【创新设计】2015-2016学年高中数学 第3章 空间向量与立体几何 1.3空间向量基本定理 苏教版选修2-1

合集下载

高中数学第三章空间向量与立体几何1空间向量及其运算2空间向量的数乘运算3作业含解析新人教A版选修2_

高中数学第三章空间向量与立体几何1空间向量及其运算2空间向量的数乘运算3作业含解析新人教A版选修2_

空间向量的数乘运算时间:45分钟 分值:100分A 学习达标一、选择题(每小题6分,共36分)1.对于空间的任意三个向量a ,b,2a -b ,它们一定是( ) A .共面向量 B .共线向量 C .不共面向量D .既不共线也不共面的向量 解析:∵2a -b =2·a +(-1)·b , ∴2a -b 与a ,b 共面. 答案:A2.已知空间四边形ABCD ,E 、F 分别是AB 与AD 边上的点,M 、N 分别是BC 与CD 边上的点,若AE →=λAB →,AF →=λAD →,CM →=μCB →,CN →=μCD →,则向量EF →与MN →满足的关系为( )A.EF →=MN →B.EF →∥MN → C .|EF →|=|MN →| D .|EF →|≠|MN →|解析:AE →-AF →=λAB →-λAD →=λDB →,即FE →=λDB →.同理NM →=μDB →.因为μDB →∥λDB →,所以FE →∥NM →,即EF →∥MN →.又λ与μ不一定相等,故|MN →|不一定等于|EF →|.答案:B3.设M 是△ABC 的重心,记BC →=a ,CA →=b ,AB →=c ,且a +b +c =0,则AM →=( ) A.b -c2 B.c -b2 C.b -c 3D.c -b3解析:设D 是BC 边中点,∵M 是△ABC 的重心, ∴AM →=23AD →.而AD →=12(AB →+AC →)=12(c -b ),∴AM →=13(c -b ).答案:D4.已知两非零向量e 1,e 2,且e 1与e 2不共线,设a =λe 1+μe 2(λ,μ∈R ,且λ2+μ2≠0),则( )A .a ∥e 1B .a ∥e 2C .a 与e 1、e 2共面D .以上三种情况均有可能解析:a 与e 1共线,则设a =ke 1,所以a =λe 1+μe 2可变为(k -λ)e 1=μe 2,所以e 1与e 2共线,这与e 1与e 2不共线相矛盾,故假设不成立,即A 不正确,同理B 不正确,则D 也错误,故选C.答案:C5.对于空间任意一点O 和不共线的三点A 、B 、C ,且有OP →=xOA →+yOB →+zOC →(x 、y 、z ∈R),则x +y +z =1是四点P 、A 、B 、C 共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 解析:若x +y +z =1,则原式可变形为 OP →=(1-y -z )OA →+yOB →+zOC →, OP →-OA →=y (OB →-OA →)+z (OC →-OA →),∴AP →=yAB →+zAC →,∴P 、A 、B 、C 四点共面.反之,若P 、A 、B 、C 四点共面,由共面向量定理的推论知对空间任一点O ,有OP →=OM →+sMA →+tMB →(其中s 、t 是唯一的一对有序实数).∵MA →=OA →-OM →,MB →=OB →-OM →,则OP →=(1-s-t )OM →+sOA →+tOB →.令x =1-s -t ,y =s ,z =t ,则有x +y +z =1.答案:C6.下列条件中使M 与A 、B 、C 一定共面的是( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC →C.MA →+MB →+MC →=0D.OM →+OA →+OB →+OC →=0解析:C 选项中MA →=-MB →-MC →, ∴点M 、A 、B 、C 共面,故选C. 答案:C二、填空题(每小题8分,共24分)图17.如图1,在空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 边上,且OM →=2MA →,N 为BC 的中点,则MN →=________(用a ,b ,c 表示).解析:MN →=MO →+ON →=23AO →+12(OB →+OC →)=-23OA →+12OB →+12OC →=-23a +12b +12c .答案:-23a +12b +12c8.已知两个非零向量e 1,e 2不共线,如果AB →=e 1+e 2,AC →=2e 1+8e 2,AD →=3e 1-3e 2,则点A 、B 、C 、D 四点________(共面、不共面).解析:显然AB →、AD →不共线,否则,存在λ∈R ,使AB →=λAD →(λ≠0),则e 1+e 2=λ(3e 1-3e 2)=3λe 1-3λe 2.∵e 1,e 2是不共线的非零向量,∴3λ=1与-3λ=1矛盾,故AB →、AD →不共线. 设AC →=xAB →+yAD →⇔2e 1+8e 2=x (e 1+e 2)+y (3e 1-3e 2)⇔2e 1+8e 2=(x +3y )e 1+(x -3y )e 2,∴⎩⎪⎨⎪⎧x +3y =2,x -3y =8,解得⎩⎪⎨⎪⎧x =5,y =-1,∴AC →=5AB →+(-1)·AD →,∴A 、B 、C 、D 四点共面. 答案:共面9.已知O 是空间任一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面,且OA →=2x ·BO →+3y ·CO →+4z ·DO →,则2x +3y +4z =________.解析:OA →=-2x ·OB →+(-3y )·OC →+(-4z )·OD →,由A 、B 、C 、D 四点共面,则有-2x -3y -4z =1,即2x +3y +4z =-1.答案:-1三、解答题(共40分)图210.(10分)如图2,在四边形ABCD 中,E 、F 分别为AD 、BC 的中点,试证:EF →=12(AB →+DC →).证明:EF →=EA →+AB →+BF →,① EF →=ED →+DC →+CF →,②①+②,得2EF →=(EA →+AB →+BF →)+(ED →+DC →+CF →)=AB →+DC →. ∴EF →=12(AB →+DC →).11.(15分)如图3,在平行六面体ABCD -A 1B 1C 1D 1中,O 是B 1D 1的中点. 求证:B 1C ∥平面ODC 1.图3证明:设C 1B 1→=a ,C 1D 1→=b ,C 1C →=c , ∵四边形B 1BCC 1为平行四边形, ∴B 1C →=c -a . 又O 是B 1D 1的中点, ∴C 1O →=12(a +b ),OD 1→=C 1D 1→-C 1O →=b -12(a +b )=12(b -a ),∴OD →=OD 1→+D 1D →=12(b -a )+c .若存在实数x 、y ,使B 1C →=xOD →+yOC 1→(x 、y ∈R)成立,则c -a =x [12(b -a )+c ]+y [-12(a+b )]=-12(x +y )a +12(x -y )b +xc .∵a 、b 、c 不共线,∴⎩⎪⎨⎪⎧12x +y =1,12x -y =0,x =1,∴⎩⎪⎨⎪⎧x =1,y =1.∴B 1C →=OD →+OC 1→,∴B 1C →、OD →、OC 1→是共面向量. 又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1.B 创新探索图412.(15分)如图4,已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点,且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)AC →∥EG →;(3)OG →=kOC →.证明:(1)∵AC →=AD →+mAB →,∴A 、B 、C 、D 四点共面. ∵EG →=EH →+mEF →,∴E 、F 、G 、H 四点共面. (2)EG →=EH →+mEF →=OH →-OE →+m(OF →-OE →) =k(OD →-OA →)+km(OB →-OA →)=kAD →+kmAB →=k(AD →+mAB →)=kAC →,∴AC →∥EG →.(3)OG →=OE →+EG →=kOA →+kAC →=k(OA →+AC →)=kOC →.。

