工程流体力学A课程总结(课堂PPT)
合集下载
《工程流体力学》PPT课件

第二章 流体静力学
本章学习要求:
流体静力学主要研究流体平衡时,其内部的压强分布规律 及流体与其他物体间的相互作用力。它以压强为中心,主要 阐述流体静压强的特性、静压强的分布规律、欧拉平衡微分 方程,作用在平面上或曲面上静水总压力的计算方法,潜体 与浮体的稳定性,并在此基础上解决一些工程实际问题。
无论是静止的流体还是相对静止的流体,流体之间没有相 对运动,因而粘性作用表现不出来,故切应力为零。
• 2.3.3 静止液体中的等压面 • 由于等压面与质量力正交,在静止液体中只有重
力存在,因此,在静止液体中等压面必为水平面。
• 对于不连续的液体或者一个水平面穿过了两种不 同介质连续液体,则位于同一水平面上各点压强 并不一定相同,即水平面不一定是等压面。
2.3 流体静力学的基本方程
2.3.4 绝对压强、相对压强、真空度
(z A (g p A )W ) (z B (g p B )W ) (( (g g ) ) H W g2 1 ) h 1 2 .6 h
2.4 压强单位和测压仪器
2、U形水银测压计
p1=p+ρ1gh1 p2=pa+ρ2gh2 所以 : p+ρ1gh1=pa+ρ2gh2
M点的绝对压强为: p=pa+ρ2gh2-ρ1gh1
具有的压强势能,简称压能(压强水头)。
测压管水头( z+p/g):单位重量流体的总势能。
物理意义: 1. 仅受重力作用处于静止状态的流体中,任意点对同一基准面 的单位势能为一常数,即各点测压管水头相等,位头增高,压 头减小。
2. 在均质(g=常数)、连通的液体中,水平面(z1 = z2=常数)
必然是等压面(p1 = p2 =常数)。
本章学习要求:
流体静力学主要研究流体平衡时,其内部的压强分布规律 及流体与其他物体间的相互作用力。它以压强为中心,主要 阐述流体静压强的特性、静压强的分布规律、欧拉平衡微分 方程,作用在平面上或曲面上静水总压力的计算方法,潜体 与浮体的稳定性,并在此基础上解决一些工程实际问题。
无论是静止的流体还是相对静止的流体,流体之间没有相 对运动,因而粘性作用表现不出来,故切应力为零。
• 2.3.3 静止液体中的等压面 • 由于等压面与质量力正交,在静止液体中只有重
力存在,因此,在静止液体中等压面必为水平面。
• 对于不连续的液体或者一个水平面穿过了两种不 同介质连续液体,则位于同一水平面上各点压强 并不一定相同,即水平面不一定是等压面。
2.3 流体静力学的基本方程
2.3.4 绝对压强、相对压强、真空度
(z A (g p A )W ) (z B (g p B )W ) (( (g g ) ) H W g2 1 ) h 1 2 .6 h
2.4 压强单位和测压仪器
2、U形水银测压计
p1=p+ρ1gh1 p2=pa+ρ2gh2 所以 : p+ρ1gh1=pa+ρ2gh2
M点的绝对压强为: p=pa+ρ2gh2-ρ1gh1
具有的压强势能,简称压能(压强水头)。
测压管水头( z+p/g):单位重量流体的总势能。
物理意义: 1. 仅受重力作用处于静止状态的流体中,任意点对同一基准面 的单位势能为一常数,即各点测压管水头相等,位头增高,压 头减小。
2. 在均质(g=常数)、连通的液体中,水平面(z1 = z2=常数)
必然是等压面(p1 = p2 =常数)。
工程流体力学--流体及其主要物理性质.ppt

连通器原理
连通容器
连通容器
连通器被隔断
水平面是等压面的条件:
• 重力液体 • 静止液体 • 同一容器(连通) • 同一介质 • 局部范围内
p0 1水 2 A
pa B
3 油4
5
6
水银
2019-8-31
谢谢您的观赏
21
一、流体静力学基本方程
2.能量形式的静力学基本方程
p gz C
z p C
C p0 U0
p p0 (U U0 )
•平衡微分方程的物理意义
1. 流体的平衡微分方程实质上表明了质量力和 压差力之间的平衡。
2. 压强对流体受力的影响是通过压差来体现的.
