生不易判断,教师要特别指出的是:一般的用“=、≠、≥、≤”连接的式子不是代数式;对于(2)、(3)题,注意强调代数式的书写,以及代数式的值的解题要求.设计意图:通过练习,学生及时巩固新知,理解概念,让学生对新知的认识再上一台阶. 活动2:典例讲评例 列代数式,并求值.(1)某公园的门票价格是:成人票每X10元,学生票每X5元.一个旅游团有成人x 人,学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人.15个学生,那么他们应付多少门票费?处理方式:学生理解题意,自主探究,然后小组内讨论、交流;教师同时巡视指导,参与小组讨论.请一名学生给全体同学讲解板演.然后借助多媒体展示解答过程.参考答案;解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15 =445.因此,他们应付445元门票费.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式和求代数式的值,体验数学来源于生活,又为现实生活服务;并用多媒体展示解题过程,进一步规X学生的解题格式,让学生体会数学的规X性,严密性.活动3:代数式在现实生活中的意义问题:在例题中,10x+5y表示的是x个成人,y个学生进公园的门票费,那么它还可以表示什么呢?请大家编写能用此式来表达的情景.处理方式:教师举例引导,对于10x+5y,如果用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度,那么10x+5y表示他跑步10s和走路5s所经过的路程.然后要求学生在独立思考的基础之上,建立自己的情景框架,小组交流,随后全班交流.教师给予鼓励和引导,并作出积极的评价,共同归纳: 10x+5y可以赋于很多的实际的意义,投影展示学生思考的多种结果.设计意图:让学生充分体会代数式在现实背景中的意义,提高学生活学活用知识的能力和习惯,将学生的知识进行深化和升华.活动4:深化新知做一做现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(㎏)与人体身高(m)平方的商。

3.2+代数式2023-2024学年北师大版数学七年级上册

3.2+代数式2023-2024学年北师大版数学七年级上册
那么这个月内销售这种商品的收入是多少? 解:(1)这个月内销售这种商品的收入(4.8m+3.6n) 元;(2)如果卖出大袋20袋,小袋50袋,那么这个月内销售这种商品的收入是
4.8×20+3.6×50=276元.
四、典型例题
例4.某电影院第1排有10个座位,后面每排都比前一排多2个座位. (1)用式子表示第 n 排的座位数; (2)第6排有多少排座位? 解:(1)第2排座位数为10+(2-1)×2,第3排座位数为10+(3-1)×2,
(3)4t÷5
解:(1)4×0.2a
(4)25 a
(2)3m (5)(4+5x)元
4 (3) 5 t
四、典型例题
总结:书写含有字母的式子时: 数与字母、字母与字母相乘省略乘号或用“ · ”代替,但数与数之间的乘号 不能省略; 数与字母相乘时数字写在前面; 式子中出现除法运算时,一般按分数形式来写; 带分数与字母相乘时,把带分数化成假分数; 后面带单位时,相加减的式子要加括号.
a+(2a+8)+[0.5×(2a+8)-6]=(4a+6)(棵), 当a=100时, 4a+6=406(棵), 答:三队共植树(4a+6)棵,当a=100时,三队共植树406棵.
【当堂检测】
4.请你用式子表示如图所示的长方体形无盖纸盒的容积(纸盒厚度忽略 不计)和表面积;并求出当a=2,b=3,c=4时,纸盒的容积和表面积.
(3)明的家离学校1s0s千米,小明骑车上学.若每小时行10千米,则骑
思考:书写车代到数学式校需需要要注意小什时么. ?
三、概念剖析
书写代数式需要注意以下5点. (1)数与字母、字母与字母相乘省略乘号或用“ · ”代替,但