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。

2.理解共线向量定理和共面向量定理及其意义。

3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。

三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。

5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。

高中数学 第3章 空间向量与立体几何 3.1 空间中向量的概念和运算学案 湘教版选修2-1-湘教版高

高中数学 第3章 空间向量与立体几何 3.1 空间中向量的概念和运算学案 湘教版选修2-1-湘教版高

3.1 空间中向量的概念和运算1.理解空间向量的概念,掌握空间向量的几何表示方法和字母表示方法.2.掌握空间向量的线性运算,数量积.3.能运用运算法则及运算律解决一些简单几何问题.1.空间向量 (1)空间向量的定义在空间,把具有大小和方向的量叫作空间向量,向量的大小叫作向量的长度或模. (2)空间向量及其模的表示方法空间向量用有向线段表示,有向线段的长度表示向量的模.如图,a 的起点是A ,终点是B ,则a 也可记作AB →,其模记作|AB →|或|a |.2.空间向量的加减法如图,从任意一点O 出发作OA →=a ,OB →=b .并且从A 出发作AC →=b ,则a +b =OC →,a -b =BA →.3.空间向量加法的运算律 (1)交换律:a +b =b +a .(2)结合律:(a +b )+c =a +(b +c ). 4.空间向量与实数相乘(1)定义:实数λ与空间向量a 的乘积λa 仍然是一个向量. (2)向量a 与λa 的关系λ的范围 方向关系 模的关系λ>0 方向相同λa 的模是a 的模的|λ|倍λ=0λa =0,其方向是任意的λ<0方向相反(3)空间向量与实数的乘法运算律①λ(a +b )=λa +λb (对向量加法的分配律). ②(λ1+λ2)a =λ1a +λ2a (对实数加法的分配律).5.空间向量的数量积(1)定义:从空间任意一点O 出发作OA →=a ,OB →=b ,则θ=∠AOB 就是a ,b 所成的角,a ,b 的数量积a ·b =|a ||b |·cos__θ.(2)空间向量数量积的运算律 向量与实数相乘和向量 数量积的结合律(λa )·b =λ(a·b )交换律 a·b =b·a 分配律a·(b +c )=a·b +a·c1.下列命题错误的是( )A .空间向量AB →的长度与向量BA →的长度相等 B .零向量没有长度,所以它不是空间向量C .同向且等长的有向线段表示同一向量或相等的向量D .若a =b ,b =c ,则a =c解析:选B.A 中的两个向量互为相反向量,所以它们长度相等;空间向量并不是一个立体图形,只要是存在于立体空间内的向量都是空间向量,所以B 错误;C 是相等向量定义的另外一个说法;我们研究的向量是自由向量,只要向量相等都可以移动到同一起点,所以D 正确.2.在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,则a·(b +c )的值为( )A .1B .0C .-1D .-2解析:选B.a·(b +c )=a·b +a·c =0.3.在正方体ABCD ­A 1B 1C 1D 1中,向量AA 1→与CC 1→是______向量,向量AC →与C 1A 1→是________向量.答案:相等 相反空间向量的加减运算如图所示,已知长方体ABCD ­A ′B ′C ′D ′.化简下列向量表达式,并在图中标出化简结果.(1)AA ′→-CB →;(2)AA ′→+AB →+B ′C ′→.【解】 (1)AA ′→-CB →=AA ′→-DA →=AA ′→+AD →=AA ′→+A ′D ′→=AD ′→. (2)AA ′→+AB →+B ′C ′→=(AA ′→+AB →)+B ′C ′→ =AB ′→+B ′C ′→=AC ′→. 向量AD ′→,AC ′→如图所示.试把本例(2)中长方体中的体对角线所对应向量AC ′→用向量AA ′→,AB →,AD→表示.解:在平行四边形ACC ′A ′中,由平行四边形法则可得AC ′→=AC →+AA ′→, 在平行四边形ABCD 中,由平行四边形法则可得AC →=AB →+AD →, 故AC ′→=AB →+AD →+AA ′→.空间向量加法、减法运算的两个技巧(1)向量加减法的三角形法则是解决空间向量加法、减法运算的关键,灵活应用相反向量可使向量间首尾相接.(2)利用三角形法则和平行四边形法则进行向量的加法运算时,务必要注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得更准确的结果.1.化简(AB →-CD →)-(AC →-BD →)=________.解析:法一:(利用相反向量的关系转化为加法运算) (AB →-CD →)-(AC →-BD →)=AB →-CD →-AC →+BD → =AB →+DC →+CA →+BD →=AB →+BD →+DC →+CA →=0. 法二:(利用向量的减法运算法则求解) (AB →-CD →)-(AC →-BD →)=(AB →-AC →)+BD →-CD →=CB →+BD →-CD →=CD →-CD →=0. 答案:02.如图,在四棱锥V ­ABCD 中,化简VA →-VC →+AB →+BC →.解:VA →-VC →+AB →+BC →=CA →+AC →=0.空间向量的线性运算如图所示,已知空间四边形ABCD 中,向量AB →=a ,AC →=b ,AD →=c ,若M 为BC 中点,G 为△BCD 的重心,试用a 、b 、c 表示下列向量:(1)DM →;(2)GM →;(3)AG →.【解】 (1)连接AM ,在△ADM 中,DM →=DA →+AM →, 由线段中点的向量表示知 AM →=12(AB →+AC →)=12(a +b ),由相反向量的概念知DA →=-AD →=-c ,所以DM →=DA →+AM → =12(a +b )-c =12(a +b -2c ). (2)在△BCD 中,GM →=13DM →=13·12(a +b -2c ) =16a +16b -13c .(3)在△ADG 中,由三角形重心的性质,得 AG →=AD →+DG →=c +23DM →=c +13(a +b -2c )=13(a +b +c ).(1)有限多个空间向量a 1,a 2,a 3,…,a n 相加,可以从某点O 出发,逐一引向量OA 1→=a 1,A 1A 2→=a 2,…,A n -1A n =a n .如图,于是以所得折线OA 1A 2…A n 的起点O 为起点,终点A n 为终点的向量OA n →就是a 1,a 2,…,a n 的和,即OA n→=OA 1→+A 1A 2→+…+A n -1A n ――→=a 1+a 2+…+a n .此即为空间向量的多边形法则.(2)用折线作向量的和时,若折线的终点与起点重合,则和向量为零向量.已知ABCD 为正方形,P 是ABCD 所在平面外一点,P 在平面ABCD 上的射影恰好是正方形ABCD 的中心O .Q 是CD 的中点,求下列各式中x 、y 的值:(1)OQ →=PQ →+xPC →+yPA →; (2)PA →=xPO →+yPQ →+PD →. 解:如图, (1)因为OQ →=PQ →-PO →=PQ →-12(PA →+PC →)=PQ →-12PA →-12PC →,所以x =y =-12.(2)因为PA →+PC →=2PO →, 所以PA →=2PO →-PC →. 又因为PC →+PD →=2PQ →, 所以PC →=2PQ →-PD →.从而有PA →=2PO →-(2PQ →-PD →)=2PO →-2PQ →+PD →. 所以x =2,y =-2.向量的数量积及应用已知长方体ABCD ­A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F为A 1D 1的中点.求下列向量的数量积. (1)BC →·ED 1→;(2)BF →·AB 1→.【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|c |=2,|b |=4,a ·b =b ·c =c ·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·⎣⎢⎡⎦⎥⎤12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→) =⎝⎛⎭⎪⎫c -a +12b ·(a +c ) =|c |2-|a |2=22-22=0.若本例的条件不变,计算EF →·FC 1→.解:EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12(AA 1→-AB →)+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB →=⎣⎢⎡⎦⎥⎤12(c -a )+12b ·⎝ ⎛⎭⎪⎫12b +a =12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a=-12|a |2+14|b |2=2.(1)空间向量运算的两种方法①利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.②利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.(2)在几何体中求空间向量数量积的步骤①首先将各向量分解成已知模和夹角的向量的组合形式.②利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. ③代入a ·b =|a ||b |cos 〈a ,b 〉求解.已知|a |=3,|b |=4,〈a ,b 〉=120°,则(3a -2b )·(a +2b )=________.解析:(3a -2b )·(a +2b )=3|a |2+4a ·b -4|b |2=3|a |2+4|a ||b |cos 120°-4|b |2=3×9+4×3×4×⎝ ⎛⎭⎪⎫-12-4×16=27-24-64=-61. 答案:-611.在运用空间向量的运算法则化简向量表达式时,要结合空间图形,观察分析各向量在图形中的表示,运用运算法则,化简到最简为止.2.证明两向量共线的方法为:首先判断两向量中是否有零向量.若有,则两向量共线;若两向量a ,b 中,b ≠0,且有a =λb (λ∈R ),则a ,b 共线.3.