永宁兼并重组机电设备目录修改版

合集下载

高耗能设备管理制度

高耗能设备管理制度

高耗能设备管理制度1目的为加强我公司耗能设备管理,提高能源利用效率,促进节能降耗,降低生产成本,逐步淘汰高耗能设备,全面实现企业节能管理和可持续发展目标,根据《工业和信息化部高耗能落后机电设备(产品)淘汰目录》,特制定本制度。

2适用范围本制度适用于盐城市联鑫钢铁有限公司各单位。

3术语与引用标准3.1术语本制度所称高耗能设备,是指我公司能源消耗量大,并具有较大节能空间的电动机、变压器、锅炉、窑炉、压缩机、风机、泵类等设备。

3.2引用标准高耗能落后机电设备(产品)淘汰目录(第一批),(见附件一)。

高耗能落后机电设备(产品)淘汰目录(第二批),(见附件二)。

高耗能落后机电设备(产品)淘汰目录(第三批),(见附件三)。

高耗能落后机电设备(产品)淘汰目录(第四批),(见附件四)。

4职责4.1装备部负责各分厂高耗能设备监督、检查、考核工作;负责建立高耗能设备总台账;负责各分厂上报的高耗能设备报废鉴定并提出处置建议。

4.2 能源环保部负责耗能设备能效限定值及能效等级的测定;负责对外申报节能推广财政补贴工作。

4.3采购部:负责采购符合国家高效能标准和安全技术规范要求的设备和备件。

4.4项目部:新建、改建和扩建工程,各分厂项目部是主体部门,在签订技术协议时要对设备能效进行要求,要符合国家高效能标准和安全技术规范,并对设备安装质量、设备验收结果负责。

4.5各单位负责根据本制度制订本单位高耗能设备淘汰方案,内容包括:实现目标、措施、时间节点、责任人等;负责建立健全本单位高耗能设备台账,并及时更新(见附表五);负责本单位高耗能设备的淘汰计划实施工作;负责制订本单位各项设备节能改造计划和实施工作。

5高耗能设备的管理5.1各分厂设备管理部门应当按照国家有关法律、法规、设备安全技术规范和标准的的要求,确保设备符合能效指标要求。

5.2对在用国家明令淘汰的高耗能设备,各分厂应当按计划和分批次推进原则,在规定的期限内给予改造或者更换,到期未改造或者未更换的,不得继续使用。

矿井兼并重组整合项目初步设计(修改版)

矿井兼并重组整合项目初步设计(修改版)

目录1总论................................................................................................. 错误!未定义书签。

1.1概述 ............................................................................................... 错误!未定义书签。

1.2项目可行性研究结论.................................................................... 错误!未定义书签。

2产品方案及生产规模 ............................................................................. 错误!未定义书签。

2.1政策符合性.................................................................................... 错误!未定义书签。

2.2生产规模和产品方案.................................................................... 错误!未定义书签。

3工艺技术................................................................................................. 错误!未定义书签。

3.1工艺技术方案选择........................................................................ 错误!未定义书签。

3.2工艺流程和消耗定额.................................................................... 错误!未定义书签。

