2010-2018高考真题理科数学分类汇编解析版第1讲集合

合集下载

十年高考真题分类汇编(2010-2019) 数学 专题01 集合 解析版

十年高考真题分类汇编(2010-2019)  数学 专题01 集合  解析版

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。

(新课标全国I卷)20102019学年高考数学真题分类汇编专题01集合与常用逻辑用语文(含解析)

(新课标全国I卷)20102019学年高考数学真题分类汇编专题01集合与常用逻辑用语文(含解析)

专题01会集与常用逻辑用语一、会集小题:10年10考,每年1题,都是交集、并集、补集和子集运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题组对会集小题进行大幅度变动的信心不大.1.(2019年)已知会集U{1,2,3,4,5,6,7},A{2,3,4,5},B{2,3,6,7},则BeUA()A.{1,6} B .{1,7} C .{6,7} D .{1,6,7}【答案】C【分析】U {1,2,3,4,5,6,7},A {2,3,4,5},B{2,3,6,7},C U A{1,6,7},则B e U A {6,7},应选C.2.(2018年)已知会集 A 0,2,B 2,1,0,1,2,则A B ()A.0,2 B .1,2 C .0D .2,1,0,1,2【答案】A【分析】∵A0,2 ,B2,1,0,1,2 ,∴0,2 ,应选A.3.(2017年)已知会集A={x|x<2},B={x|3 ﹣2x>0},则()3 3A.A∩B={x|x <2} B .A∩B=? C .A∪B={x|x<2} D .A∪B=R【答案】A3 3【分析】∵会集A={x|x<2},B={x|3 ﹣2x>0}={x|x<2},∴A∩B={x|x<2},故A正确,B错误;A∪B={x|x <2},故C,D错误;应选A.4.(2016年)设会集A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【答案】B【分析】∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5}.应选B.5.(2015年)已知会集A={x|x=3n+2,n∈N},B={6,8,10,12,14},则会集A∩B中元素的个数为()A.5B.4C.3D.2【答案】D【分析】A={x|x=3n+2,n∈N}={2,5,8,11,14,17,},∴A∩B={8,14},故会集A∩B中元素的个数为2个,应选D.6.(2014年)已知会集M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【答案】B【分析】∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},应选B.7.(2013年)已知会集A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【分析】依据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选A.8.(2012年)已知会集A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.ABB.BAC.A=B D.A∩B=?【答案】B【分析】由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在会集B中的元素都属于会集A,但是在3会集A中的元素不必定在会集B中,比方x=2,∴BA.应选B.9.(2011年)已知会集M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【答案】B【分析】∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3},∴P的子集共有22=4个,应选B.10.(2010年)已知会集A={x||x| ≤2,x∈R},B={x| ≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【答案】D【分析】A={x||x|≤2,x∈R}={x|﹣2≤x≤2},B={x| ≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2},应选D.二、常用逻辑用语小题:10年1考,只有2013年考了一道复合命题的真假判断.这个考点包括的小考点较多,而且简单与函数、不等式、数列、三角函数和立体几何交汇,热门就是“充要条件”;难点:否定与否命题;冷点:全称与特称;思想:逆否.要注意,这种题可以分为两大类,一类只涉及形式的变换,比较简单;另一类涉及命题的真假判断,比较复杂.(2013()年)已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1﹣x2,则以下命题中为真命题的是A.p∧qB.¬p∧q C.p∧¬q D.¬p∧¬q【答案】B【分析】由于x=﹣1时,2﹣1>3﹣1,因此命题p:?x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,由于f(0)=﹣1<0,f(1)=1>0.因此函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:?x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.应选B.。