两向量的数量积,其结果是实数,而不是向量,它的值为两向量的模与两向量夹角的余弦值的乘积,其符号由夹角的余弦值决定.4.当a ≠0时,由a ·b =0不能推出b 一定是零向量,这是因为任一个与a 垂直的非零向量b ,都有a ·b =0,这由向量的几何意义就可以理解.1.如图所示,在平行六面体ABCD ­A 1B 1C 1D 1中,AA 1→+D 1C 1→-BB 1→=( )A.AB 1→B.DC →C.AD →D.BA →解析:选B.因为D 1C 1→=A 1B 1→, 所以AA 1→+D 1C 1→-BB 1→=AA 1→+A 1B 1→-BB 1→=AB 1→+B 1B →=AB →. 又AB →=DC →,所以AA 1→+D 1C 1→-BB 1→=DC →.2.如图所示,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP →·AC →=________.解析:因为AP →·AC →=AP →·(AB →+BC →)=AP →·AB →+AP →·BC →=AP →·AB →+AP →·(BD →+DC →)=AP →·BD →+2AP →·AB →,因为AP ⊥BD ,所以AP →·BD →=0.因为AP →·AB →=|AP →||AB →|cos ∠BAP =|AP →|2, 所以AP →·AC →=2|AP →|2=2×9=18. 答案:183.如图所示,已知平行六面体ABCD ­A 1B 1C 1D 1,M 为A 1C 1与B 1D 1的交点,化简下列向量表达式.(1)AA 1→+A 1B 1→; (2)AA 1→+A 1M →-MB 1→; (3)AA 1→+A 1B 1→+A 1D 1→; (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →. 解:(1)AA 1→+A 1B 1→=AB 1→.(2)AA 1→+A 1M →-MB 1→=AA 1→+A 1M →+MD 1→=AD 1→. (3)AA 1→+A 1B 1→+A 1D 1→=AA 1→+A 1C 1→=AC 1→. (4)AB →+BC →+CC 1→+C 1A 1→+A 1A →=0.[A 基础达标]1.若向量a 、b 是平面α内的两个不相等的非零向量,非零向量c 在直线l 上,则“c·a =0且b·c =0”是“l ⊥α”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.当a ∥b 时,由c·a =0且c·b =0得不出l ⊥α;反之,l ⊥α一定有c·a =0且c·b =0.故选B.2.如图,在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ等于( )A.23B.13C .-13D .-23解析:选A.因为CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,所以λ=23.3.如图,已知空间四边形ABCD 的对角线为AC 、BD ,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AG →B.CG →C.BC →D.12BC → 解析:选A.AB →+12(BD →+BC →)=AB →+BG →=AG →.4.在正方体ABCD ­A 1B 1C 1D 1中,下列选项中化简后为零向量的是( ) A.AB →+A 1D 1→+C 1A 1→ B.AB →-AC →+BB 1→ C.AB →+AD →+AA 1→D.AC →+CB 1→ 解析:选A.在A 选项中,AB →+A 1D 1→+C 1A 1→=(AB →+AD →)+CA →=AC →+CA →=0. 5.如图,在平行六面体ABCD ­A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则下列向量中与B 1M →相等的向量是( )A .-12a +12b +cB.12a +12b +c C.12a -12b +c D .-12a -12b +c解析:选A.注意到AM →=12AC →=12A 1C 1→=12(A 1B 1→+A 1D 1→)=12(a +b ),B 1M →=B 1A 1→+A 1A →+AM →=-a+c +12(a +b )=-12a +12b +c .6.如图,已知正三棱柱ABCA 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则直线AB 1和BM 的位置关系是________.解析:因为AB 1→=AA 1→+AB →,BM →=BC →+12CC 1→=BC →+12AA 1→,设三棱柱的各棱长均为a , 则AB 1→·BM →=(AA 1→+AB →)·(BC →+12AA 1→)=AA 1→·BC →+12AA 1→2+AB →·BC →+12AB →·AA 1→=0+12a 2+a 2cos 120°+0=0.所以AB 1→⊥BM →. 答案:垂直7.如图,已知四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是矩形,AB =4,AA 1=3,∠BAA 1=60°,E 为棱C 1D 1的中点,则AB →·AE →=________.解析:AE →=AA 1→+AD →+12AB →,AB →·AE →=AB →·AA 1→+AB →·AD →+12AB →2=4×3×cos 60°+0+12×42=14.答案:148.命题:①向量a 、b 、c 共面,则它们所在的直线也共面;②若a 与b 共线,则存在唯一的实数λ,使b =λa ;③若A 、B 、C 三点不共线,O 是平面ABC 外一点,OM →=13OA →+13OB→+13OC →,则点M 一定在平面ABC 上,且在△ABC 内部. 上述命题中的真命题是________.解析:①中a 所在的直线其实不确定,故①是假命题;②中当a =0,而b ≠0时,则找不到实数λ,使b =λa ,故②是假命题;③中M 是△ABC 的重心,故M 在平面ABC 上且在△ABC 内,故③是真命题.答案:③9.已知正四面体O ­ABC 的棱长为1.求:(1)OA →·OB →;(2)(OA →+OB →)·(CA →+CB →);(3)|OA →+OB →+OC →|.解:(1)OA →·OB →=|OA →|·|OB →|·cos ∠AOB=1×1×cos 60°=12. (2)(OA →+OB →)·(CA →+CB →)=(OA →+OB →)·(OA →-OC →+OB →-OC →)=(OA →+OB →)·(OA →+OB →-2OC →)=12+1×1×cos 60°-2×1×1×cos 60°+1×1×cos 60°+12-2×1×1×cos 60°=1.(3)|OA →+OB →+OC →|=(OA →+OB →+OC →)2 =12+12+12+2(1×1×cos 60°)×3= 6.10.如图所示,已知空间四边形ABCD ,连接AC 、BD ,E 、F 、G 分别是BC 、CD 、DB 的中点,请化简(1)AB →+BC →+CD →;(2)AB →+GD →+EC →.并在图中标出化简结果的向量.解:(1)AB →+BC →+CD →=AC →+CD →=AD →.(2)因为E 、F 、G 分别为BC 、CD 、DB 的中点,所以BE →=EC →,EF →=GD →.所以AB →+GD →+EC →=AB →+BE →+EF →=AF →.故所求向量AD →,AF →,如图所示.[B 能力提升]11.正四面体A BCD 的棱长为a ,点E 、F 、G 分别为棱AB 、AD 、DC 的中点,则四个数量积:①2BA →·AC →;②2AD → ·BD →;③2FG →·AC →;④2EF →·CB→中结果为a 2的个数为( )A .1B .2C .3D .4 解析:选B.①2BA →·AC →=2·a ·a cos 120°=-a 2.②2AD →·BD →=2·a ·a ·cos 60°=a 2.③2FG →·AC →=2·a 2·a ·cos 0°=a 2. ④2EF →·CB →=2·a 2·a ·cos 120°=-a 22. 12.已知A ,B ,C 三点共线,则对空间任一点O ,存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.解析:因为A ,B ,C 三点共线,所以存在唯一实数k 使AB →=kAC →,即OB →-OA →=k (OC →-OA →),所以(k -1)OA →+OB →-kOC →=0.又λOA →+mOB →+nOC →=0,令λ=k -1,m =1,n =-k ,则λ+m +n =0.答案:013.已知平行六面体ABCD ­A ′B ′C ′D ′,化简下列向量表达式.(1)AB →+BC →;(2)AB →+AD →+AA ′→;(3)AB →+AD →+12CC ′→; (4)13(AB →+AD →+DD ′→).解:如图所示,(1)AB →+BC →=AC →.(2)AB →+AD →+AA ′→=AC →+CC ′→=AC ′→.(3)设M 是线段CC ′的中点,则 AB →+AD →+12CC ′→=AC →+CM →=AM →.(4)设G 是线段AC ′的三等分点,则 13(AB →+AD →+DD ′→)=13(AC →+CC ′→)=13AC ′→=AG →.14.(选做题)在正方体ABCD ­A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点,求证:A 1O ⊥平面GBD .证明:设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c , 则a·b =0,b·c =0,a·c =0. 而A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +12(a +b ), BD →=AD →-AB →=b -a ,OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12(a +b )-12c .所以A 1O →·BD →=(c +12a +12b )·(b -a ) =c ·(b -a )+12(a +b )·(b -a )=12(|b |2-|a |2)=0.所以A 1O →⊥BD →,所以A 1O ⊥BD .同理可证:A 1O →⊥OG →,所以A 1O ⊥OG .又因为OG ∩BD =O ,且A 1O ⊄平面BDG ,所以A1O⊥平面GBD.。