2019-8-31
谢谢您的观赏
15
【例】试求重力场中平衡流体的质量力势函数。
【解】该流体的单位质量分力为
2019-8-31
谢谢您的观赏
1
第1章 流体及其主要物理性质
第2章 流体静力学 第3章 流体动力学基础 第4章 流动阻力和水头损失 第5章 孔口、管嘴出流及有压管流 第6章 明渠均匀流 第7章 明渠水流的两种流态及其转换
2019-8-31
谢谢您的观赏
2
第二章 流体静力学
第一节 第二节 第三节 第四节 第五节 第六节
(
z
B
pB )
h
谢谢您的观赏
37
液柱式测压仪表如下:
• 测压管
pA pa gh
ρ
h
pA gh
空气
A
B
• 真空计或倒式测压管
h
pB gh pa
pvB gh pB
工程流体力学第三版A ppt课件

数值分析方法 随着技算机技术的突飞猛进,过去无法 求解的流体力学偏微分方程可以用计算机数值方法求 解。
计算流体力学
有限差分法 有限元法 边界元法 谱分析等
11
如飞行器、汽车、河道、桥梁、涡轮机流场计算; 湍流、流动稳定性、非线性流动中的数值模拟; 大型工程计算软件是研究工程流动问题的有力武 器。
观看动画
2.连续介质假设的意义
排除了分子运动的复杂性。
表征流体性质和运动特性的物理量和力学
量为时间和空间的连续函数,可用数学中连续 函数这一有力手段来分析和解决流体力学问题。
练习题
工程流体力学第三版A
一、表面力: 外界通过接触传递的力,用应力来表示。
pnn
lAi m0FAn
dFn dA
pn
limF dF A0 A dA
应该指出,这里所说的理想流体和热力学中的理想气体 的概念完全是两回事。
三.牛顿流体和非牛顿流体
1、牛顿流体:运动流体的内摩擦切应力与速度梯 度间的关系符合于牛顿内摩擦定律的流体,称为 牛顿流体。
所有的气体以及如水、甘油等这样一些液体都是 牛顿流体。
2、非牛顿流体:实验表明,象胶液、泥浆、纸浆、 油漆、低温下的原油等,它们的内摩擦切应力与速度 梯度间的关系不符合于牛顿内摩擦定律,这样的流体 称为非牛顿流体。
在实际工程中,要不要考虑流体的压缩性,要视具 体情况而定。
二.粘性流体和理想流体
1.粘性流体:自然界中的各种流体都是具有粘性 的,统称为粘性流体或称实际流体。由于粘性的 存在,实际流体的运动一般都很复杂,这给研究 流体的运动规律带来很多困难。为了使问题简化, 便于进行分析和研究,在流体力学中常引入理想 流体的概念。
模型试验
工程流体力学总复习课件

实际流体的流动状态和能量损失计算
要点一
总结词
要点二
详细描述
描述实际流体的流动状态和能量损失的计算方法。
实际流体的流动状态和能量损失计算是流体动力学中的重 要内容。由于流体流动过程中存在摩擦和能量损失,因此 需要采用适当的模型和方法来描述实际流体的流动状态和 能量损失。常用的方法包括湍流模型、流动阻力计算、能 量方程等,这些方法可以帮助我们更好地理解和预测流体 流动的行为,为工程设计和优化提供依据。
详细描述
流体的定义是指可以流动的物质,包 括液体、气体和等离子体等。流体的 特性包括粘性、压缩性、热传导性等 ,这些特性决定了流体在运动和受外 力作用时的行为。
流体力学的应用领域
总结词
流体力学在各个领域都有广泛的应用, 包括航空航天、水利工程、环境工程等 。
VS
详细描述
在航空航天领域,流体力学研究空气动力 学和热力学的基本原理,为飞行器和航天 器的设计提供支持。在水利工程领域,流 体力学研究水流的基本规律,为水坝、水 电站和航道的设计提供依据。在环境工程 领域,流体力学研究污染物扩散和迁移的 规律,为环境保护和治理提供技术支持。
不可压缩流体的动量方程
总结词
描述流体动量变化和外力之间的关系。
VS
详细描述
不可压缩流体的动量方程是流体动力学中 的另一个重要方程,它描述了流体动量变 化和外力之间的关系。该方程基于牛顿第 二定律,适用于不可压缩流体的稳态或非 稳态流动。通过该方程,可以推导出流体 受到外力作用时的动量变化,为流体动力 学分析和工程设计提供基础。
ρg▽²h + div(ρu▽uh) = ρf - ρg▽(gh)。
解释
ρg▽²h表示重力对流体作用产生的压强梯度,div(ρu▽uh)表示流速对流体作用产生的压强梯度,ρf表示外部作用 在流体上的力产生的压强,ρg▽(gh)表示重力加速度引起的压强梯度。
《工程流体力学 》课件

1
动量守恒定律的原理
从动量的守恒角度出发,深刻理解动量守恒定律的实际含义。
2
螺旋桨叶片受力分析方法
通过螺旋桨叶片受力分析的实例,解析动量守恒定律在实际问题中的应用。
3
旋转流体给出经典范例。
能量守恒定律
1 什么是能量守恒定律?