2010-2018年高考真题

2010-2018年高考真题

2010--2018广东高职高考第一至九章考题精选第一章 集合与逻辑用语1.(10年)设集合=M {}1,1- ,=N {}3,1- ,则M N ⋂= ( )A .{}1,1-B .{}3,1-C .{}1-D .{}3,1,1-2.(11年)已知集合{}2|==x x M ,{}1,3-=N ,则M N ⋃=( )A .∅B .{}1,2,3--C .{}2,1,3-D .{}2,1,2,3--3.(12年)设集合{1,3,5}M =,{1,2,5}N =,则M N ⋃= ( )A.{1,3,5}B. {1,2,5}C. {1,2,3,5}D. {1,5}4.(13年)设集合{}1,1-=M ,{}2,1,0=N ,则M N ⋂=( )A . {}0B . {}1C . {}2,1,0D . {}2,1,0,1-5.(14年)已知集合{}1,0,2-=M ,{}2,0,1-=N ,则M N ⋂=( )A .{}0B .{}1,2-C .∅D .{}2,1,0,1,2--6.(15年)已知集合M={1,4},N={1,3,5},则M N ⋃=( )A.{1}B. {4,5}C. {1,4,5}D. {1,3,4,5}7.(16年)若集合A={2,3,a},B={1,4},且A ∩B={4},则a=( )A.1B. 2C. 3D. 48.(17年)已知集合M={0,1,2,3,4},N={3,4,5},则下列结论正确的是( )A.M ⊆NB.N ⊆MC.M ∩N={3,4}D.M ∪N={0,1,2,5}9.(18年)已知集合{}3210,,,=M ,{}5420,,,=N ,则M N ⋂=( )A .{}543210,,,,,B .{}543,, C.{}20, D .{}110.(10年)“2>a 且2>b ”是“4>+b a ”的( )A. 必要非充分条件B. 充分非必要条件C. 充要条件D. 非充分非必要条件11.(11年)“7=x ”是“7≤x ”的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分,也非必要条件12.(12年)“12x =”是 “1x =”的 ( )A. 充分必要条件B. 充分非必要条件C. 非充分也非必要条件D. 必要非充分条件13.(13年)在ABC ∆中,“ 30>∠A ”是“21sin >A ”的( ) A. 充分非必要条件 B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件14.(14年)“0)2)(1(>+-x x ”是“021>+-x x ”的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 非充分非必要条件15.(15年)“0<a<1”是“32a a log log >”的( )A. 必要非充分条件B. 充分非必要条件C. 充分且必要条件D. 既非充分又非必要条件16.(16年)设a,b 为实数,则“b=3”是“a(b-3)=0”的( )A. 充分非必要条件B. 必要非充分条件C. 充分且必要条件D. 既非充分又非必要条件17. (17年)“x>4”是“(x-1)(x-4)>0”的 ( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.非充分非必要条件18. (18年)“x<-3”是“x 2>9”的 ( )A.必要非充分条件B.充分非必要条件C.充分必要条件D.非充分非必要条件第二章 不等式1.(10年)不等式11<-x 的解集是( )A .{}0<x xB .{}20<<x xC .{}2>x xD .{}20><x x x 或2.(11年)不等式112≥+x 的解集是( ) A .{}11≤<-x x B .{}1≤x xC .{}1->x xD .{}11->≤x x x 或3.(12年)不等式312x -<的解集是( )A . 113,⎛⎫- ⎪⎝⎭B . 113,⎛⎫ ⎪⎝⎭C . ()13,-D . ()13, 4.(13年)设b a ,是任意实数,且b a >,则下列式子正确的是( )A . 22b a >B . 1<ab C . 0)lg(>-b a D . b a 22> 5.(13年)对任意R x ∈,下列式子恒成立的是( )A . 0122>+-x xB . 01>-xC . 012>+xD . 0)1(log 22>+x6.(13年)不等式0322<--x x 的解集为 .7.(15年)不等式0672>+-x x 的解集为( )A . ()1,6B . ()1(6,)∞⋃+∞-,C . ∅D . ()∞∞-,+8.(15年)当x>0时,下列不等式正确的是( )A . 44≤+x x B . 44≥+x x C . 84≤+x x D . 84≥+xx 9.(16年)不等式0652≤--x x 的解集是( )A . }|{32≤≤-x xB . }|{61≤≤-x xC . }|{16≤≤-x xD . }|{6或1≥-≤x x x10.(10年)函数182)(++=x xx f 在区间),0(+∞内的最小值是___________. 第三章 函数1.(10年)函数x x x f -+=21)(的定义域为( )A. )2,(-∞B. ),2(+∞C. (,)(,)11-∞-⋃-+∞D. (,)(,)22-∞⋃+∞2.(11年)函数x x y +-=1)1lg(的定义域是( )A .[]1,1-B .()1,1-C .()1,∞-D .()+∞-,13.(12年) 函数lg(1)y x =-的定义域是 ( )A . ()1,+∞B . ()1,-+∞C . ()1,-∞-D . ()1,-∞4.(13年)函数24x y -=的定义域是( )A . ()2,2-B . []2,2-C . ()2,-∞-D . ()+∞,25.(14年)函数x x f -=11)(的定义域是( )A .)1,(-∞B .),1(+∞-C .]1,1[-D .)1,1(-6.(15年)函数x x f +=1)(的定义域是( )A .],(1--∞B .),[+∞-1C .],(1-∞D .),(+∞-∞7.(16年)函数32+=x x f )(的定义域是( )A .),(+∞-∞B .),[+∞-23C .],(23--∞ D .),(+∞0 8.(17年)函数y=的定义域是 ( ) A.(-∞,-4] B.(-∞,-4) C.[-4,+∞) D.(-4,+∞)9.(18年)函数x x f 43-=)(的定义域是( )A .],(43-∞B .],(34-∞C .),[+∞43D .),[+∞34 10.(10年)设函数⎪⎩⎪⎨⎧≤>=0,20,log )(3x x x x f x ,则[])1(f f ( ) A. 0 B. 2log 3 C. 1 D. 211.(13年)设函数⎪⎩⎪⎨⎧>≤+=1,21,1)(2x xx x x f ,则=))2((f f ( ) A . 1 B . 2 C . 3 D . 412.(18年)已知函数⎩⎨⎧<-≥-=01032x x x x x f ,,)(,设c=)(2f ,则=)(c f ( ) A . -2 B . -1 C . 0 D . 313.(10年)若函数)(x f y =满足:对区间[]b a ,上任意两点1x 、2x ,当21x x <时,有)()(21x f x f >,且0)()(<b f a f ,则)(x f y =对区间[]b a ,上的图像只可能是( )14.(12年)下列函数为奇函数的是 ( )A .2y x =B .2sin y x =C .2cos y x =D .2ln y x =15.(13年)下列函数为偶函数的是( )A. x e y =B. x y lg =C. x y sin =D. x y cos =16.(14年)下列函数在其定义域内单调递减的是( )A .x y 21=B .x y 2=C .x y )21(= D .2x y = 17. (16年)下列函数在定义域内单调递增的是( )A .2x y = B .x y )(31= C .x x y 23= D .x y 3log -= 18.(15年) 已知函数)(x f 是奇函数,且f(2)=1,则32)]([-f =( )A .-8B .-1C .1D .819. (16年)已知)(x f 为偶函数,且y=f(x)的图像经过点(2,-5),则下列等式恒成立的是( )A .f(-5)=2B .f(-5)=-2C .f(-2)=5D .f(-2)=-520.(17年)设f(x)是定义在R 上的奇函数,已知当x ≥0时,f(x)=x 2-4x 3,则f(-1)=( ) A.-5 B.-3 C.3 D.5x x x x21.(18年)已知函数f(x)是定义在R 上的奇函数,且对于任意实数x,都有f(x+4)=f(x).若f(-1)=3,则f(4)+f(5)= ( )A.6B.3C.0D.-322.(14年)若函数k x x x f ++-=2)(2)(R x ∈的最大值为1,则=k .23.(12年)() f x 是定义在()0,+∞上的增函数,则不等式()(23)f x f x >-的解集是 .24.(14年)已知)(x f 是偶函数,且0≥x 时,x x f 3)(=,则=-)2(f .25.(10年)如图,有一直角墙角,两边的长度足够长,在P 点处有一水龙头(不考虑水龙头的粗细),与两墙的距离分别为4米和a 米(12≤a ),现在要用16米长的篱笆,借助原有墙角围成一个矩形的花圃ABCD ,要求水龙头围在花圃内,设x AD =米,(1)确定花圃ABCD 的面积S 与x 之间的函数关系式(要求给出x 的取值范围)(2)当3=a 时,求使花圃面积最大的x 的值。