高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-1空间向量基本定理北师

高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-1空间向量基本定理北师
BD的中点分别为E,F,则EF=________.
答案:3a+3b-5c
解析:如图所示,取BC的中点G,连接EG,FG,则
1
1
1
1
1
EF=GF − GE= CD − BA= CD + AB= (5a+6b-
2
2
1
8c)+ (a-2c)=3a+3b-5c.
2
2
2
2
易错辨析 对基理解不清致误
例3 在平行六面体 ABCDA1B1C1D1 中,M为AC与BD的交点.若
的值分别是(
)
1
1
1
1
1
1
A.x= ,y= ,z= B.z= ,y= ,z=
3
3
3
1
1
1
C.x= ,y= ,z=
3
6
3
答案:D
3
3
6
1
1
1
D.x= ,y= ,z=
6
3
3
(2)在平行六面体ABCDA′B′C′D′中,设AB=a,AD=b,AA′ =c,P是
CA′的中点,M是CD′的中点,N是C′D′的中点,点Q是CA′上的点,且
A1 B1 =a,A1 D1 =b,A1 =c,试用基{a,b,c}表示向量C1 .
解析:如图,连接A1M,A1C1 ,则C1 =A1 -
1
A1 C1 =A1 +AM-(A1 B1 +A1 D1 )=A1 + (A1 B1
1
+A1 D1 )-(A1 B1 +A1 D1 )=A1A-
2
1
1
b构成基的向量是(
)
A.a
B.b
C.a+2b
D.a+2c

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21

高中数学第三章空间向量与立体几何3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算a21
①( AB + BC )+ CC1 ;②( AA1 + A1D1 )+ D1C1 ;③( AB + BB1 )+ B1C1 ;④ ( AA1 + A1B1 )+ B1C1 .
解析:(2)①( AB + BC )+ CC1 = AC + CC1 = AC1 ; ②( AA1 + A1D1 )+ D1C1 = AD1 + D1C1 = AC1 ; ③( AB + BB1 )+ B1C1 = AB1 + B1C1 = AC1 ; ④( AA1 + A1B1 )+ B1C1 = AB1 + B1C1 = AC1 .
3.1.1 空间向量及其加减运算 3.1.2 空间向量的数乘运算
课标要求:1.经历向量及其运算由平面到空间推广的过程,了解空间向量的 概念.2.掌握空间向量的加法、减法和数乘运算.3.理解空间共线向量和共 面向量定理及推论.
自主学习 课堂探究
知识探究
自主学习
1.空间向量及其长度的定义 与平面向量一样,在空间,我们把 具有大小和方向的量 叫做空间向量,
解析:容易判断D是假命题,共线的单位向量是相等向量或相反向量.故
选D.
2.空间两向量a,b互为相反向量,已知向量|b|=3,则下列结论正确的是
(D)
(A)a=b
(B)a+b为实数0
(C)a与b方向相同
(D)|a|=3
3.在下列条件中,使 M 与 A,B,C 一定共面的是( C )
(A) OM =3 OA -2 OB - OC (B) OM + OA + OB + OC =0