解析能量守恒定律的定义及其基本特性,令人信服地说明其重要性。
第二章:质量守恒定律
详细介绍质量守恒定律的深刻含义和应用范围, 以及流体连续性方程的应用实例。
第四章:能量守恒定律
归纳总结能量守恒定律的核心表述和基本特征, 以及流体能量方程的求解方法。
流体力学基础
1
流体的基本概念
定义流体和非流体的区别,详细介绍流体的基本性质和特征。
2
流场参数
分类介绍各项流场参数的定义、特征和计算方法,重点阐述雷诺数的作用。
概述水力发电站的基本构造和 设备,重点描述流场参数的计 算方法和水力器件的工作原理。
油气管道压力调节方 法
介绍油气管道压力发生变化的 原因和影响,以及调节压力的 方法与流体力学的联系。
结论和要点
结论1
质量守恒定律的意义及其在实际 问题中的应用。
结论2
动量守恒定律的实际含义,以及 其在涡轮和桨叶设计中的应用。
2 如何求解能量守恒定律?
采用实例解析法,将复杂的能量守恒定律应用问题简单化。
3 如何避免能量损失?
从能量损失的根源出发,提出避免能量损失的有效途径。
应用举例
机翼气动力设计
阐述机翼气动力设计的重要性 及其与流体力学的联系,以及 之前学到的动量守恒定律和能 量守恒定律在机翼气动力设计 中的应用。
水力发电站设计
结论3
工程流体力学复习 ppt课件

4.2雷诺运输定理 雷诺运输方程-揭示系统内流体参数变
化与控制体内流体参数变化之间关系。
系统与控制体的对比与关联
系统 系统
系控统制体 系 统
系统位置随运动而改变, 可能与控制位置重叠
ppt课件
39
第四章 流体动力学分析基础
4.2雷诺运输定理
雷诺运输方程-揭示系统内流体参数变 化与控制体内流体参数变化之间关系。
系统与控制体的对比与关联
系统 系统
系控统制体 系 统
ppt课件
40
I II
第四章 流体动力学分析基础
4.2雷诺运输定理
III
系统内与控制体内物理量随时间变化率之关
系的推导
设B为物理量,B的质量变化率为
dB
dm
B
(
dB )dm dm
dm
dV
(4-1)
ppt课件
41
ppt课件
45
I II
第四章 流体动力学分析基础
4.2雷诺运输定理
III
逐项分析下式各项:
lim lim lim dB
( dt )s
t 0
ppt课件
9
流体的连续介质假设
体积无穷小的微量流体称为 “流体质 点”。
流体质点的尺寸远大于分子间距离,质 点间的距离不大于分子间距离,即认为 质点间没间隙。
流体是由无数连续分布的流体质点所组 成的连续介质。
ppt课件
10
练习题
1、下列命题中正确的有( )。 A、易流动的物质称为流体 B、液体和气体均为流体 C、液体与气体的主要区别是气体易于压
ppt课件
流体力学基础讲解PPT课件

措施。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
05
流体流动的湍流与噪声
湍流的定义与特性
湍流定义
湍流是一种高度复杂的三维非稳态、带旋转的不规则流动。 在湍流中,流体的各种物理参数,如速度、压力、温度等都 随时间与空间发生随机的变化。
湍流特性
湍流具有随机性、不规则性、非线性和非稳定性等特性。在 湍流中,流体的速度、方向和压力等都随时间和空间发生变 化,形成复杂的涡旋结构。
环境流体流动与环境保护
要点一
环境流体流动
环境中的流体流动对环境保护具有重要影响。例如,大气 中的气流会影响污染物的扩散和迁移,水流会影响水体中 的污染物迁移和沉积等。
要点二
环境保护
通过对环境中的流体流动进行研究和模拟,可以更好地了 解污染物扩散和迁移规律,为环境保护提供科学依据。同 时,通过合理规划和设计流体流动系统,可以有效降低污 染物对环境的影响,保护生态环境。
04
流体流动的能量转换
能量的定义与分类
总结词
能量是物体做功的能力,可以分为机械能、热能、电能等。在流体力学中,主要关注的是机械能中的 动能和势能。
详细描述
能量是物体做功的能力,它有多种表现形式,如机械能、热能、电能等。在流体力学中,我们主要关 注的是机械能,它包括动能和势能两种形式。动能是流体运动所具有的能量,与流体的速度和质量有 关;势能则是由于流体所处位置而具有的能量。
流体流动噪声
流体流动过程中产生的噪声主要包括 机械噪声和流体动力噪声。机械噪声 主要由机械振动和摩擦引起,而流体 动力噪声主要由湍流和流体动力振动 引起。