2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——01、集合与常用逻辑用语

2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编——01、集合与常用逻辑用语

2010-2018年全国新课标卷(ⅠⅡⅢ卷)理科数学试题分类汇编01、集合与常用逻辑用语【2010年新课标卷,1】 已知集合{}2,R A x x x =≤∈,{}4,Z B x =∈,则A B =( )A .()0,2B .[]0,2 C .{}0,2 D .{}0,1,2 【答案】D 【解析】{}|22A x x =-≤≤,{}0,1,2,3,4B = {}0,1,2A B ∴=,故选D. 【2010年新课标卷,5】已知命题1p :函数22x x y -=-在R 为增函数,2p :函数22x x y -=+在R 为减函数,则在命题112:q p p ∨,212:q p p ∧,312:()q p p ⌝∨和412:()q p p ∧⌝中,真命题是( )A .13,q qB .23,q qC .14,q qD .24,q q【答案】C【解析】2x y =为增函数,2x y -=-为增函数,22x x y -∴=-为增函数,故1p 为真;对于2p :22x x y -=+,'12ln 22ln 2(2)ln 22x x xx y -=-=-,则当0x <时,'0y <,函数y 单调递减;当0x >时,'0y >,函数y 单调递增. 故2p 为假. 则112:q p p ∨为真,212:q p p ∧为假,312:()q p p ⌝∨为假,412:()q p p ∧⌝为真,故选C.【2011年新课标卷,10】已知a 与b 均为单位向量,其夹角为θ,有下列四个命题中真命题是( )12:+10,3P πθ⎡⎫>⇔∈⎪⎢⎣⎭r r a b 22:1,3P πθπ⎛⎤+>⇔∈ ⎥⎝⎦r r a b 3:10,3P πθ⎡⎫->⇔∈⎪⎢⎣⎭r r a b 4:1,3P πθπ⎛⎤->⇔∈ ⎥⎝⎦r r a bA . P 1,P 4B .P 1,P 3C .P 2,P 3D .P 2,P 4【答案】A【解析】由22||2cos 1a b a b θ+=++=>a b 得1cos 2θ>-2[0,)3πθ⇒∈.由22||2cos 1a b a b θ-=+-=>a b 得1cos 2θ<(,]3πθπ⇒∈,故选A.【2012年新课标卷,1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .10 【答案】D【解析】要使A y x ∈-,当5=x 时,y 可以是1,2,3,4;当4=x 时,y 可以是1,2,3;当3=x 时,y 可以是1,2;当2=x 时,y 可以是1. 综上所述,共有10个,故选D.【2013年新课标Ⅰ卷,1】已知集合{}2|20A x x x =->,{|B x x =<,则( )A .AB =∅ B .A B R =C .B A ⊆D .A B ⊆【答案】B 【解析】{}|02A x x x =<>或 AB R ∴=,故选B.【2013年新课标Ⅱ卷,1】已知集合{}2|(1)4,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N =( )A .{}0,1,2B .{}1,0,1,2-C .{}1,0,2,3-D .{}0,1,2,3 【答案】A 【解析】{}|13M x x =-<< {}0,1,2MN ∴=,故选A. 【2014年新课标Ⅰ卷,1】已知集合{}2|230A x x x =--≥,{}|22B x x =-≤<,则A B =( )A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,2【答案】A【解析】{|13}A x x x =≤-≥或 {}21A B x x ∴=-≤≤-,故选A.【2014年新课标Ⅱ卷,1】设集合{}0,1,2M =,{}2|320N x x x =-+≤,则MN =( ) A .{}1 B .{}2C .{}0,1D .{}1,2【答案】D 【解析】2={|320}{|12}N x x x x x -+≤=≤≤ {1,2}MN ∴=,故选D.【2015年新课标Ⅰ卷,3】设命题2:,2np n N n ∃∈>,则p ⌝为( )A .2,2n n N n ∀∈>B .2,2nn N n ∃∈≤ C .2,2n n N n ∀∈≤ D .2,2nn N n ∃∈=【答案】C【解析】特称命题的否定是全称命题,需改变量词符号及对结论进行否定, 则2:,2np n N n ⌝∀∈≤,故选C.【2015年新课标Ⅱ卷,1】已知集合{}2,1,0,2A =--,{}|(1)(2)0B x x x =-+<,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A 【解析】{}|21B x x =-<< {}1,0A B ∴=-,故选A.【2016年新课标Ⅰ卷,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(-- B .)23,3(-C .)23,1(D .)3,23(【答案】D【解析】{}13A x x =<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭332A B x x ⎧⎫∴=<<⎨⎬⎩⎭I ,故选D .【2016年新课标Ⅱ卷,2】已知集合{}1,2,3A =,{}|(1)(2)0,B x x x x Z =+-<∈,则A B =( )A .{}1B .{}1,2C .{}0,1,2,3D .{}1,0,1,2,3- 【答案】C【解析】{}01B =,{}0123A B ∴=,,,,故选C .【2016年新课标Ⅲ卷,1】设集合{}|(2)(3)0S x x x =--≥,{}|0T x x =>,则S T =( )A .[]2,3B .(][),23,-∞+∞ C .[)3,+∞ D .(][)0,23,+∞【答案】D 【解析】{}|23S x x x =≤≥或 {}|023S T x x x ∴=<≤≥或,故选D.【2017年新课标Ⅰ卷,1】已知集合{}1A x x =<,{}31xB x =<,则( )A .{|0}AB x x =< B .A B R =C .{|1}A B x x =>D .A B =∅【答案】A【解析】{}{}310xB x x x =<=< {}0AB x x ∴=<,{}1AB x x =<,故选A.【2017年新课标Ⅱ卷,2】设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C 【解析】{}1AB = ∴ 1是方程240x x m -+=的一个根,则3m =.{}{}24301,3B x x x ∴=-+==,故选C.【2017年新课标Ⅲ卷,1】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则AB 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】22122x x x y y x y y ⎧⎧==⎪⎪⎧+=⎪⎪⇒⎨⎨⎨=⎩⎪⎪=-=⎪⎪⎩⎩(A B ⎧⎫⎪⎪∴=⎨⎬⎪⎪⎩⎭,则AB 中有2个元素,故选B.【2018年新课标Ⅰ卷,2】已知集合{}2|20A x x x =-->,则R C A =( )A .{}|12x x -<<B .{}|12x x -≤≤C .{}{}|1|2x x x x <->D .{}{}|1|2x x x x ≤-≥【答案】B 【解析】}{}{22012A x x x x x x =-->=<->或 A C R ∴}{21≤≤-=x x ,故选B.【2018年新课标Ⅱ卷,2】已知集合{}22(,)|3,,A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( )A .9B .8C .5D .4【答案】A 【解析】223x y +≤ 23x ∴≤ 又x Z ∈ 1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =-时,1,0,1y =-.则A 中有9个元素,故选A.【2018年新课标Ⅲ卷,1】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B =( )A .{}0B .{}1C .{}1,2D .{}0,1,2【答案】C【解析】{|1}A x x =≥ {1,2}A B ∴=,故选C.。

2010-2018年高考文科数学真题-集合(含解析)

2010-2018年高考文科数学真题-集合(含解析)

九年(2010-2018年)高考真题文科数学精选(含解析)专题一 集合与常用逻辑用语第一讲 集合一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB = A .{3} B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB = A .{0,1} B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则AB = A .{0} B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2AB x x =< B .A B =∅C .3{|}2A B x x =<D .A B =R 8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =错误!未找到引用源。