高中数学第三章空间向量与立体几何3.1.3两个向量的数量积学案新人教B版选修21

高中数学第三章空间向量与立体几何3.1.3两个向量的数量积学案新人教B版选修21

高中数学第三章空间向量与立体几何3.1.3两个向量的数量积学案新人教B 版选修211.掌握空间向量的夹角与长度的概念.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点) 3.能用向量的数量积解决立体几何问题.(难点)[基础·初探]教材整理1 空间向量的夹角阅读教材P 85~P 86“两个向量的数量积”上面内容,完成下列问题. 1.夹角的定义已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则角∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.图3­1­202.夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=________时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量________,记作________.【答案】 π 垂直 a ⊥b判断(正确的打“√”,错误的打“×”)(1)〈a ,b 〉与(a ,b )都表示直角坐标系下的点.( ) (2)在△ABC 中,〈AB →,BC →〉=∠B .( )(3)在正方体ABCD ­A ′B ′C ′D ′中,AB →与A ′C ′→的夹角为45°.( )【答案】(1)×(2)×(3)√教材整理2 空间向量的数量积及其性质阅读教材P86“两个向量的数量积”~P87“例2”,以上部分内容,完成下列问题.1.已知空间中两个非零向量a,b,则________叫做a,b的数量积,记作________.规定:零向量与任何向量的数量积为________,即0·a=________.【答案】|a||b|cos〈a,b〉a·b0 02.空间向量数量积满足下列运算律(1)(λa)·b=λ(a·b);(2)交换律:a·b=b·a;(3)分配律:(a+b)·c=________.【答案】a·b+b·c3.空间向量数量积的性质若a,b是非零向量,e是与b方向相同的单位向量,θ是a与e的夹角,则(1)e·a=a·e=|a| cos θ;(2)a⊥b⇔a·b=0;(3)a·a=|a|2或|a|=________;(4)若θ为a,b的夹角,则cos θ=a·b|a||b|;(5)|a·b|≤|a|·|b|.【答案】a·a下列式子中正确的是( )A.|a|a=a2B.(a·b)2=a2b2C.a(a·b)=b·a2D.|a·b|≤|a||b|【解析】根据数量积的定义知,A,B,C均不正确.故选D.【答案】 D[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:________________________________________________________ 解惑:________________________________________________________ 疑问2:________________________________________________________ 解惑:________________________________________________________ 疑问3:________________________________________________________ 解惑:________________________________________________________[小组合作型]空间向量数量积的运算(1)如图3­1­21,三棱锥P ­ABC 中,PA ⊥平面ABC ,∠ABC =90°,PA =AC ,则在向量AB →,BC →,CA →,PA →,PB →,PC →中,夹角为90°的共有( )图3­1­21A .6对B .5对C .4对D .3对(2)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →=________.图3­1­22(3)如图3­1­22所示,正方体ABCD ­A 1B 1C 1D 1的棱长为1,求下列数量积: ①AB →·BA 1→=________; ②AB →·BC 1→=________.【自主解答】 (1)AB →与BC →,PA →与AB →,PA →与BC →,PA →与CA →,PB →与BC →夹角为90°. (2)AE →·AF →=⎝⎛⎭⎪⎫AB →+12BC →·12AD →=12AB →·AD →+14BC →·AD →=12a 2cos 60°=14a 2. (3)①AB →·BA 1→=1×2cos 135° =-1;②AB →·BC 1→=AB →·(BC →+CC 1→)=AB →·BC →+AB →·CC 1→ =0.【答案】 (1)B (2)14a 2(3)①-1 ②01.求两向量数量积的解题思路 (1)解模:解出两向量的模.(2)求夹角:根据向量的方向求出两向量的夹角. (3)求结果:使用公式a ·b =|a ||b |cos 〈a ,b 〉得结果. 2.数量积的运算结果是一个数量,正、负、零皆有可能.[再练一题]1.已知空间向量a ,b 满足|a |=4,|b |=8,a 与b 的夹角为150°,求下列各式的值. (1)a ·b ;(2)(a +2b )·(2a -3b ).【解】 (1)a ·b =|a ||b |cos 〈a ,b 〉=4×8×cos 150°=4×8×⎝ ⎛⎭⎪⎫-32=-16 3. (2)(a +2b )·(2a -3b )=2a 2+a ·b -6b 2=2|a |2+|a ||b |cos 150°-6|b |2=2×42-163-6×82=-352-16 3.求两个空间向量的夹角如图3­1­23,在正方体ABCD ­A 1B 1C 1D 1中,求BC →1与AC →夹角的大小.图3­1­23【精彩点拨】 (1)怎样用向量AB →,AD →,AA →1表示向量BC →1与AC →? (2)求两向量的夹角公式是怎样的? 【自主解答】 不妨设正方体的棱长为1, BC →1·AC →=(BC →+CC →1)·(AB →+BC →)=(AD →+AA →1)·(AB →+AD →)=AD →·AB →+AD →2+AA →1·AB →+AA →1·AD →=0+AD →2+0+0=AD →2=1, 又∵|BC →1|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC →1·AC →|BC →1||AC →|=12×2=12.∵0°≤〈BC →1,AC →〉≤180°, ∴〈BC →1,AC →〉=60°. ∴BC →1与AC →夹角的大小为60 °.1.由于向量的夹角的取值范围为[0,π],而异面直线所成的角的取值范围为⎝ ⎛⎦⎥⎤0,π2,因此利用向量数量积求异面直线所成的角时,要注意角度之间的关系.当〈a ,b 〉∈ ⎝ ⎛⎦⎥⎤0,π2时,它们相等;而当〈a ,b 〉∈ ⎝ ⎛⎦⎥⎤π2,π时,它们互补.2.利用数量积求异面直线所成角θ的余弦值的步骤 (1)取向量;(2)求向量夹角余弦cos 〈a ,b 〉; (3)定结果cos θ=|cos 〈a ,b 〉|.[再练一题]2.如图3­1­24,已知直三棱柱ABC ­A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.图3­1­24(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. 【解】 (1)证明:设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |且a ·b =b ·c =c ·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0,∴CE →⊥A ′D →,即CE ⊥A ′D . (2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |,∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010. ∴异面直线CE 与AC ′所成角的余弦值为1010. [探究共研型]利用数量积求距离探究1 已知A (1,2,1),B (2,0,2),求|AB →|的值. 【提示】 AB →=(1,-2,1),∴|AB →|=12+-22+12= 6.探究2 求两点间距离或线段的长度的方法.【提示】 利用向量的数量积求两点间的距离,可以转化为求向量的模的问题,其基本思路是先选择以两点为端点的向量,将此向量表示为几个已知向量的和的形式,求出这几个已知向量的两两之间的夹角以及它们的模,利用公式|a |=a ·a 求解即可.平行四边形ABCD 中,AB =2AC =2且∠ACD =90°,将它沿对角线AC 折起,使AB 与CD 成60°角,求点B ,D 间的距离.图3­1­25【精彩点拨】 (1)由已知可以得出AC 与CD ,AC 与AB 垂直吗? (2)根据AB 与CD 成60°角可建立什么方程?能直接求出|BD →|吗?【自主解答】 由已知得AC ⊥CD ,AC ⊥AB ,折叠后AB 与CD 所成角为60°,于是,AC →·CD →=0,BA →·AC →=0,且〈BA →,CD →〉=60°或120°.|BD →|2=(BA →+AC →+CD →)2=BA →2+AC →2+CD →2+2BA →·AC →+2AC →·CD →+2BA →·CD →=22+12+22+2×2×2cos〈BA →,CD →〉,故|BD →|2=13或5,解得|BD →|=13或5, 即B ,D 间的距离为13或 5.1.利用空间向量的数量积与空间向量模的关系,常把空间两点距离问题转化为空间向量模的大小问题加以计算.2.用数量积求两点间距离的步骤 (1)用向量表示此距离; (2)用其他向量表示此向量; (3)用公式a ·a =|a |2,求|a |; (4)|a |即为所求距离.[再练一题]3.如图3­1­26所示,在空间四边形OABC 中,OA ,OB ,OC 两两成60°角,且OA =OB =OC =2,E 为OA 的中点,F 为BC 的中点,试求E ,F 间的距离.图3­1­26【解】 EF →=EA →+AF →=12OA →+12(AB →+AC →)=12OA →+12[(OB →-OA →)+(OC →-OA →)]=-12OA →+12OB →+12OC →,所以EF 2→=14OA →2+14OB →2+14OC →2+2×⎝ ⎛⎭⎪⎫-12×12OA →·OB →+2×⎝ ⎛⎭⎪⎫-12×12OA →·OC →+2×12×12OB →·OC →=2.∴|EF →|=2,即E ,F 间的距离为 2.[构建·体系]1.已知e 1,e 2为单位向量,且e 1⊥e 2,若a =2e 1+3e 2,b =k e 1-4e 2,a ⊥b ,则实数k 的值为( )A .-6B .6C .3D .-3【解析】 由题意可得a ·b =0,e 1·e 2=0, |e 1|=|e 2|=1,∴(2e 1+3e 2)·(k e 1-4e 2)=0, ∴2k -12=0,∴k =6. 【答案】 B2.在空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( )A.12 B .22C .-12D .0【解析】 OA →·BC →=OA →·(OC →-OB →)=OA →·OC →-OA →·OB →=|OA →||OC →|cos ∠AOC -|OA →|·|OB →|cos ∠AOB =12|OA →||OC →|-12|OA →||OB →|=0,∴OA →⊥BC →.