1-s2.0-S0263436814001590-main

1-s2.0-S0263436814001590-main

Effect of rare earth elements on the consolidation behavior and microstructure of tungsten alloysMingyue Zhao a ,Zhangjian Zhou a ,⁎,Qingming Ding a ,Ming Zhong a ,Kameel Arshad ba School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing 100083,China bSchool of Physics and Nuclear Energy Engineering,Beihang University,Beijing 100191,Chinaa b s t r a c ta r t i c l e i n f o Article history:Received 11February 2014Available online 23July 2014Keywords:Rare earth element Tungsten alloyConsolidation behavior MicrostructureThe effects of rare earth elements (Y 2O 3,Y and La)on the consolidation behavior,microstructure and mechanical properties of tungsten alloys were investigated in this work.The starting powders were mechanical alloyed (MA)and then consolidated by spark plasma sintering (SPS).It was found that Y doping was bene ficial to obtain fully dense tungsten alloys with more re fined grains as compared to any other rare earth elements.The maximum values of Vickers microhardness and bending strength obtained from W –0.5wt.%Y alloy reached up to 614.4HV 0.2and 701.0MPa,respectively.©2014Elsevier Ltd.All rights reserved.IntroductionTungsten is a promising candidate material for high temperature applications due to its attractive properties,such as high melting point,high conductivity,low thermal expansion coef ficients and low sputtering yield [1].However,a major limitation of its use is the inherently high ductile –brittle transition temperature (DBTT)and low recrystallization temperature.Fine grained tungsten materials have shown improved properties in terms of reduced brittleness and improved toughness and strength [1,2].However,the improved mechanical properties will be deteriorated when exposed to high temperatures for long time and when the service temperature is higher than the recrystallization temperature of pure tungsten.Recent studies suggested that the dispersion of high temperature oxide nanoparticles,such as La 2O 3and Y 2O 3,will not only inhibit the grain growth of W during the consolidation but also stabilize the microstructure when exposed to higher temperature [3,4].It is well known that,the impurities,especially for oxygen,have det-rimental in fluence on the sinterability of tungsten powders and make tungsten materials embrittlement.Thus adding rare earth elements in the metallic state instead of the oxidic state should be better for fabrica-tion of high performance tungsten alloys,due to the high af finity of rare earth elements with oxygen.A recent research conducted by L.Veleva et al.[5]found that the relative density of W –(0.3–2)wt.%Y appeared higher than that of W –(0.3–2)wt.%Y 2O 3,however,the microhardnessappeared always lower than that of W –(0.3–2)wt.%Y 2O 3.From the viewpoint of oxygen absorption,it is suggested that La will be better than Y when used as alloying element for fabrication of W [6].However there are almost no reports on W –La alloy and their comparison with W –Y alloy.It will be interesting and important to investigate the effects of different rare earth elements on the densi fication of W and their mechanical properties.This is the motivation of this work.In this study the effect of rare earth elements,including Y 2O 3,Y and La on the consolidation behavior of W under the same sintering condi-tion was investigated.The microstructural evolution and mechanical properties of different rare earth tungsten materials were examined and compared.Experimental proceduresPowders of commercial pure W (with an average particle size of 2.0μm and a purity of 99.9%),rare earth element of Y or La (with an av-erage particle size of 48μm and a purity of 99.9%),and rare earth oxide of Y 2O 3(with an average particle size of 30nm and a purity of 99.9%)were used as starting materials.The mixture powders of W –0.5wt.%Y 2O 3(named as WYO),W –0.5wt.%Y (named as WY)or W –0.5wt.%La (named as WL)were mechanical alloyed (MA)in a planetary ball mill,respectively.The MA parameters can be found in our previous work [7,8].Then,the MA treated powders were placed into graphite tool in glove box and sintered by spark plasma sintering (SPS)in vacuum.Fig.1shows the temperature and pressure pro file of SPS as a function of time.In order to get fully dense bulk materials by suppress-ing the pore-boundary separation,the samples were first sintered at 1373K for 2min and then sintered at 1873K according to [9].Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23⁎Corresponding author at:Laboratory of Special Ceramics and Powder Metallurgy,School of Materials Science and Engineering,University of Science &Technology Beijing,Beijing 100083,PR China.Tel./fax:+861062334951.E-mail address:zhouzhj@ (Z.Zhou)./10.1016/j.ijrmhm.2014.07.0140263-4368/©2014Elsevier Ltd.All rightsreserved.Contents lists available at ScienceDirectInt.Journal of Refractory Metals and Hard Materialsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m/l o c a t e /I J R M H MThe shrinkage of the specimens was continuously monitored by the displacement of the punch rod.The density of the compacts was measured by Archimedes method.A field emission scanning electron microscope (FE-SEM)equipped with Energy-dispersive X-ray Spectros-copy (EDS)and Scanning electron microscope (SEM)were employed