则A B = A .{1,2,3,4} B .{1,2,3} C .{2,3,4} D .{1,3,4}9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则A B 中元素的个数为A .1B .2C .3D .410.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N = A .()1,1- B .()1,2- C .()0,2 D .()1,212.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则U A = A .(2,2)- B .(,2)(2,)-∞-+∞ C .[2,2]- D .(,2][2,)-∞-+∞13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q = A .(1,2)- B .(0,1) C .(1,0)- D .(1,2)14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=A BA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A B =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2( 18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<< 20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合U A B =A .{3}B .{2,5}C .{1,4,6}D .{2,3,5}21.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]22.(2015山东)已知集合{}24A x x =<<,{}(1)(3)0B x x x =--<,则AB = A .()1,3 B .()1,4C .()2,3D .()2,423.(2015福建)若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于 A .{}0 B .{}1 C .{}0,1,2 D .{}0,124.(2015广东)若集合{}1,1M =-,{}2,1,0N =-,则M N =A .{}0,1-B .{}1C .{}0D .{}1,1-25.(2015湖北)已知集合22{(,)|1,,}A x y x y x y Z =+∈≤,{(,)|||2,B x y x =≤ ||2,,}y x y Z ∈≤,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3026.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B = A .[-2, -1] B .[-1,1] C .[-1,2) D .[1,2)27.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N = A .{1} B .{2} C .{0,1} D .{1,2}28.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B =A . ∅B .{}2C .{}0D .{}2-29.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA . [0,2]B .(1,3)C . [1,3)D . (1,4)30.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则AB =A .(0,2]B .(1,2)C .[1,2)D .(1,4)31.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则MN = A .{0,1} B .{1,0,2}- C .{1,0,1,2}- D .{1,0,1}-32.(2014福建)若集合{|24}P x x =<≤,{|3}Q x x =≥,则P Q 等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤33.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则U A =A .∅B . }2{C . }5{D . }5,2{34.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则AB = A .{0} B .{0,1}C .{0,2}D .{0,1,2}35.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =A .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<36.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则MN = A .[0,1] B .[0,1) C .(0,1] D .(0,1)37.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A B =A .(3,0)-B .(3,1)--C .(3,1]--D .(3,3)-38.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U A B =A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<39.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则AB = A .{1,0,1,2}- B .{2,1,0,1}--C .{0,1}D .{1,0}-40.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A = A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D . {2,5,7}41.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆”是“∅=B A ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件42.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 43.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =A .{}14,B .{}23,C .{}916,D .{}12, 44.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N =A .{}0,1,2B .{}1,0,1,2- C .{}1,0,2,3- D .{}0,1,2,3 45.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN = A .{2,1,0,1}-- B .{3,2,1,0}--- C .{2,1,0}-- D .{3,2,1}---46.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =,{1,2}B =,则U AB = A .{3} B .{4}C .{3,4}D .∅ 47.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .948.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,149.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 50.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-51.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-52.(2013广东)设整数4n ≥,集合{}1,2,3,,X n =,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉53.(2013陕西)设全集为R , 函数()f x M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-54.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或4 55.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或 56.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U57.(2012浙江)设全集{}1,2,3,4,5,6U =,设集合{}1,2,3,4P =,{}3,4,5Q =,则U P Q ⋂=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,258.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =C .MN N = D .{2}M N = 59.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB B .B AC .A B =D .A B =∅60.(2012安徽)设集合A ={|3213x x --},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A .(1,2)B .[1,2]C .[ 1,2)D .(1,2 ]61.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5B .4C .3D .262.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆63.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个64.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若PM P =,则a 的取值范围是A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1][1,+∞) 65.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂66.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}67.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .168.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}69.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]70.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N I M =∅,则=N MA .MB .NC .ID .∅ 71.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =D .{}1,4M N =72.(2010陕西)集合A ={}|12x x -≤≤,B ={}|1x x <,则()R A B ⋂=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤73.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆D .R Q P ⊆ 74.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =RA .2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭B .22⎛⎫+∞ ⎪ ⎪⎝⎭C .2(,0][,)2-∞+∞D .2)2+∞ 75.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}AB =,{9}U B A =,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题 76.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = .77.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}AB =,则实数a 的 值为____.78.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为 .79.(2015湖南)已知集合U ={}1,2,3,4,A ={}1,3,B ={}1,3,4,则A (U B )= .80.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .81.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则()U A B ⋂= .82.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.83.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B = .84.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.85.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}AB =,则实数a =__.专题一 集合与常用逻辑用语第一讲 集合答案部分1.A 【解析】由题意{0,2}A B =,故选A .2.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A {2,4,5}.故选C .3.C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =,故选C . 4.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}AB =,故选A . 5.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}AB =.故选C . 6.C 【解析】由题意{1,0,1,2,3,4}A B =-,∴(){1,0,1}A B C =-,故选C .7.A 【解析】∵3{|}2B x x =<,∴3{|}2AB x x =<, 选A . 8.A 【解析】由并集的概念可知,{1,2,3,4}AB =,选A . 9.B 【解析】由集合交集的定义{2,4}AB =,选B . 10.B 【解析】∵{1,2,4,6}A B =,(){1,2,4}A BC =,选B .11.C 【解析】{|02}M x x =<<,所以{|02}MN x x =<<,选C . 12.C 【解析】{|22}U A x x =-≤≤,选C .13.A 【解析】由题意可知{|12}P Q x x =-<<,选A .14.B 【解析】由题意得,{1,3,5,7}A =,{|25}B x x =,则{3,5}A B =.选B . 15.D 【解析】易知{|33}B x x =-<<,又{1,2,3}A =,所以{1,2}AB =故选D . 16.C 【解析】由补集的概念,得{0,2,6,10}A B =,故选C .17.A 【解析】∵(1,2)A =-,(0,3)B =,∴(1,3)A B =-.18.D 【解析】集合{|32,}A x x n n N ==+∈,当0n =时,322n +=,当1n =时, 325n +=,当2n =时,328n +=,当3n =时,3211n +=,当4n =时, 3214n +=,∵{6,8,10,12,14}B =,∴A B 中元素的个数为2,选D .19.A 【解析】{|32}AB x x =-<<. 20.B 【解析】{2,5}U B =,∴U A B {2,5}.21.A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1]. 22.C 【解析】因为{|13}B x x,所以(2,3)A B =,故选C . 23.D 【解析】∵{0,1}M N . 24.B 【解析】{1}M N =.25.C 【解析】由题意知,22{(,)1,,}{(1,0),(1,0),(0,1),(0,1)}A x y x y x y =+≤∈=--Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,所以由新定义集合A B ⊕可知,111,0x y =±=或110,1x y ==±.当111,0x y =±=时,123,2,1,0,1,2,3x x +=---,122,1,0,1,2y y +=--,所以此时A B ⊕中元素的个数有:7535⨯=个;当110,1x y ==±时,122,1,0,1,2x x +=--,123,2,1,0,1,2,3y y +=---,这种情形下和第一种情况下除12y y +的值取3-或3外均相同,即此时有5210⨯=,由分类计数原理知,A B ⊕中元素的个数为351045+=个,故应选C .26.A 【解析】{}|13A x x x =-≤或≥,故A B =[-2, -1]. 27.D 【解析】{}|12N x x =≤≤,∴M N ={1,2}. 28.B 【解析】∵{}1,2B =-,∴A B ={}2.29.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)AB =. 30.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =[1,2).31.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .32.A 【解析】P Q =}{34x x ≤<.33.B 【解析】由题意知{|2}U x N x =∈≥,{|A x N x =∈,所以U A ={|2x N x ∈<≤,选B .34.C 【解析】∵{}{}2|200,2A x x x =-==.∴AB =={}0,2. 35.C 【解析】A B ={|23}x x <<.36.B 【解析】∵21x <,∴11x -<<,∴MN ={}|01x x <≤,故选B . 37.C 【解析】{}|3,3A x x =-<,{}|15R B x x x =->≤或, ∴()R A B ={}|31x x --≤≤.38.D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U A B ={|01}x x <<.39.A 【解析】{|12}A x x =-≤≤,Z B =,故AB ={1,0,1,2}-. 40.C 【解析】{}2,4,7U A =.41.C 【解析】“存在集合C 使得,U A C B C ⊆⊆”⇔“∅=B A ”,选C . 42.B 【解析】A =(-∞,0)∪(2,+∞),∴AB =R ,故选B . 43.A 【解析】{}1,4,9,16B =,∴{}1,4AB =. 44.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =.45.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---, 所以M N {2,1,0}=--,选C .46.A 【解析】由题意{}1,2,3AB =,且{1,2}B =,所以A 中必有3,没有4, {}3,4U B =,故U A B ={}3.47.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.48.A 【解析】A :1->x ,{|1}R A x x =-≤,(){1,2}R A B =--,所以答案选A49.D 【解析】由集合A ,14x <<;所以(1,2]AB =. 50.B 【解析】集合B 中含-1,0,故{}1,0A B =-.51.A 【解析】∵{}2,0S =-,{}0,2T =,∴ST ={}0. 52.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立, 此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立, 此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立, 此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立, 此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.53.D 【解析】()f x 的定义域为M =[-1,1],故R M =(,1)(1,)-∞-⋃+∞,选D54.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.55.C 【解析】[)0,A =+∞,[]2,4B =,∴[0,2)(4,)R AB =+∞. 56.A 【解析】U M ={,,}246. 57.D 【解析】{}3,4,5Q =,∴U Q ={}1,2,6,∴U P Q ={}1,2.58.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D .59.B 【解析】A =(-1,2),故B ⊂≠A ,故选B .60.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=.61.C 【解析】根据题意容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.62.D 【解析】{|1}P x x =< ∴{|1}R P x x =≥,又∵{|1}Q x x =>, ∴R Q P ⊆,故选D .63.B 【解析】{1,3}P MN ==,故P 的子集有4个. 64.C 【解析】因为P M P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.65.D 【解析】因为{1,2,3,4}MN =,所以()()U U M N =()U M N ={5,6}. 66.B 【解析】因为U M N ⊂,所以()()()U U U U N N M N M == =[()]U U N M ={1,3,5}.67.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B =,有2个元素.68.A 【解析】集合{1,0,1}{0,1,2}={0,1}MN =-. 69.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =.70.A 【解析】根据题意可知,N 是M 的真子集,所以MN M =. 71.C 【解析】{}{}{}1,2,32,3,42,3MN ==故选C. 72.D 【解析】{}{}|1,|12R R B x x A B x x ==≥≤≤73.B 【解析】{}22<<x x Q -=,可知B 正确, 74.A 【解析】不等式121log 2x ,得12112201log log ()2x >⎧⎪⎨⎪⎩,得22x , 所以R A =2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭. 75.D 【解析】因为{3}A B =,所以3∈A ,又因为{9}U B A =,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.76.{1,8}【解析】由集合的交运算可得A B ={1,8}.77.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.78.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==,5个元素.79.{1,2,3}【解析】{2}U B ,A (U B )={1,2,3}.80.{}1,3-【解析】=B A {}1,3-.81.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =,{}()7,9U A B =.82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.83.{}6,8【解析】()U A B ={6,8}{2,6,8}{6,8}=.84.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .85.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.。