噪声控制
为了减小流体流动产生的噪声,研究 者们提出了各种噪声控制方法,如改 变管道结构、添加消音器和改变流体 动力特性等。这些方法可以有效降低 流体流动产生的噪声。
流体力学基本知识PPT优秀课件

第一章 流体力学基本知识
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
第一节 流体的主要物理性质 第二节 流体静压强及其分布规律 第三节 流体运动的基本知识 第四节 流动阻力和水头损失 第五节 孔口、管嘴出流及两相流体简介
2021/6/3
1
第一节 流体的主要物理性质
一、密度和容重 密度:对于均质流体,单位体积的质量称为
流体的密度。 容重:对于均质流体,单位体积的 重量称为
等压面:流体中压强相等的各点所组成 的面为等压面。
2021/6/3
10
压强的度量基准:
(1)绝对压强:是以完全真空为零点计算的 压强,用PA表示。
(2)相对压强:是以大气压强为零点计算的 压强,用P表示。
相对压强与绝对压强的关系为: P=PA-Pa (1-9)
2021/6/3
11
第三节 流体运动的基本知识
水力学基本方程式。式中γ和p0都是常数。
方程表示静水压强与水深成正比的直线分布 规律。方程式还表明,作用于液面上的表面 压强p0是等值地传递到静止液体中每一点上。 方程也适用于静止气体压强的计算,只是式 中的气体容重很小,因此,在高差h不大的 情况下,可忽略项,则p=p0。例如研究气 体作用在锅炉壁上的静压强时,可以认为气 体空间各点的静压强相等。
表面压强为: p=△p/△ω (1-6)
点压强为: lim p=dp/dω ( Pa) 点压强就是静压强
2021/6/3
7
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。
(2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
2021/6/3
8
二、流体静压强的分布规律
一、流体运动的基本概念
(一)压力流与无压流 1.压力流:流体在压差作用下流动时,流体 整个周围都和固体壁相接触,没有自由表 面。 2.无压流:液体在重力作用下流动时,液体 的部分周界与固体壁相接触,部分周界与 气体接触,形成自由表面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 流体及其物理性质小结
一、基本概念 流体、流体质点、连续介质 模型 粘性、动力粘性系数、运动粘性系数、实际 流体、理想流体、牛顿流体、非牛顿流体 可压缩流体、不可压缩流体、体积弹性模量 质量力、表面力
第一章 流体及其物理性质小结 二、流体的粘性
动力粘性系数受流体的温度的影响很 大,而受压强的影响较小。
当沿着液柱向上移动时,压强减小,向下移 动时,压强增大。
第二章 流体静力学小结 重力场中连
通的同种静止液 体中等压面是水 平面,与质量力 垂直。
两种液体的分界面既是水平面,又是等压面。
第二章 流体静力学小结
五、等角速度转动液体的平衡 z
取自由面和旋 转轴的交点为 z轴零点。
液体内压强随着r 增 大而增大;当r固定时, 压强在垂直方向的变化规 律和静止流体中相同,向 下移动时压强增大。
dp
Ev d
题型: 等温体积弹性模量和等熵体积弹性模量
的计算;气体温度和体积的计算。
第一章 流体及其物理性质小结
四、作用在流体上的力 表面力(面积力) :作用在分离出的流体对象 表面上的力,接触力。它是分离体以外的流体 或其它物体通过接触面作用在分离体上的力。
质量力(场力/体积力) :某种力场作用在流 体的全部质点(全部体积)上的力,是和流体的 质量(体积)成正比的力。
pEv
ln Ev
Ev
0gh
2.3190ln 2.3190 21 .3 013 99 0.8 06000
6.1 8 1 7 0Pa
密度为常数 10k3g0m3,
pg h103 9.80 6000
6.06317 0Pa
第二章 流体静力学小结 四、压强测量
绝对压强、计示压强和真空压强的关系相 对压强为负值时,则称该点处的压强为真空度
dp g
dz
静止的均质不可压缩流体中,液体压强 与液体深度h成正比。
密度为变量
一般情况下为气体,根据理想气体状态 方程计算求解。