北师大版七年级数学上册《代数式》说课课件

北师大版七年级数学上册《代数式》说课课件

后,达到了为
kg。
x (5)小明和小芳一起买东西一共花了
(6)1 2 的 倍与5的差可以表示成
x
元,平均每人花了 。
3
D
.
2a a
b
是代数式
扇窗户。 元。
4、巩固新知,形成技能
代数式书写格式要求:
(1)数字与字母相乘,数字放前面,乘号写 •或省略。1a写成 a ; (2)数字与数字相乘,不能省略乘号,45 不能写成 4 • 5或 45; (3)字母和字母相乘,省略中间的乘号,a b 写成 a • b 或 ab; (4)若有单位名称,最后是和或差的形式应用括号括起来; a (5)式子中出现除法时,写成分数形式。把写成。a 3 写成 3 ; (6)当带分数与字母相乘时,应将带分数化为假分数再相乘。
1. 掌握代数式的概念,能按照书写格式列代数式,并能初步掌握 代数式求值。
2. 通过代数式的学习,培养学生观察分析、类比归纳的探究能力, 加深对从特殊到一般、数学建模等数学思想的认识。
3. 通过独立思考、探究合作,一方面感受探索的乐趣和成功的体 验,另一方面使学生在思维能力得到进步和发展。
01
二、学情分析
心理特征
学生逻辑思维从经验型逐步向理论型发展,观察能力,推
理能力和抽象能力也随着迅速发展。
认知状况
02
从“数字”到“数式”的飞跃还没有足 够的准备,所以在代数式表示实际问题 中的数量关系会感到困难。
03
重点:掌握代数式的概念,会用正确的书写格
式列代数式,能进行简单的代入求值。
难点:通过生活实际和几何意义让学生说出代
这两种方案是否一样?最后是否都恢复了原价?(列代数式)
教学反思
反思这节课,我根据新课标要求和学生的心理特征及其规律, 采用活动探究进行启发式教学,以教师为主导,学生为主体,放手 让学生自主探究学习,让他们主动参与到知识形成的整个过程。但 在突破难点上还有待提高,从不同的角度给代数式赋予实际意义上, 学生有一定的困难。在上课时教师应该给以适当的引导和帮助,使 学生从生产资料、生活用品和几何体等多方面说出代数式“10x+5y” 所表示的意义.

北师大版数学七年级上册3.2《代数式》教案

北师大版数学七年级上册3.2《代数式》教案

北师大版数学七年级上册3.2《代数式》教案一. 教材分析《北师大版数学七年级上册 3.2《代数式》》一课是在学生已经掌握了有理数、整式等知识的基础上进行学习的。

本节课的主要内容是让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,同时让学生掌握代数式的运算方法。

二. 学情分析面对刚从小学升入初中的学生,他们对数学知识的掌握程度参差不齐。

有的学生已经具备了一定的代数基础,但也有部分学生对代数知识比较陌生。

因此,在教学过程中,教师需要关注全体学生,既要照顾到基础较好的学生,也要帮助基础薄弱的学生。

三. 教学目标1.知识与技能目标:让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,掌握代数式的运算方法。

2.过程与方法目标:通过自主学习、合作交流等环节,培养学生的数学思维能力和问题解决能力。

3.情感态度与价值观目标:让学生体验数学在实际生活中的运用,提高学生对数学的兴趣和自信心。

四. 教学重难点1.重点:代数式的概念及其表示方法。

2.难点:代数式的运算方法。

五. 教学方法1.情境教学法:通过生活实例引入代数式概念,让学生在实际情境中感受数学的魅力。

2.自主学习法:引导学生独立思考,自主探究,培养学生的学习能力。

3.合作交流法:学生进行小组讨论,分享学习心得,提高学生的团队协作能力。

六. 教学准备1.准备相关的生活实例和图片,用于导入新课。

2.准备代数式的相关练习题,用于巩固和拓展环节。

3.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)利用生活实例和图片,引导学生思考:如何用数学语言表示这些实例中的几何图形和物理量?从而引出代数式的概念。