to investigate the microstructural features,i.e.,the element distribution,and the size and morphology of the grains and the pores of the samples.Moreover,XRD was used to determine the phase and X-ray diffraction analysis was made by the Rietveld method using the Full prof program [10].The average crystallite size as well as the internal stress of the MA treated powders were determined from the diffraction peak widths taking into account the diffractometer resolution function.Vickers mi-crohardness was measured at room temperature by applying a load of 1.96N for 15s.Three point bending tests were conducted on specimens with dimensions of 2mm ×3mm ×18mm with a span of 13.1mm and a crosshead speed of 0.5mm/min.The thermal behavior of the MA treated powders in the range 373–1723K was investigated by differen-tial scanning calorimetry (DSC)at a heating rate of 10K/min in flowing pure Ar.Results and discussion Consolidation behaviorFig.2compares the consolidation behavior of all tungsten alloys as a function of temperature.It can be clearly seen that the displacement of WY alloy is similar with that of WL alloy,and shows quite different ten-dency from that of WYO alloy,especially at the sintering temperature of 1373K.For WY and WL alloys,the displacement decreased by 0.6mm between 993K and 1373K due to the thermal expansion of graphite punch rods and the matrix overweighing the contribution of pre-compaction,and continued to decrease at the sintering temperature of 1373K.For WYO alloy,the displacement experiences a slower down-ward trend between 993K and 1373K and a weak upward trend at 1373K.After that,the displacement of WY sees a similar trend with that of WYO.It was found that the WY alloy experienced a substantial decrease in the displacement while the WYO alloy experienced a slight increase at the temperature of 1373K.This result is likely to arise from the formation of a higher volume of Y 2O 3due to the oxidation of Y ele-ment in the WY system.Chemical analysis of the consolidated compacts was performed by the HORIBA EMIA-820V and LECO TCH600devices to measure the C and O contents,respectively.It shows that the C contents were about 240ppm for various tungsten materials fabricated under the same conditions.The amount of oxygen content which existed in MA treated WY powders was 0.4808wt.%,which is enough for the reactionwith added Y particles to form Y 2O 3.Fig.3shows the DSC curve of the MA treated WY powders in the range 373–1723K.A weak exothermic peak at 1500K with an onset temperature of 1400K is found.It probably corresponds to the oxidation of the metallic Y with the residual oxygen in a hermetically sealed pan,which also illustrates that the remaining Y particles are likely to start to react with oxygen around 1373K during SPS.Moreover,a sharp strong and a small exothermic peak can be clear-ly seen at 1003K and 1173K,respectively.According to [11,12],these peaks indicate that the strain relief took place during the heating of MA treated powders.Similar results on the oxygen analysis and the thermal behavior are also found for MA treated WL powders.Fig.4shows the milling and sintering effect on the XRD patterns of the investigated samples.It is obvious that the diffraction peaks are broadened after milling,which was caused by the re finement of powder particles and a high level of internal strain in the W grains fabricated by the MA process.After sintering,the diffraction peaks become narrow again due to the grain growth and strain relief.The quantitative data on such grain growth and strain relief can be obtained by the compari-son of lattice parameters after each stage of the powder processing (Table 1).It should be noted that the XRD patterns for all samples after milling exhibit a single BCC phase,suggesting that the rare earth elements were dissolved into the W lattice.This solid solutionduringFig.1.The temperature and pressure pro file as a function of time for the sintering experiments of rare earth tungstenalloys.Fig.2.The real time sintering curves of all samples without removing the contribution of the thermal expansion of the graphite tool andmatrix.Fig.3.DSC curve of the MA treated WY powder.The peak temperatures of thermally induced transformation of the powders are indicated by arrows.20M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23the MA process can be further demonstrated by the lattice parameter increase of the MA treated powders compared with that of the starting pure tungsten powder (Table 1).Microstructure observationMicrostructure of the fracture surfacesThe fracture surfaces of WY,WYO and WL samples are presented in Fig.5.It can be clearly seen that the rare earth elements in fluence the grain re finement signi ficantly.Fig.6shows the grain size distribution which was determined from the SEM micrographs of fracture surfaces.For each image,about 130grains were chosen randomly to eliminate the bias of grain counting.The grain size distributions of WL and WYO alloys are in the range from 1.6to 8.0μm and from 0.8to 4.4μm,respec-tively,and their average grain sizes are 2.46μm and 4.62μm,respective-ly;while,the average grain size of WY alloy is only 1.10μm,which is much smaller than that of WL and WYO alloys.The grain size distribu-tion of WY alloy is in the range from 0.3to 2.0μm,which