十年高考真题分类汇编(2010-2019) 数学 专题01 集合

十年高考真题分类汇编(2010-2019)  数学 专题01 集合

十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。

2010年高考试题——数学理(全国卷1)解析版

2010年高考试题——数学理(全国卷1)解析版
zmax 1 2 ( 1) 3 .
O
2
x
Ax y 2 0 2
【 解 析 2】 z x 2 y zMax 1 2 1
y
1x 2
1 2
z






1, 1 是 最 大 ,
(4)已知各项均为3正数的等比数列{ an }, a1a2a3 =5, a7a8a9 =10,则 a4a5a6 =
(A) 5 2 (B) 7 (C) 6
PA PB x1 x0 , y1 x1 x0 , y1 x12 2x1x0 x02 y12
AO PA x1, y1 x1 x0 , y1 0 x12 x1x0 y2 0 x1x0 1
PA PB x12 2x1x0 x02 y12 x12 2 x02 1 x12 1
2 x02
(12)已知在半径为
2
的球面上有
D1
C1
【解析 1】因为 BB1//DD1,所以 B B1 与平面 ACD 1所成角和 DD 1与平 A1
面 ACD1所 成 角 相 等 ,设 DO⊥ 平 面 ACD 1, 由 等 体 积 法 得
DO
B1 C
V V D ACD 1
D1 ACD ,
即1S 3
ACD1
DO
1S 3
ACD
DD1 .设 DD1=a,
做本小题时极易忽视 a 的取值范围,而利用均值不等式求得 a+2b a 2 2 2 ,从而错选 a
A,这也是命题者的用苦良心之处.
【解析 1】因为 f(a)=f(b),所以|lga|=|lgb|,所以 a=b(舍去),或b
1 a
,所以
a+2b=
a

三年高考(2016-2018)数学(理)真题分类解析:专题01-集合

三年高考(2016-2018)数学(理)真题分类解析:专题01-集合

专题01 集合考纲解读明方向1、掌握集合表示方法,能判断元素与集合“属于”关系、集合与集合之间包含关系、2、深刻理解、掌握集合元素,子、交、并、补集概念、熟练掌握集合交、并、补运算和性质、能用韦恩(Venn)图表示集合关系及运算、3、本部分内容在高考试题中多以选择题或填空题形式出现,以函数、不等式等知识为载体,以集合语言和符号语言表示为表现形式,考查数学思想方法、4、本节内容在高考中分值约为5分,属中低档题、命题探究练扩展2018年高考全景展示1.【2018年理北京卷】已知集合A={x||x|<2},B={–2,0,1,2},则A B=A、{0,1}B、{–1,0,1}C、{–2,0,1,2}D、{–1,0,1,2}【答案】A【解析】因此A B=,选A、点睛:认清元素属性,解决集合问题时,认清集合中元素属性(是点集、数集或其他情形)和化简集合是正确求解两个先决条件、2.【2018年理新课标I卷】已知集合,则A、B、C、D、【答案】B点睛:该题考查是有关一元二次不等式解法以及集合补集求解问题,在解题过程中,需要明确一元二次不等式解集形式以及补集中元素特征,从而求得结果、3.【2018年全国卷Ⅲ理】已知集合,,则A 、B 、C 、D 、【答案】C【解析】由集合A 得,所以,故答案选C 、点睛:本题主要考查交集运算,属于基础题。