2.呈现(10分钟)讲解代数式的定义,让学生了解代数式的组成和表示方法。

通过PPT 展示代数式的相关例子,让学生初步感知代数式的运用。

3.操练(10分钟)让学生独立完成一些代数式的基本运算题目,巩固所学的知识。

教师在这个过程中要注意引导学生思考,解答学生的疑问。

北师大版-数学-七年级上册-3.2 代数式 教案2

北师大版-数学-七年级上册-3.2 代数式 教案2

代数式(二)一、素质教育目标(一)知识教学点1.了解代数式的意义2.知道一个代数式所表示的数量关系。

(二)能力训练点:初步培养学生的独立分析问题、解决问题的能力和语言表达能力。

(三)德育渗透点:培养学生实事求是、精益求精的科学态度和工作作风。

二、教学重点、难点和疑点1.重点:代数式的意义及简单代数式所反映的数量关系。

2.难点:准确说出代数式的意义及简单代数式的表示。

3.疑点:同一代数式的意义的不同说法。

三、教学方法采用尝试指导、效果回授、引导发现法,注意学生的主体性、参与性和问题的开放性。

四、教具准备投影仪或电脑、自制胶片五、教学步骤(一)创设情境,复习导入(出示投影1)1.张强比王华大3岁,当张强8岁时,王华的年龄是_________岁。

当张强a岁时,王华的年龄是__________岁。

2.黑板的长为a米,宽为b米,则它的面积为____________,周长为___________米。

3.m千克大米售价8元,1千克大米售_____________元。

4.1千克苹果a元,5千克苹果_____________元。

学生活动:四名同学板演,其他同学练习本上写。

答案:(1)5,a –3;(2)a×b, 2×(a+b); (3)8÷m; (4)5×a。

联系学生熟悉的实际问题,一是激发兴趣,二是可使学生认识到数学知识来源于实践又反过来指导实践的辩证关系。

(二)探索新知,讲授新课师:上面出现的5,a –3,a×b, 2×(a+b),5×a,8÷m等这样的式子都是代数式。

实际上,代数式就是由数字、字母和基本运算符号(+、-、×、÷等)连接而成的式子,特殊的如一个数、一个字母也是代数式。

以前学习中遇到的式子都是代数式,只是未提出这一概念。

现在提出这一概念后就有它的新规定,需要同学们注意:(1)在代数式中出现的乘号,通常简写成“·”,或者省略不写;乘号要居中,否则与小数点混淆,且只有乘号可这样处理,其他运算符号不行,如2×(a+b)可写成2·(a+b)或2(a+b)。