is much nar-row as compared with that of WL and WYO alloys.Moreover,it is worth noting that the average grain size acquired from the SEM images of fracture surfaces has a remarkable consistency with those calculated by the Rietveld method using the Full prof program,as shown in Table 1.More careful analysis of Fig.6reveals that the WY alloy is denser than WYO and WL alloys.Many big worm-like pores (indicated by yel-low arrows)and small pores (indicated by white dot circles)can be found for WYO and WL alloys on the surface of individual tungstengrains and in the triple junctions.It is easy to learn that the tungsten grains with different additions grew up in a different speed (WL N WYO N WY)according to the average grain size of each stage of powder processing.Besides,the grain growth of pure tungsten or ODS W-based materials sintered by SPS starts between 1373K and 1773K according to literature [9,13].Under a certain pressure between 1773K and 1873K in our present work,the smaller the grain size,the easier the re-arrangement and plastic deformation,and thus higher shrinkage can be achieved.During the holding time at sintering temperature (1873K),grain growth took place simultaneously with further densi fication,which was achieved dominantly by more homogeneous interfacial atomic diffusion but with minimized involvement of surface diffusion according to [9].Meanwhile,the worm-like pores could be formed if the holding time at sintering temperature of 1873K was not enough for W –0.5La alloy having a large grain size.The microstructure of chemically etched surfacesThe microstructures of chemically etched surface are illustrated in Fig.7.EDS analysis indicated that the black phases which existed in WYO,WY and WL alloys are rare earth oxides (indicated by blue ar-rows)and the dark gray phases are pores (indicated by red arrows).For WY alloy (Fig.7b),pores can hardly be found,which is consistent with the microstructure observation of the fracture surface.Besides,fine Y 2O 3particles are distributed uniformly along grain boundaries of WY alloy;while for WYO and WL alloys (Fig.7a and c),many micro-scale pores are found in triple junctions and tungsten grain boundaries,especially for WL alloy.Moreover,the FESEM images shown in Fig.7a and c reveal that the oxide particles are irregular and not distributed uniformly.In the XRD measurements performed on the WL alloy (Fig.4and Table 1),a weak diffraction peak of La 2O 3phase and lattice parameter decrease of sintered WL alloy are observed,which also suggest that the La particles separate from tungsten grains and become micro-scale La 2O 3during sintering.The densi fication analysisTable 2shows the relative density of the rare earth tungsten alloys.The relative density of WY reaches 99.4%,which is much higherthanFig.4.Effect of milling and SPS sintering on the XRD patterns of rare earth tungsten alloys.(a)MA treated powders,and (b)sintered compacts.Table 1Lattice parameters after each stage of the powder processing and the average grain size ac-quired from the SEM images of fracture surfaces.SamplePowder Sintered compact Crystallite size (nm)lattice strain (%)a (W:nm)Grain size (nm)Lattice strain (%)Grain size (nm)—SEM WY 8050.3510.31646215220.0701100WL 4100.3010.31659956650.0414620WYO 6200.3860.31653424820.0342460W11740.0450.31604021M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23the WYO (92.1%)and WL (88.3%).This result is agreeable with the mi-crostructure observation.Owing to the grain boundary cleaning effect and sintering enhancing effect of Y particles during SPS,Y doping is ben-e ficial to achieve fully dense tungsten alloys than Y 2O 3doping.On the other hand,the well-distributed fine Y 2O 3dispersions which existed in WY alloy play a prominent role in the re finement of tungsten grains,thus dense fine grained sample can be obtained under the present sintering process.Kim et al.[14]reported that the second phases can act as obstacles in inhibiting the grain growth only in solid phase sintering.Owing to the formation of metallic La liquid phase at 1193Kaccording to the phase diagram Mo –La and then the formation of micro-scale and non-uniformly distributed La 2O 3dispersions as a result of oxidation,the grain growth speed of WL alloy is much higher than that of WYO and WY alloys.Thereby,the relative density of WL alloy is lower than that of WYO alloy and WY alloy even though La particles can exert cleaning effect on the tungsten grain boundaries.Besides,in accordance with literatures [4,15,16],the internal energy originating from the signi ficant strain of the particles could serve as a part of sintering driving force.As shown in Table 1,the lattice strain of WL alloy is 0.301%,lower than that of WYO (0.386%)and WY (0.351%),which is another reason for the lower relative density of WL alloy.The basic mechanical propertiesVickers microhardness and bending strength of the rare earth tung-sten alloys were also listed in Table 2.Of all the three kinds of tungsten materials,the hardness of WY sample is 614.4HV 0.2,much higher than that of WYO (445.2HV 0.2)and WL (303HV 0.2).The lower hardness of WYO and WL alloys originates from the lower relative density and coarse grain size,as shown in Figs.5and 6.Moreover,WY exhibits the highest bending strength (701MPa)among these tungsten