4.【2018年理数全国卷II 】已知集合,则中元素个数为A 、 9B 、 8C 、 5D 、 4 【答案】A 【解析】、,当时,;当时,;当时,;所以共有9个,选A 、点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别、 5.【2018年理数天津卷】设全集为R ,集合,,则A 、B 、C 、D 、【答案】B 【解析】 由题意可得:,结合交集定义可得:、本题选择B 选项、点睛:本题主要考查交集运算法则,补集运算法则等知识,意在考查学生转化能力和计算求解能力、 6.【2018年江苏卷】已知集合,,那么________.【答案】{1,8}【解析】由题设和交集定义可知:、 点睛:本题考查交集及其运算,考查基础知识,难度较小、2017年高考全景展示1、【2017课标1,理1】已知集合A ={x |x <1},B ={x |},则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .AB =∅【答案】A【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A 、【考点】集合运算,指数运算性质、【名师点睛】集合交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理、 2、【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=、若{}1AB =,则B =( )A 、{}1,3-B 、{}1,0C 、{}1,3D 、{}1,5 【答案】C【考点】 交集运算,元素与集合关系【名师点睛】集合中元素三个特性中互异性对解题影响较大,特别是含有字母集合,在求出字母值后,要注意检验集合中元素是否满足互异性、两个防范:一是不要忽视元素互异性;二是保证运算准确性、3.【2017课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素个数为( ) A .3B .2C .1D .0【答案】B【考点】 交集运算;集合中表示方法、【名师点睛】求集合基本运算时,要认清集合元素属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算两个先决条件、集合中元素三个特性中互异性对解题影响较大,特别是含有字母集合,在求出字母值后,要注意检验集合中元素是否满足互异性、 4、【2017北京,理1】若集合A ={x |–2<x <1},B={x |x <–1或x >3},则A B =( )(A ){x |–2<x <–1} (B ){x |–2<x <3}(C ){x |–1<x <1} (D ){x |1<x <3} 【答案】A【解析】利用数轴可知{}21A B x x =-<<-,故选A 、【考点】集合运算【名师点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示,若集合是无限集合就用描述法表示,注意代表元素是什么,集合交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理、5、【2017浙江,1】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q P ( ) A .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-. 【考点】集合运算【名师点睛】对于集合交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 6、【2017天津,理1】设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =( ) (A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R【答案】B【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B 、【考点】 集合运算【名师点睛】集合交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理、 7、【2017江苏,1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =则实数a 值为 、 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】元素互异性【名师点睛】(1)认清元素属性,解决集合问题时,认清集合中元素属性(是点集、数集或其他情形)和化简集合是正确求解两个先决条件、(2)注意元素互异性、在解决含参数集合问题时,要注意检验集合中元素互异性,否则很可能会因为不满足“互异性”而导致解题错误、 (3)防范空集、在解决有关,A B A B =∅⊆等集合问题时,往往忽略空集情况,一定先考虑∅是否成立,以防漏解、2016年高考全景展示1、【2016课标1,理1】设集合2430A x x x =-+< ,{}230x x ->,则AB = ( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭ (D )3,32⎛⎫ ⎪⎝⎭【答案】D考点:集合交集运算【名师点睛】集合是每年中必考题,一般以基础题形式出现,属得分题、解决此类问题一般要把参与运算集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间运算,常借助数轴进行运算、2、【2016新课标3理数】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则ST =( )(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) 【答案】D【技巧点拨】研究集合关系,处理集合交、并、补运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散数集、抽象集合间关系及运算,可借助韦恩图,而对连续集合间运算及关系,可借助数轴直观性,进行合理转化.3、【2016新课标2理数】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C【解析】试题分析:集合B {x |1x 2,x Z}{0,1}=-<<∈=,而A {1,2,3}=,所以A B {0,1,2,3}=,故选C 、考点: 集合运算、【名师点睛】集合交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理、4、 【2016山东理数】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)-(B )(0,1)(C )(1,)-+∞(D )(0,)+∞【答案】C 【解析】试题分析:}0|{>=y y A ,}11|{<<-=x x B ,则AB =∞(-1,+),选C 、 考点:1、指数函数性质;2、解不等式;3、及集合运算、【名师点睛】本题主要考查集合并集、补集,是一道基础题目、从历年题目看,集合基本运算,是必考考点,也是考生必定得分题目之一、本题与求函数值域、解不等式等相结合,增大了考查覆盖面、5、【2016浙江理数】已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð( ) A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B 【解析】试题分析:根据补集运算得{}[](]24(2,2),()(2,2)1,32,3=<=-∴=-=-R R Q x x P Q 痧.故选B .考点:1、一元二次不等式;2、集合并集、补集.【易错点睛】解一元二次不等式时,2x 系数一定要保证为正数,若2x 系数是负数,一定要化为正数,否则很容易出错.6、【2016年北京理数】已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则AB =( )A 、{0,1}B 、{0,1,2}C 、{1,0,1}-D 、{1,0,1,2}- 【答案】C【解析】由}22|{<<-=x x A ,得}1,0,1{-=B A ,故选C 、 考点:集合交集、【名师点睛】1. 首先要弄清构成集合元素是什么(即元素意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同.2.集合中元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素个数时,以及在含参集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间运算更简捷、直观.对离散数集间运算或抽象集合间运算,可借助V enn 图实施,对连续数集间运算,常利用数轴进行,对点集间运算,则通过坐标平面内图形求解,这在本质上是数形结合思想体现和运用.4.空集是不含任何元素集合,在未明确说明一个集合非空情况下,要考虑集合为空集可能.另外,不可忽视空集是任何元素子集.7、【2016年四川理数】设集合{|22}A x x =-≤≤,Z 为整数集,则A Z 中元素个数是( )(A )3 (B )4 (C )5 (D )6 【答案】C【解析】由题意,{2,1,0,1,2}AZ =--,故其中元素个数为5,选C 、考点:集合中交集运算、【名师点睛】集合概念及运算一直是热点,几乎是每年必考内容,属于容易题、一般是结合不等式,函数定义域值域考查,解题关键是结合韦恩图或数轴解答、 8.【2016天津理数】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =( )(A ){1}(B ){4}(C ){1,3}(D ){1,4}【答案】D 【解析】试题分析:{1,4,7,10},A B {1,4}.B ==选D 、 考点:集合运算【名师点睛】本题重点考查集合运算,容易出错地方是审错题意,误求并集,属于基本题,难点系数较小、一要注意培养良好答题习惯,避免出现粗心错误,二是明确集合交集考查立足于元素互异性,做到不重不漏、9、【2016江苏卷】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ____________、【答案】{}1,2- 【解析】 试题分析:{1,2,3,6}{|23}{1,2}AB x x =--<<=-考点:集合运算【名师点睛】本题重点考查集合运算,容易出错地方是审错题意,属于基本题,难点系数较小、一要注意培养良好答题习惯,避免出现粗心错误,二是明确江苏对于集合题考查立足于列举法,强调对集合运算有关概念及法则理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一 集合与常用逻辑用语第一讲 集合一、选择题1.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB = A .{0,1} B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}2.(2018全国卷Ⅰ)已知集合2{20}=-->A x x x ,则A =R ðA .{12}-<<x xB .{12}-≤≤x xC .{|1}{|2}<->x x x xD .{|1}{|2}-≤≥x x x x3.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则AB =A .{0}B .{1}C .{1,2}D .{0,1,2} 4.(2018天津)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<5.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A ðA .∅B .{1,3}C .{2,4,5}D .{1,2,3,4,5}6.(2018全国卷Ⅱ)已知集合22{(,)|3}=+∈∈Z Z ≤,,A x y x y x y ,则A 中元素的个数为A .9B .8C .5D .47.(2017新课标Ⅰ)已知集合{|1}A x x =<,{|31}x B x =<,则A .{|0}AB x x =< B .A B R =C .{|1}A B x x =>D .A B =∅8.(2017新课标Ⅱ)设集合{1,2,4}A =,2{|40}B x x x m =-+=,若AB ={1},则B =A .{1,3}-B .{1,0}C .{1,3}D .{1,5} 9.(2017新课标Ⅲ)已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则A B 中元素的个数为A .3B .2C .1D .010.(2017山东)设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B = A .(1,2) B .(1,2] C .(2,1)- D .[2,1)-11.(2017天津)设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤12.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q = A .(1,2)- B .(0,1) C .(1,0)- D .(1,2)13.(2017北京)若集合{|21}A x x =-<<,{|13}B x x x =<->或,则A B = A .{|21}x x -<<- B .{|23}x x -<<C .{|11}x x -<<D .{|13}x x <<14.(2016年北京)已知集合{|||2}A x x =<,{1,0,1,2,3}B =-,则A B =A.{0,1}B.{0,1,2}C.{1,0,1}-D.{1,0,1,2}-15.