北师大版数学七年级上册3.2.1 代数式教案

北师大版数学七年级上册3.2.1 代数式教案

2 代数式第1课时 代数式●置疑导入 在国庆阅兵式上,曾有女民兵和三军女兵两种特殊方队,请据此回答:(1)若女民兵有a 人,三军女兵有b 人,则两种方队共有女兵__a +b __人; (2)若三军女兵平均年龄为m 岁,比女民兵平均年龄大n 岁,则女民兵平均年龄为__m -n __岁;(3)若三军女兵共有m 排,且每排有20人,则三军女兵的人数为__20m __;(4)女民兵方队用t s 走了s m ,她们的平均速度可以表示为__s t__m/s; (5)以上所填各式有何特点?【教学与建议】教学:通过阅兵式的情境再现,激发学生的学习热情.建议:采取抢答的形式回答问题,调动学生的积极性.●复习导入 师:观察下列式子的特点,并说明哪些是等式:(1)a +b =b +a ;(2)a ×b =b ×a ;(3)(a +b )+c =a +(b +c );(4)a ×b ×c =a ×c ×b ;(5)a ×(b +c )=a ×b +a ×c ;(6)x -y ;(7)3×(a +b );(8)a ×b ;(9)12×(a -b )×c ;(10)x -1>2;(11)3;(12)b ;(13)x +5≠3;(14)5a . 生:等式有(1)(2)(3)(4)(5).师:除了等式,其他的是什么式子呢?生:不等式有(10)(13).师:现在我们来分析剩下的式子有哪些共同的特征.(6)x -y ,(7)3×(a +b ),(8)a ×b ,(9)12×(a -b )×c ,(11)3,(12)b ,(14)5a . 【教学与建议】教学:学生找出已经学过的等式、不等式,发现剩下的式子具备的共同特点,为代数式的学习做好铺垫.建议:教师抓住学生分析过程中的观点适时引导,最后归纳总结.*命题角度1 代数式的概念代数式是用运算符号把数和字母连接而成的式子,单独的一个数或一个字母也是代数式.【例1】以下是代数式的是(C)A .m =abB .(a +b )(a -b )=a 2-b 2C .a +1D .S =πR 2【例2】下列式子:①12a -b =c ;②234;③24a >0;④25a 2n ,其中属于代数式的有__②④__.*命题角度2 代数式所表示的实际意义描述一个代数式的意义,可以描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中的字母一定的实际意义加以描述.【例3】下面是4位同学关于“代数式4x 表示什么”的说法:①贝贝说他每小时走x km ,4 h 共走4x km ;②晶晶说她每分钟跑x m ,则4 min 跑4x m ;③小明说一个瓶子的体积为x L ,4个同样的瓶子的体积为4x L ;④小强说一只老虎平均一天吃4 kg 肉,则x 天吃4x kg 肉.其中正确的有(D)A .1个B .2个C .3个D .4个【例4】班长小强带了600元钱去买体育用品,已知一个足球x 元,一个篮球y 元,则代数式600-4x -3y 表示的实际意义是__班长小强购买4个足球,3个篮球后剩余的钱__.*命题角度3 代数式的运用列代数式需要注意的问题:(1)认真审题;(2)注意题目的语言叙述所表述的运算顺序;(3)需弄清题目中数量关系的运算顺序,逐步列出代数式.【例5】一个三位数的各数位上的数字之和等于12,且个位数字为a ,十位数字为b ,则这个三位数可表示为(D)A .12+10b +aB .12 000+10b +aC .112+10b +aD .100(12-a -b )+10b +a【例6】某种长途电话的收费方式如下:接通电话的前3 min 收费a 元,之后的每分钟收费b 元(不足1 min按1 min 收费).若某人打该长途电话一共付费8元(a <8),则此人的通话时长为__(8-a b +3)__min.高效课堂 教学设计1.理解代数式,能解释一些简单代数式的实际背景或几何意义.2.在具体情境中,能求出代数式的值,并解释它的实际意义.解释代数式的实际意义.理解具体代数式的意义,能用代数式表示简单的数量关系. 活动一:创设情境 导入新课1.思考:(1)若正方形的边长为a ,则它的周长为__4a __,面积为__a 2__;(2)设n 表示一个数,则它的相反数是__-n __;(3)铅笔的单价是x 元,4支铅笔要花__4x __元.2.观察所列算式包含哪些运算,有何共同的运算特征.活动二:实践探究 交流新知【探究1】代数式的概念问题:什么样的式子是代数式?学生在活动里找到这些式子的共同特征.【归纳】用运算符号把数和字母连接而成的,像这样的式子叫做代数式.注意:单独一个数或一个字母也是代数式,代数式不能带不等号或者等号.【探究2】列代数式(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和.问题:这三题中都有关键词“平方”和“和”,但语序不一样,列出的代数式也不一样.解:(1)x 2+4;(2)(x +2)2;(3)x 2+2.【归纳】用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.活动三:开放训练 应用举例【例1】(教材P 81例题)(1)某公园的门票价格是:成人票每张10元,学生票每张5元.一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?【方法指导】把实际问题中的数量关系用代数式表示出来.解:该旅游团应付门票费是(10x +5y )元.(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?【方法指导】把x ,y 的值代入代数式中即可求出代数式的值.解:他们应付10×37+5×15=445(元).(3)代数式10x +5y 还可以表示什么?【方法指导】同一个代数式可以表示不同的意义.如:x 表示1元硬币枚数,y 表示5角硬币枚数,则10x +5y 表示x 枚1元硬币和y 枚5角硬币共是多少角钱.【例2】下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).【方法指导】解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a 与b 的差或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一只铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.活动四:随堂练习1.下列各式不是代数式的是(A)A .S =πR 2B .1C .1aD .m +n 2.“x 的2倍与y 的13的和”用代数式表示为(B) A .(2x +y )×13 B .2x +13y C .2⎝⎛⎭⎫x +13y D .3(2x +y ) 3.国庆节期间,李老师一家四口开车去森林公园游玩,若门票每人a 元,进入园区每辆车收费30元,李老师一家开一辆车进园区所需费用是__(4a +30)__元.4.教材P 82随堂练习T 2解:(1)10b+a;(2)若个位数字是a,十位数字是b,百位数字是c,则这个三位数为100c+10b+a.活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?教学说明:教师引导学生回顾代数式的概念和应用,让学生大胆发言,加深对新学知识的理解.作业:课本P83习题3.2 T1、T3、T4本节课从学生了解代数式的概念,到列代数式,培养学生爱思考,爱学习的习惯,让学生学会运用所学知识解决实际问题,提高解决问题的能力.利用生活中的案例,激发学生的学习兴趣,调动学生学习数学的积极性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年七年级数学上册 3.2 代数式教案 北师大版
教学目标:1、了解代数式的概念,并在具体情境中,进一步理解字母
表示数的意义。