∴cos 〈OA →,BC →〉=0. 【答案】 D3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________.【导学号:15460065】【解析】 原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →)=AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0. 【答案】 04.如图3­1­27,四面体ABCD 的每条棱长都等于2,点E ,F 分别为棱AB ,AD 的中点,则|AB →+BC →|=________,|BC →-EF →|=________,EF →与AC →所成的角为________.图3­1­27【解析】 |AB →+BC →|=|AC →|=2; EF →=12BD →,BD →·BC →=2×2×cos 60°=2,故|BC →-EF →|2=⎪⎪⎪⎪⎪⎪BC →-12BD →2=BC →2-BC →·BD →+14BD →2=4-2+14×4=3.故|BC →-EF →|= 3.又因为EF →=12BD →=12(AD →-AB →),故AC →·EF →=12AC →·(AD →-AB →)=12(AC →·AD →-AC →·AB →)=0, 因为〈EF →,AC →〉∈[0°,180°], 所以〈EF →,AC →〉=90°. 【答案】 23 90°5.如图3­1­28,三棱柱ABC ­A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N=2B 1N .设AB →=a ,AC →=b ,AA 1→=c .图3­1­28(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长. 【解】 (1)MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→ =13(c -a )+a +13(b -a ) =13a +13b +13c . (2)∵(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,∴|a +b +c |=5, ∴|MN →|=13|a +b +c |=53,即MN =53.我还有这些不足:(1)________________________________________________________ (2)________________________________________________________ 我的课下提升方案:(1)________________________________________________________ (2)________________________________________________________学业分层测评 (建议用时:45分钟)[学业达标]一、选择题1.设a ,b ,c 是任意的非零平面向量,且它们相互不共线,下列命题:①(a ·b )c -(c ·a )b =0;②|a |=a ·a ;③a 2b =b 2a ;④(3a +2b )·(3a -2b )=9|a |2-4|b |2.其中正确的有( )A .①②B .②③C .③④D .②④【解析】 由于数量积不满足结合律,故①不正确,由数量积的性质知②正确,③中,|a |2·b =|b |2·a 不一定成立,④运算正确.【答案】 D2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则a 与b 的夹角〈a ,b 〉=( ) A .30° B .45° C .60°D .以上都不对【解析】 ∵a +b +c =0,∴a +b =-c ,∴(a +b )2=|a |2+|b |2+2a ·b =|c |2,∴a ·b =32,∴cos 〈a ,b 〉=a ·b |a ||b |=14. 【答案】 D3.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB ,PC ,PD ,则下列各组向量中,数量积不为零的是( )A.PC →与BD → B .DA →与PB → C.PD →与AB →D .PA →与CD →【解析】 用排除法,因为PA ⊥平面ABCD ,所以PA ⊥CD ,故PA →·CD →=0,排除D ;因为AD ⊥AB ,PA ⊥AD ,又PA ∩AB =A ,所以AD ⊥平面PAB ,所以AD ⊥PB ,故DA →·PB →=0,排除B ,同理PD →·AB →=0,排除C.【答案】 A4.如图3­1­29,已知空间四边形每条边和对角线都等于a ,点E ,F ,G 分别是AB ,AD ,DC 的中点,则下列向量的数量积等于a 2的是( )图3­1­29A .2BA →·AC →B .2AD →·DB →C .2FG →·AC →D .2EF →·CB →【解析】 2BA →·AC →=-a 2,故A 错;2AD →·DB →=-a 2,故B 错;2EF →·CB →=-12a 2,故D错;2FG →·AC →=AC →2=a 2,故只有C 正确.【答案】 C5.在正方体ABCD ­A 1B 1C 1D 1中,有下列命题: ①(AA 1→+AD →+AB →)2=3AB →2; ②A 1C →·(A 1B 1→-A 1A →)=0; ③AD 1→与A 1B →的夹角为60°. 其中正确命题的个数是( ) A .1个 B .2个 C .3个D .0个【解析】 由题意知①②都正确,③不正确,AD 1→与A 1B →的夹角为120°. 【答案】 B 二、填空题6.已知|a |=2,|b |=3,〈a ,b 〉=60°,则|2a -3b |=_________________.【导学号:15460066】【解析】 |2a -3b |2=(2a -3b )2=4a 2-12a ·b +9b 2=4×|a |2+9×|b |2-12×|a |·|b |·cos 60°=61, ∴|2a -3b |=61. 【答案】617.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.【解析】 由题意知⎩⎪⎨⎪⎧a +λb ·λa -2b <0,cos 〈a +λb ,λa -2b 〉≠-1.即⎩⎪⎨⎪⎧a +λb ·λa -2b <0,a +λb ·λa -2b ≠-|a +λb ||λa -2b |得λ2+2λ-2<0. ∴-1-3<λ<-1+ 3. 【答案】 (-1-3,-1+3)8.如图3­1­30,已知正三棱柱ABC ­A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.图3­1­30【解析】 不妨设棱长为2,则AB →1=BB 1→-BA →,BM →=BC →+12BB 1→,cos 〈AB 1→,BM →〉=BB 1→-BA →·⎝⎛⎭⎪⎫BC →+12BB 1→22×5=0-2+2-022×5=0,故填90°.【答案】 90° 三、解答题9.如图3­1­31,在正方体ABCD ­A 1B 1C 1D 1中,O 为AC 与BD 的交点,G 为CC 1的中点.求证:A 1O ⊥平面BDG .图3­1­31【证明】 设A 1B 1→=a ,A 1D 1→=b ,A 1A →=c . 则a ·b =0,a ·c =0,b ·c =0.而A 1O →=A 1A →+AO →=A 1A →+12(AB →+AD →)=c +12(a +b ),BD →=AD →-AB →=b -a ,OG →=OC →+CG →=12(AB →+AD →)+12CC 1→=12(a +b )+12c .∴A 1O →·BD →=⎝ ⎛⎭⎪⎫c +12a +12b ·(b -a )=c ·(b -a )+12(a +b )·(b -a )=c ·b -c ·a +12(b 2-a 2)=12(|b |2-|a |2)=0. ∴A 1O →⊥BD →. ∴A 1O ⊥BD . 同理可证A 1O →⊥OG →. ∴A 1O ⊥OG .又OG ∩BD =O 且A 1O ⊄平面BDG , ∴A 1O ⊥平面BDG .10.已知长方体ABCD ­A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AB 1的中心,F 为A 1D 1的中点,试计算:(1)BC →·ED 1→;(2)BF →·AB 1→;(3)EF →·FC 1→.【解】 如图所示,设AB →=a ,AD →=b ,AA 1→=c , 则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=AD →·(EA 1→+A 1D 1→)=AD →·⎣⎢⎡⎦⎥⎤12AA 1→-AB →+AD →=b ·⎣⎢⎡⎦⎥⎤12c -a +b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+BB 1→)=⎝⎛⎭⎪⎫AA 1→-AB →+12AD →·(AB →+AA 1→)=⎝⎛⎭⎪⎫c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.(3)EF →·FC 1→=(EA 1→+A 1F →)·(FD 1→+D 1C 1→) =⎣⎢⎡⎦⎥⎤12AA 1→-AB →+12AD →·⎝ ⎛⎭⎪⎫12AD →+AB → =⎣⎢⎡⎦⎥⎤12c -a +12b ·⎝ ⎛⎭⎪⎫12b +a =12(-a +b +c )·⎝ ⎛⎭⎪⎫12b +a=-12|a |2+14|b |2=2.[能力提升]1.已知边长为1的正方体ABCD ­A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1→·AC →的值为( )A .-1B .0C .1D .2【解析】 AO 1→=AA 1→+A 1O 1→=AA 1→+12(A 1B 1→+A 1D 1→)=AA 1→+12(AB →+AD →),而AC →=AB →+AD →,则AO 1→·AC →=12(AB →2+AD →2)=1,故选C.【答案】 C2.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°【解析】 由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1. cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12,得〈AB →,CD →〉=60°.【答案】 B3.已知正三棱柱ABC ­DEF 的侧棱长为2,底面边长为1,M 是BC 的中点,若直线CF 上有一点N ,使MN ⊥AE ,则CN CF=________.【导学号:15460067】【解析】设CN CF=m ,由于AE →=AB →+BE →, MN →=12BC →+mAD →,又AE →·MN →=0,得12×1×1×⎝ ⎛⎭⎪⎫-12+4m =0,解得m =116. 【答案】1164.如图3­1­32,平行六面体ABCD ­A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°,求AC 1的长.图3­1­32【解】 ∵AC 1→=AB →+AD →+AA 1→, ∴|AC 1→|=AB →+AD →+AA 1→2= AB →2+AD →2+AA 1→2+2AB →·AD →+AB →·AA 1→+AD →·AA 1→.∵AB =1,AD =2,AA 1=3,∠BAD =90°,∠BAA 1=∠DAA 1=60°, ∴〈AB →,AD →〉=90°,〈AB →,AA 1→〉=〈AD →,AA 1→〉=60°, ∴|AC 1→|=1+4+9+21×3×cos 60°+2×3×cos 60° =23.。