(2016年山东)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B = A .(1,1)- B .(0,1) C .(1,)-+∞ D .(0,)+∞16.(2016年天津)已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B = A .{1} B .{4} C .{1,3}D .{1,4} 17.(2016年全国I)设集合2{|430}A x x x =-+<,{|230}B x x =->,则=A B A .3(3,)2-- B .3(3,)2- C .3(1,)2 D .3(,3)218.(2016年全国II)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =A .{1}B .{12}, C .{0123},,, D .{10123}-,,,,19.(2016年全国III )设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=> ,则S I T =A .[2,3]B .(-∞ ,2]U [3,+∞)C .[3,+∞)D .(0,2]U [3,+∞)20.(2015新课标2)已知集合{2,1,0,1,2}A =--,{|(1)(2)0}B x x x =-+<,则A B = A .{1,0}- B .{0,1} C .{1,0,1}- D .{0,1,2}21.(2015浙江)已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]22.(2015四川)设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则AB = A .{|13}x x -<< B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<23.(2015福建)若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于A .{}1-B .{}1C .{}1,1-D .∅24.(2015重庆)已知集合{}1,2,3A =,{}2,3B =,则A .A =B B .A B =∅∩C .A B ÜD .B A Ü25.(2015湖南)设,A B 是两个集合,则“A B A =”是“A B ⊆”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件26.(2015广东)若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N =A .{}1,4B .{}1,4--C .{}0D .∅27.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞28.(2015天津)已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A B =ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,829.(2015湖北)已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3030.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B ⋂=A .[-2, -1]B .[-1,1]C .[-1,2)D .[1,2)31.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N ⋂=A .{1}B .{2}C .{0,1}D .{1,2}32.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B ⋂=A . ∅B .{}2C .{}0D .{}2-33.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA . [0,2]B .(1,3)C . [1,3)D . (1,4)34.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则AB =A .(0,2]B .(1,2)C .[1,2)D .(1,4) 35.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则MN = A .{0,1} B .{1,0,2}- C .{1,0,1,2}- D .{1,0,1}-36.(2014福建)若集合}{}{24,3,P x x Q x x =≤<=≥则P Q ⋂等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤37.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U A .∅ B . }2{ C . }5{ D . }5,2{38.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则A B =A .{0}B .{0,1}C .{0,2}D .{0,1,2}39.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =A .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<40.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则MN = A .[0,1] B .[0,1) C .(0,1] D .(0,1)41.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R AC B = A .(3,0)- B .(3,1)-- C .(3,1]--D .(3,3)-42.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B =A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<43.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}-44.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A =ðA .{1,3,5,6}B .{2,3,7}C .{2,4,7}D . {2,5,7} 45.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆ð”是“∅=B A ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件46.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 47.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =A .{}14,B .{}23,C .{}916,D .{}12, 48.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N =A .{}0,1,2B .{}1,0,1,2-C .{}1,0,2,3-D .{}0,1,2,3 49.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---50.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =ð,{1,2}B =,则U A B =ðA .{3}B .{4}C .{3,4}D .∅51.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .952.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,153.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 54.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-55.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-56.(2013广东)设整数4n ≥,集合{}1,2,3,,X n =,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉57.(2013陕西)设全集为R , 函数()f x M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-58.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a = A .4 B .2 C .0 D .0或459.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C . {}|024x x x ≤<>或D .{}|024x x x <≤≥或60.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U61.(2012浙江)设全集{}1,2,3,4,5,6U = ,设集合{}1,2,3,4P = ,{}3,4,5Q =,则U P Q ⋂ð=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,262.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =C .MN N = D .{2}M N = 63.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB Ü B .B A ÜC .A B =D .AB =∅ 64.(2012安徽)设集合A={|3213x x --剟},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A .(1,2)B .[1,2]C .[ 1,2)D .(1,2 ]65.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5 B.4 C.3 D.266.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆67.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个68.(2011北京)已知全集U R =,集合2{|1}P x x =≤,那么U C PA .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)69.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂70.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}71.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .172.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}73.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若PM P =,则a 的取值范围是A .(-∞,-1]B .[1, +∞)C .[-1,1]D .(-∞,-1] [1,+∞)74.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]75.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N MA .MB .NC .ID .∅76.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =D .{}1,4M N =77.(2010陕西)集合A={}|12x x -≤≤,B={}|1x x <,则()R A C B ⋂=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤78.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆ðD .R Q P ⊆ð79.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð A .2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭B .2⎛⎫+∞ ⎪ ⎪⎝⎭C .2(,0][,)-∞+∞D .)+∞ 80.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}A B =,{9}U B A =ð,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题81.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = . 82.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}A B =,则实数a 的值为_.83.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合AB 中元素的个数为__. 84.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .85.