alloys,which is 11%and 88%higher than that of WYO and WL alloys.As shown in Fig.5,the remaining pores,including worm-like pores and small pores,reduce the contact area of tungsten grains,thus the bending strength of WYO and WL to some extent decreases.Besides,the coarse grain size (Fig.6)and inhomogeneous dispersions of oxide particles (Fig.7)of WYO and WL alloys are also the reason for their low bending strength.ConclusionsTungsten alloys were successfully fabricated by adding different rare earth elements to W matrix.The effect of dispersing rare earthelementsFig.5.SEM micrographs of fracture surfaces for:(a)WYO,(b)WY,and (c)WL;the yellow arrows denote worm-like pores existed on the surface of individual grains,and the white dot circles denote pores located in the triplejunctions.Fig.6.Histograms of the grain size distributions for WYO,WY and WL alloys.22M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23on the microstructure evolution and mechanical properties of the tung-sten alloys can be concluded as follows:(1).The relative density of WY,WYO and WL alloy reached 99.4%,92.1%and 88.3%,respectively.The Y doping was bene ficial toobtain fully dense tungsten alloys as compared with Y 2O 3doping and La doping because the finely distributed second phase parti-cles suppressed the tungsten grain growth and thus ensured the suf ficient grain boundary volume available for densi fication by grain boundary diffusion.The analysis of consolidation behavior and thermal behavior of MA treated WY or WL powders revealed that the added Y or La particles were likely to start to react with oxygen around 1373K during SPS.(2).The average grain sizes of WY,WYO and WL alloys were 1.10μm,2.46μm and 4.62μm,respectively.The Y doping was bene ficial to obtain tungsten alloys with more re fined tungsten grains as com-pared with Y 2O 3doping and La doping.(3).Of all the three kinds of rare earth tungsten alloys,WY alloy ex-hibited the highest mechanical properties at room temperature.The maximum values of Vickers microhardness and bending strength reached up to 614.4HV 0.2and 701.0MPa,respectively.AcknowledgmentsThe authors would like to express their thanks for the financial support of the National Natural Science Foundation of China under grant No.50634060.References[1]Zhang Y,Ganeev AV,Wang JT,Liu JQ,Alexandrov IV.Observations on the ductile-to-brittle transition in ultra fine-grained tungsten of commercial purity.Mater Sci Eng A 2009;503:37–40.[2]Kitsunai Y,Kurishita H,Kayano H,Hiraoka Y,Igarashi T,Takida T.Microstructure andimpact properties of ultra-fine grained tungsten alloys dispersed with TiC.J Nucl Mater 1999;271–272:423–8.[3]Kim Y,Lee KH,Kim E,Cheong D,Hong SH.Fabrication of high temperature oxidesdispersion strengthened tungsten composites by spark plasma sintering process.J Refract Met Hard Mater 2009;5:842–6.[4]Wang HT,Fang ZZ,Hwang KS,Zhang HB,Siddle D.Sinter-ability of nanocrystallinetungsten powder.Int J Refract Met Hard Mater 2010;28:312–6.[5]Veleva L,Oksiuta Z,Vogt U,Baluc N.Sintering and characterization of W –Y andW –Y 2O 3materials.Fusion Eng Des 2009;84:1920–4.[6]Brown PH,Rathjen AH,Graham RD,Tribe DE.Chapter 92rare earth elements inbiological systems.Handbook on the physics and chemistry of rare earths;1990.p.423–52.[7]Zhou ZJ,Tan J,Qu DD,Pintsuk G,Rödig M,Linke J.Basic characterization of oxidedispersion strengthened fine-grained tungsten based materials fabricated by me-chanical alloying and spark plasma sintering.J Nucl Mater 2012;431:202–5.[8]Tan J,Zhou ZJ,Zhu XP,Guo SQ,Qu DD,Lei MK,et al.Evaluation of ultra-fine grainedtungsten under transient high heat flux by high-intensity pulsed ion beam.Trans Nonferrous Metals Soc China 2012;22:1081–5.[9]Ma J,Zhang JZ,Liu W,Shen ZJ.Suppressing pore-boundary separation during sparkplasma sintering of tungsten.J Nucl Mater 2013;438:199–203.[10]Rodríguez-Carvajal J.Recent advances in magnetic structure determination byneutron powder diffraction +FullProf.Physica B 1993;192:55–6.[11]Muñoz A,Monge MA,Savoini B,Rabanal ME,Garces G,Pareja 2O 3-reinforced Wand W –V alloys produced by hot isostatic pressing.J Nucl Mater 2011;417:508–11.[12]Maweja K,Phasha MJ,Choenyane LJ.Thermal stability and magnetic saturation ofannealed nickel –tungsten and tungsten milled powders.J Refract Met Hard Mater 2012;30:78–84.[13]Yar MA,Wahlberg S,Bergqvist H,Salem HG,Johnsson M,Muhammed M.Spark plas-ma sintering of tungsten –yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization.J Nucl Mater 2011;412:227–32.[14]Kim Y,Hong MH,Lee SH,Kim EP,Lee S,Noh JW.The effect of yttrium oxide on thesintering behavior and hardness of tungsten.Met Mater Int 2006;12:245–8.[15]Han Y,Fan JL,Liu T,Cheng HC,Tian JM.The effects of ball-milling treatment on thedensi fication behavior of ultra-fine tungsten powder.Int J Refract Met Hard Mater 2011;29:743–50.[16]Prabhu G,Chakraborty A,Sarma B.Microwave sintering of tungsten.Int J Refract MetHard Mater 2009;27:545–8.Fig.7.FESEM micrographs of chemically etched surface of:(a)WYO,(b)WY,and (c)WL.Table 2The relative density and basic mechanical properties of rare earth tungsten alloys.Sample Relative density (%)Microhardness (HV 0.2)Bending strength (MPa)WYO 92.1445.2631WY 99.4614.4701WL88.3303372.123M.Zhao et al./Int.Journal of Refractory Metals and Hard Materials 48(2015)19–23。