2、能解释一些简单代数式的实际背景或几何意义,发展符号感。

3、在具体情境中,能求出代数式的值,并解释它的实际意义。

教学重点:1、解释一些简单代数式的实际背景或几何意义,发展符号感。

2、在具体情境中,能求出代数式的值,并解释它的实际意义。

教学难点:解释一些简单代数式的实际背景或几何意义。

教学用具:电教平台。

教学方法:概括、归纳、讨论法
活动准备:课件
教学过程:
一、引题:学生完成课前练习:
(1)某种瓜子的单价为16元/千克,则n 千克需 元
(2)小刚上学步行速度为5千米/小时,若小刚家到学校的路程
为s 千米,则他上学需走 小时。

(3)钢笔每支a 元,铅笔b 元,买2支钢笔和3支铅笔共需 元
二、学习代数式的概念
师生一起概括练习中出现的问题以及前面出现过的ab 2
1、a 、b 、b a +、 ab 、2a 、2)(b a +、14、467、3
)1(+n n 、t s 等式子,都称它为代数式。

(注意:1、代数式是数字与字母用一些运算符号连结而成的。

2、单独一个数或一个字母也是代数式。


判断下列各式哪是代数式:
mn 31、4x+(x -1)、5、2x+1=3、31+-x y 、0、b 、25
10=、x -1>4 三、学会列代数式和求出代数式的值,并理解其实际意义。

(一)例1:(1)某公园的门票价格是:成人10 元,学生5元,
一个旅游团有成人x 人,学生y 人,那么该旅游团应付多少门票费?
(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?
注意:理解代数式的实际意义,和书写格式。

例2:在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的 近似关系:用蟋蟀一分钟叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)
(1)用代数式表示该地当时的温度;
(2)当蟋蟀一分钟叫的次数分别是80、100和120时,该地当时的温度是多少?(可让学生尝试练习后评讲,课件展示。

并借此例鼓励学生在日常生活中发现一些经验公式) 例3:(1)张宇身高1.2米,在某时刻测得他影子的长度是2米,此时张宇的身高是他影长的多
少倍?
(2)如果用l 表示物体的影长,那么如何用代数式表示此时此地物体的高度?
(3)该地某建筑物影长5.5米,此时它的高度是多少米?
( 学生尝试练习后,课件展示评讲)
(二)完成巩固练习一 :
1、一打铅笔有12支,n 打铅笔有 支。

2、三角形的三边长分别为3a 、4a 、5a ,则其周长为
3、如图,某广场四角铺上了四分之一圆形的草地,若圆形的半径为
r 米,则共有草地 平方米。

4、某机关原有工作人员m 人,现精简机构,减少20%的工作人员,现有 人被精简。

5、a 千克含盐为10%的盐水中含盐 千克;
6、一个两位数的个位数字为a , 十位数字为b,则此两位数可表示
为 。

7、f 的11倍再加上2可以表示为
8、数a 的8
1与这个数的和可以表示为 9、一个教室有2扇门和4扇窗户,n 个这样的教室有 扇门
和 扇窗户。

若有30个这样的教室有 扇门和
扇窗户。

10、产量由m 千克增长15%后,达到 千克。

四、学会解释一些简单代数式的实际背景或几何意义,发展符号感。

代数式10x+5y 除了例1表示的意义外,还可以表示什么?
小组讨论交流。

举例如下:
式子意义:x 的10倍与y 的5倍的和。

实际意义:
(1)如果用x 表示小明跑步的速度,用y 表示小明走路的速度,则
10x+5y 表示他跑步10秒和走路5秒所经历的路程;
(2)如果用x 和y 分别表示1元和5角硬币的枚数,则10x+5y 就
表示x 枚1元硬币和y 枚5角硬币共是多少角钱?
练习;说出下列代数式的意义: (1)6m 表示
(2)3a 2-b 表示
(3)22b a -表示
(4)2)(b a -表示
(5)22b a +表示
(6)2)(b a +表示
(7)y
x 1-表示 (8)))((b a b a -+表示
(9)(1+8%)x表示
小结:本节课学习了列代数式和解释代数式的代数意义和实际意义。

作业:课本p97第3、4题。

教学后记:学生心目中的代数式是含字母的,对于0、-7、π这些就不能理解它们是代数式。

能列简单的代数式,也能说出简单的代数式的意义,说实际意义是学生思维很活跃。

但对实
际问题是学生不能理解字母的意义。

用代数式表示一个三位数,学生却写成abc,要举
实例学生才真正明白。

相关文档
最新文档