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =,则()U C A B ⋂= .86.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.87.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B ð= .88.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.89.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}AB =,则实数a =__. 三、解答题90.(2018北京)设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记(,)M αβ= 111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.专题一 集合与常用逻辑用语第一讲 集合答案部分1.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}A B =,故选A .2.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x ð{|12}=-≤≤x x ,故选B .3.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =.故选C .4.B 【解析】因为{1}B x x =≥,所以{|1}R B x x =<ð,因为{02}A x x =<<,所以()=R I A B ð{|01}x x <<,故选B .5.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A ð{2,4,5}.故选C .6.A 【解析】通解 由223+≤x y知,xy又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .7.A 【解析】∵{|0}B x x =<,∴{|0}AB x x =<,选A . 8.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .9.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B .10.D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D.11.B 【解析】(){1246}[15]{124}A B C =-=,,,,,, ,选B.12.A 【解析】由题意可知{|12}PQ x x =-<<,选A . 13.A 【解析】{}21A B x x =-<<-,故选A.14.C 【解析】因为{|||2}{|22}A x x x x =<=-<<,所以{1,0,1}A B =-. 15.C 【解析】集合A 表示函数2x y =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .16.D 【解析】由题意{1,4,7,10}B =,所以{1,4}AB =.17.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2AB =. 选D . 18.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,, ∴{}01B =,,∴{}0123A B =,,,,故选C .19.D 【解析】(,2][3,)S =-∞+∞,所以(0,2][3,)S T =+∞,故选D .20.A 【解析】由于{|21}B x x =-<<,所以{1,0}AB =-. 21.C 【解析】{|02}R P x x =<<ð,故(){|1<<2}R P Q=x x ð.22.A 【解析】{|12}A x x =-<<,{|13}B x x =<<,∴{|13}A B x x =-<<. 23.C 【解析】由已知得{},1,,1A i i =--,故A B ={}1,1-,故选C .24.D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D.25.C 【解析】∵AB A =,得A B Í,反之,若A B Í, 则A B A =;故“A B A =”是“A B ⊆”的充要条件.26.D 【解析】 由(4)(1)0x x ++=得4x =-或1x =-,得{1,4}M =--.由(4)(1)0x x --= 得4x =或1x =,得{1,4}N =.显然=∅M N .27.A 【解析】{}{}20,1x x x M ===,{}{}lg 001x x x x N =≤=<≤, 所以[]0,1M N =,故选A .28.A 【解析】{2,5,8}U B =ð,所以{2,5}U AB =ð,故选A. 29.C 【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.30.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].31.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.32.B 【解析】∵{}1,2B =-,∴A B ⋂={}233.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B ⋂=.34.C 【解析】∵(0,2)A =,[1,4]B =,所以A B =[1,2).35.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C .36.A 【解析】P Q ⋂=}{34x x ≤<37.B 【解析】由题意知{|2}U x N x =∈≥,{|A x N x =∈,所以=A C U {|2x N x ∈<≤,选B .38.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =={}0,2.39.C 【解析】A B ={|23}x x <<40.B 【解析】∵21x <,∴11x -<<,∴MN ={}|01x x <≤,故选B . 41.C 【解析】{}|3,3A x x =-<,{}C |15R B x x x =->≤或,∴()R A C B ={}|31x x --≤≤42.D 【解析】由已知得,{=0AB x x ≤或}1x ≥,故()UC A B ={|01}x x <<. 43.A 【解析】{|12}A x x =-≤≤,B Z =,故A B ⋂={1,0,1,2}-44.C 【解析】{}2,4,7U A =ð.45.C 【解析】“存在集合C 使得,U A C B C ⊆⊆ð”⇔“∅=B A ”,选C . 46.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .47.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=48.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =49.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,选C.50.A 【解析】由题意{}1,2,3A B =,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故U A B =ð{}3.51.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.52.A 【解析】A :1->x ,}1|{-≤=x x A C R ,}2,1{)(--=B A C R ,所以答案选A53.D 【解析】由集合A ,14x <<;所以(1,2]A B ⋂=54.B 【解析】集合B 中含-1,0,故{}1,0A B =-55.A 【解析】∵{}2,0S =-,{}0,2T =,∴ST ={}0. 56.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立,此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立,此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈.综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈.57.D 【解析】()f x 的定义域为M =[-1,1],故R M ð=(,1)(1,)-∞-⋃+∞,选D .58.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =.59.C 【解析】[)0,A =+∞,[]2,4B =,[)()0,24,R AC B ∴=+∞. 60.A 【解析】U C M ={,,}24661.D 【解析】{}3,4,5Q =,∴U Q ð={}1,2,6,∴ U P Q ⋂ð={}1,2. 62.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D63.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.64.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=65.C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素.66.D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D .67.B 【解析】{1,3}P M N ==,故P 的子集有4个.68.D 【解析】因为集合[1,1]P =-,所以(,1)(1,)U C P =-∞-+∞. 69.D 【解析】因为{1,2,3,4}M N =,所以()()n n C M C N ⋂=()U C M N ={5,6}.70.B 【解析】因为U C M N ⊂,所以()()()U U U U N NC M C C N C M == =[()]U U N M 痧={1,3,5}.71.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =, 这时1y = 或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.72.A 【解析】集合{1,0,1}{0,1,2}={0,1}MN =-. 73.C 【解析】因为P M P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.74.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复<21x <,所以(1,1)N =-,则[0,1]M N =.75.A 【解析】根据题意可知,N 是M 的真子集,所以MN M =. 76.C 【解析】{}{}{}1,2,32,3,42,3M N ==故选C.77.D 【解析】{}{}|1,|12R R B x x A B x x =≥⋂=≤≤痧78.B 【解析】{}22<<x x Q -=,可知B 正确, 79.A 【解析】不等式121log 2x …,得12112201log log ()2x >⎧⎪⎨⎪⎩…,得2x …, 所以R A ð=2(,0],⎛⎫-∞+∞ ⎪ ⎪⎝⎭. 80.D 【解析】因为{3}A B =,所以3∈A ,又因为{9}U B A =ð,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解.81.{1,8}【解析】由集合的交运算可得A B ={1,8}.82.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.83.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==,5个元素.84.{}1,3-【解析】=B A {}1,3-85.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10U A =ð,{}()7,9U A B ⋂=ð.86.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6.87.{}6,8【解析】()U A B ð={6,8}{2,6,8}{6,8}=.88.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j (j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .89.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.90.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=, 1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件, 所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅,11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素. 所以B 中元素的个数不超过1n +. 取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-). 令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件. 故B 是一个满足条件且元素个数最多的集合.。

相关文档
最新文档