第二章 流体静力学小结
作业 2-3
计算大洋深处压强时需计及海水的可压 缩性。
(1)假设海水的体积弹性模量 E v 为常数, 试推导压强和深度间的关系(考虑海水密度 随深度的变化)。
✓分析速度变化规律
✓切应力公式
第一章 流体及其物理性质小结
du dy
du 0 , du ;
dy
dy
du 0 , du ;
dy
dy
ucy2y c16 dduy1622y
第一章 流体及其物理性质小结
代入已知数据: 边壁上 y = 0
u
τ
du
dy
162y
2
0 .04 18 4 4 6 1 1 3 0 3 0 2019 N 2 m 2
第二章 流体静力学小结 二、静压强及其特性
静止流体内的压强,称为流体静压强。
•特性I:静止流体内任意一点处的流体静压
力的大小在各个方向上都相等。
•特性II:流体静压力的方向总是和作用的面
相垂直,并指向该作用面,即沿作用面的法线 方向。
第二章 流体静力学小结
三、重力场中静止流体内的压强分布
密度为常数
第一章 流体及其物理性质小结
设最大速度 umax4ms,
试求最大速度在间隙中的位置及平板壁 面的切应力。
解:(1)最大速度在间隙中的位置
当uumax
ucy2y
du 0 dy
ddu yc22y0
第一章 流体及其物理性质小结
2y0
y2mm
ddu yc22y0
c16
(2)平板壁面的切应力
✓建立坐标系
第二章 流体静力学小结
流体静力学研究流体在静止状态下的 受力平衡规律及其工程应用。
流体处于静止
无相对运动
粘性不起作用
压应力
只存在正应力
不存在切应力
静压强
第二章 流体静力学小结
任务: 研究静压强的空间分布规律,确定各种
承压面上静压强产生的总压力。 一、基本概念
✓流体静压力,等压面,压力梯度,哈密顿算子 ✓形心淹深,压力体,潜体,浮体,浮力; ✓绝对压强,计示压强,表压强,真空度; ✓帕斯卡原理,阿基米德定理。
流体力学课程总结 2010-11-16
1
流体力学期末总复习
第一章 流体及其物理性质小结 第二章 流体静力学小结 第三章 章流体运动学基础小结 第四章 流体动力学基础小结 第五章 相似原理与量纲分析小结
流体力学期末总复习
第六章 理想不可压缩流体的定常流动小结 第七章 通道内的粘性流动小结 第八章 粘性不可压缩流体绕物体的流动小结 概念例题
第一章 流体及其物理性质小结
三、流体的压缩性
dp
体积弹性模量的定义 E v dV
V
流体的压缩性小,对应的体积弹性模量 值越大。
不可压缩流体:忽略流体密度的变化,不 可压缩流体的密度视为常量,体积弹性模量 为无限大。
第一章 流体及其物理性质小结
体积弹性模量依赖于压缩过程所决定 的压强与密度的关系。
压强
大气压强 pa
O
A
A点相对压强
A点绝对压强 B
相对压强基准 B点真空压强
B点绝对压强
绝对压强基准
O
pv pa pabs
第二章 流体静力学小结
各种液柱式测压计:单管式测压计、U型管测 压计、斜管式测压计。
题型:测压计压强的计算 解题原则:
在连通的同一种静止液体中,如果两点的 高度相同,则它们的压强相等;
液体:温度升高,粘性下降; 气体:温度升高,粘性增加。
第一章 流体及其物理性质小结
题已型知:粘性系数和速度分布,求各u点的cy切2向y力 。
作业1-4
粘性系数0.04P8as 的流体流过两平行
平板的间隙,间隙宽 4m m流体在间隙
内的速度分布为
u
cy
2
y,
其中c 为待定
系数, y为垂直于平板的坐标。
dp
Ev
d
pEvΒιβλιοθήκη ln0pEv
ln Ev
Ev
0gh
第二章 流体静力学小结
(2)设海水 Ev 2.319 0Pa ,在洋面
0103 k0 gm ,3试计算 6 km 深处的静压强。
如假设海水密度为常数 10k3g0m3,
则6km处压强又为多少?
解:密度是随深度变化的 0103 k0 gm3
第二章 流体静力学小结
第二章 流体静力学小结
解:
Ev
dp
d
dp
Ev
d
dp g
dz
Ev
d 2
gdz
设水面处压强为 p 0 , 密度 0 ; 水底h米处,
压强为 p, 密度为 。
第二章 流体静力学小结
d
h
Ev
2
0
g
0
dz
Ev
1
1
0
gh
1 1 gh
0 Ev
Ev0 Ev 0gh
Ev
0 Ev 0gh