空间向量与立体几何(角度问题)教学设计

空间向量与立体几何(角度问题)教学设计

空间向量与立体几何(角度问题)教学设计空间向量与立体几何(角度问题)教学设计一、学习目标:1.能借助空间几何体内的位置关系求空间的夹角;2.能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

3、探究题型,掌握解法。

二、重难点:向量法在立体几何中求空间的夹角应用。

探究题型,掌握解法。

三、学情分析:本节内容是高考热点问题,需要学生做到非常熟练。

在平时的学习中,学生已经对该几类问题有所认识,本堂课重点在于让学生体会空间角度与向量角度之间的差异,培养学生养成良好的答题习惯。

四、教学过程本节课为高三复习课,所以从开始直奔主题,从回顾旧知开始直接进入例题讲解、课堂练习、方法提炼、课堂小结,重点在于提炼解决类型题的方法并配合相应例题进行巩固,提高课堂效率。

设计意图我们都已经学过空间向量,在空间中如何将点线面的位置量化?回顾旧知,让学生理解空间坐标系的作用在于量化点线面位置①点→空间直角坐标系下点的坐标②线→直线的方向向量③面→平面上一的一点、平面的法向量直线的方向向量→直线上任意两点坐标之差平面的法向量→①设;②找;③列;④求。

所谓平面的法向量,就是指所在的直线与的向量,显然一个平面的法向量有多个,它们是向量.明确点、线、面如何用空间直角坐标系里的坐标进行标示明确方向向量与平面法向量的求法,回顾旧知识。

因为在后续问题中,求已知平面的法向量会多次出现,在此再次回顾法向量为何能确定一个平面,让学生加深对平面法向量的认识。

在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是.二:几个空间角的范围(1)异面直线所成的角θ:0<θ≤π2;(2)直线与平面所成的角θ:0≤θ≤π2;(3)二面角θ:0≤θ≤π.回顾空间角的范围,先从范围的角度与向量与向量的夹角范围进行比较,强调两者的不同三、利用向量求空间角1.两条异面直线所成角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cosφ=|cosθ|=(其中φ为异面直线a,b所成的角).2.直线和平面所成的角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sinφ=|cosθ|= .3.求二面角的大小(1)如图①,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=.结合图像,让学生更直观地了解到线面所成的角与直线方向向量同平面法向量之间所成的角存在的区别与联系,从而找到适当的方法进行调整结合图像,让学生更直观地了解到二面角与直线方向向量同平面法向量之(2)如图②③,n1,n2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的小大θ=.求空间角:设直线l1,l2的方向向量分别为a,b,平面α、β的法向量分别为n,m.①异面直线l1与l2所成的角为θ,则cosθ=|a·b||a||b|.②直线l1与平面α所成的角为θ,则sinθ=|a·n||a||n|.③平面α与平面β所成的二面角为θ,则|cosθ|=|n·m||n||m|.、间所成的角存在的区别与联系,从而找到适当的方法进行调整通过之前的对比,分析清楚空间角与向量角之间存在的差异后,找寻适当的方法去解决差异,从而统一解题方法。

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3向量法解决空间角和距离问题省公开课一等奖

则点 P0 到直线 l 的距离 d= =|1a| |P→P0|·|a|2-|P→P0·a|2.
|P→P0|2-P→P|a0|·a2
11/64
(2)点到平面距离 用空间向量法求点到平面距离详细步骤以下: 先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面 的法向量上的射影长.如图,设 n=(a,b,c)是平面 α 的一个法向量, P0(x0,y0,z0)为 α 外一点,P(x,y,z)是平面 α 内
答案 解析
A. 2
√B. 3
C. 5
D.3
以O为坐标原点,建立如图所表示空间直角坐标系.
由题意可知A(1,0,0),B(0,2,0),C(0,0,2),
∴A→B=(-1,2,0),B→C=(0,-2,2),
|A→B|=
1+4+0=
→→ 5,|AB→·BC|=
2.
|BC|
∴点 A 到直线 BC 的距离 d= 5-2= 3.
∠O1OB=60°,∠AOB=90°,且OB=OO1=2,OA= 3,求异面直线
A1B与AO1所成角余弦值大小.
解答
14/64
反思与感悟
在处理立体几何中两异面直线所成角问题时,若能构建空间直角坐标系, 则建立空间直角坐标系,利用向量法求解.但应用向量法时一定要注意向 量所成角与异面直线所成角区分.
√D.
615或-
15 6
0,-1,3·2,2,4 由 1+9× 4+4+16 =
-2+12 10× 24=
615,
知这个二面角的余弦值为 615或- 615,故选 D.
1 2 3 4 555/64
2.已知三棱锥O-ABC,OA⊥OB,OB⊥OC,OC⊥OA,且OA=1,OB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3 空间向量基本定理 课时目标 1.掌握空间向量基本定理.2.能正确选择合适基底,并正确表示空间向量.
1.空间向量基本定理
如果三个向量e 1,e 2,e 3不共面,那么对空间任一向量p ,存在惟一的有序实数组(x ,y ,z ),使得______________________.
由此可知,如果三个向量e 1,e 2,e 3不共面,那么空间的每一个向量组成的集合就是________________________________.这个集合可看作是由向量e 1,e 2,e 3生成的,我们把__________叫做空间的一个基底,____________都叫做基向量.空间任何三个不共面的向量都可构成空间的一个基底.
2.正交基底与单位正交基底
如果空间一个基底的三个基向量是______________,那么这个基底叫做正交基底,当一个正交基底的三个基向量都是______________时,称这个基底为单位正交基底,通常用____________表示.
3.推论
设O ,A ,B ,C 是__________的四点,则对空间任意一点P ,都存在惟一的有序实数组(x ,y ,z ),使得______________________.
一、填空题
1.若存在实数x 、y 、z ,使OP →=xOA →+yOB →+zOC →成立,则下列判断正确的是________.(写
出正确的序号)
①对于某些x 、y 、z 的值,向量组{PA →,PB →,PC →}不能作为空间的一个基底;
②对于任意的x 、y 、z 的值,向量组{PA →,PB →,PC →}都不能作为空间的一个基底;
③对于任意的x 、y 、z 的值,向量组{PA →,PB →,PC →}都能作为空间的一个基底;
④根据已知条件,无法作出相应的判断.
2.设O-ABC 是四面体,G 1是△ABC 的重心,G 是OG 1上的一点,且OG →=xOA →+yOB →+zOC →,则
(x ,y ,z )为____________.
3.在以下3个命题中,真命题的个数是________.
①三个非零向量a ,b ,c 不能构成空间的一个基底,则a ,b ,c 共面;
②若两个非零向量a ,b 与任何一个向量都不能构成空间的一个基底,则a ,b 共线; ③若a ,b 是两个不共线向量,而c =λa +μb (λ,μ∈R 且λμ≠0),则{a ,b ,c }构成空间的一个基底.
4.若{a ,b ,c }是空间的一个基底,则下列各组中能构成空间一个基底的是________.(写出符合要求的序号)
①a,2b,3c ;
②a +b ,b +c ,c +a ;
③a +2b,2b +3c,3a -9c ;
④a +b +c ,b ,c .
5.已知点A 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则点A 在基底{i ,j ,k }下的坐标是______________.
6.下列结论中,正确的是________.(写出所有正确的序号)
①若a 、b 、c 共面,则存在实数x ,y ,使a =x b +y c ;
②若a 、b 、c 不共面,则不存在实数x ,y ,使a =x b +y c ;
③若a 、b 、c 共面,b 、c 不共线,则存在实数x ,y ,使a =x b +y c ;
④若a =x b +y c ,则a 、b 、c 共面.
7.如图所示,空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上且OM =MA ,BN
=12
NC ,则MN →=__________________. 8.命题:①若a 与b 共线,b 与c 共线,则a 与c 共线;②向量a 、b 、c 共面,则它们所在的直线也共面;③若a 与b 共线,则存在惟一的实数λ,使b =λa .上述命题中的真命题的个数是________.
二、解答题
9.已知向量{a ,b ,c }是空间的一个基底,那么向量a +b ,b +c ,c +a 能构成空间的一个基底吗?为什么?
10.
如图所示,在长方体ABCD —A 1B 1C 1D 1中,O 为AC 的中点.
(1)化简:A 1O →-12AB →-12
AD →; (2)设E 是棱DD 1上的点且DE →=23
DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求x 、y 、z 的值.
能力提升 11.
如图所示,已知平行六面体ABCD —A ′B ′C ′D ′.
求证:AC →+AB ′→+AD ′→=2AC ′→.
12.如图所示,空间四边形OABC 中,G 、H 分别是△ABC 、△OBC 的重心,设OA →=a ,OB →=b ,
OC →=c ,试用向量a 、b 、c 表示向量GH →.
1.空间的一个基底是空间任意三个不共面的向量,空间的基底可以有无穷多个.一个基底是不共面的三个向量构成的一个向量组,一个基向量指一个基底的某一个向量.
2.利用向量解决立体几何中的一些问题时,其一般思路是将要解决的问题用向量表示,用已知向量表示所需向量,对表示出的所需向量进行运算,最后再将运算结果转化为要解决的问题.
3.1.3 空间向量基本定理
知识梳理
1.p =x e 1+y e 2+z e 3 {p |p =x e 1+y e 2+z e 3,x ,y ,z ∈R } {e 1,e 2,e 3} e 1,e 2,e 3
2.两两互相垂直 单位向量 {i ,j ,k }
3.不共面 OP →=xOA →+yOB →+zOC →
作业设计
1.①
解析 当OA →,OB →,OC →共面时,则PA →,PB →,PC →共面,故不能构成空间的一个基底.
2.(14,14,14
) 解析 因为OG →=34OG 1→=34
(OA →+AG 1→) =34OA →+34×23[12(AB →+AC →)] =34OA →+14
[(OB →-OA →)+(OC →-OA →)] =14OA →+14OB →+14
OC →, 而OG →=xOA →+yOB →+zOC →,
所以x =14,y =14,z =14
. 3.2
解析 命题①,②是真命题,命题③是假命题.
4.①②④
解析 ∵-3(a +2b )+3(2b +3c )+(3a -9c )=0,
∴3a -9c =3(a +2b )-3(2b +3c ),
即三向量3a -9c ,a +2b,2b +3c 共面.
5.(12,14,10)
解析 设点A 在基底{a ,b ,c }下对应的向量为p ,
则p =8a +6b +4c =8i +8j +6j +6k +4k +4i
=12i +14j +10k ,故点A 在基底{i ,j ,k }下的坐标为(12,14,10).
6.②③④
解析 要注意共面向量定理给出的一个充要条件.所以第②个命题正确.但定理的应用又有一个前提:b 、c 是不共线向量,否则即使三个向量a 、b 、c 共面,也不一定具有线性关系,故①不正确,③④正确.
7.-12a +23b +13c
8.0
9.解 假设a +b ,b +c ,c +a 共面,
则存在实数λ、μ使得a +b =λ(b +c )+μ(c +a ),
∴a +b =λb +μa +(λ+μ)c .
∵{a ,b ,c }为基底,∴a ,b ,c 不共面.
∴⎩⎪⎨⎪⎧ 1=μ,
1=λ,
0=λ+μ.此方程组无解.
∴a +b ,b +c ,c +a 不共面.
∴{a +b ,b +c ,c +a }可以作为空间的一个基底.
10.解 (1)∵AB →+AD →=AC →,
∴A 1O →-12AB →
-12AD →
=A 1O →-12(AB →+AD →)=A 1O →-12AC →=A 1O →-AO →=A 1A →
.
(2)∵EO →=ED →+DO →=23D 1D →+12DB →
=23D 1D →+12(DA →+AB →
)
=23A 1A →+12DA →+12AB →
=12AB →
-12AD →
-23AA 1→

∴x =12,y =-12,z =-23.
11.证明 因为平行六面体的六个面均为平行四边形,
所以AC →=AB →+AD →,AB ′→=AB →+AA ′→,
AD ′→=AD →+AA ′→.
所以AC →+AB ′→+AD ′→
=(AB →+AD →)+(AB →+AA ′→)+(AD →+AA ′→)
=2(AB →+AD →+AA ′→).
又因为AA ′→=CC ′→,AD →=BC →, 所以AB →+AD →+AA ′→=AB →+BC →+CC ′→ =AC →+CC ′→=AC ′→,
故AC →+AB ′→+AD ′→=2AC ′→.
12.解 GH →=OH →-OG →,∵OH →=23OD →

∴OH →=23×12(OB →+OC →)=13(b +c ),
OG →=OA →+AG →=OA →+23AD →
=OA →+23(OD →-OA →)
=13OA →
+23×12(OB →+OC →)
=13a +13(b +c ),
∴GH →=13(b +c )-13a -13(b +c )=-13a , 即GH →=-13a .。

相关文档
最新文档