太原市煤矿企业兼并重组整合方案(娄烦县)矿井明细表

太原市煤矿企业兼并重组整合方案(娄烦县)矿井明细表

兼并后井田拐点坐标
备注
4# 1,4222170.00 19572140.00 2,4221210.00 19571940.00 3,4220940.00 19571540.00 4,4220900.00 19570780.00 5,4221140.00 19570370.00
9# 1,4222170.00 19572140.00 2,4221210.00 19571940.00 3,4220940.00 19571540.00 4,4220900.00 19570780.00 5,4220390.00 19570780.00
太原市煤矿企业兼并重组整合方案(娄烦县)矿井明细表
编 兼并后煤矿暂 号 定名称
山西煤炭运销 集团太原市娄 zh3 烦县宏安煤业
有限公司
山西煤炭运销
zh4
集团太原市娄 烦县黑山岔煤
业有限公司
序号
兼并前煤矿名
井田面积(km2)

兼并前 兼并后 新增
山西宏安煤业 有限公司
1.044
zq3
2.1867 0
1,4224200.00 2,4224200.00 3,4223660.00 4,4223600.00 5,4223350.00 6,4223350.00 7,4223650.00 8,4223816.00
19570500.00 19571250.00 19571232.00 19570750.00 19570734.00 19570580.00 19570320.00 19570500.00
山西煤炭运销
5
集团太原市娄 烦县马家岩煤
dj5
娄烦县马家岩 煤矿
3.867
3.867
0
4#、7# 、9#

机电山西灵石国泰红岩煤业有限公司兼并重组整合项目

机电山西灵石国泰红岩煤业有限公司兼并重组整合项目

山西灵石国泰红岩煤业有限公司兼并重组整合项目(450kt/a)联合试运转方案二零一四年六月二十九日山西灵石国泰红岩煤业有限公司兼并重组整合项目联合试运转方案(450kt/a)一项目概况:山西灵石国泰红岩煤业有限公司是经过山西省省煤矿兼并重组整合工作领导组办公室以晋煤重组办发【2009】第64号文件《关于晋中市灵石县煤矿企业兼并重组整合方案批复(部分)》批准成立的以山西灵石国泰能源有限公司为主体的煤矿企业,设计能力450kt/a,井田面积4.7104平方公里,批准开采2#—11#号煤层,.为了使矿井达到工艺先进、安全高效,实现规模化生产,2011年7月我公司委托山西新安煤矿设计咨询有限公编制了矿井兼并重组整合项目初步设计,2011年6月10日晋中市煤炭工业局以“市煤规发【2011】121号文件关于对山西灵石国泰红岩煤业有限公司兼并重组整合项目初步设计的批复”。

进行了批复,根据在施工中发生的一些实际情况,2013年7月,我公司委托新安煤矿设计咨询有限公司做了《山西灵石国泰红岩煤业有限公司矿井兼并重组整合项目初步设计变更,2013年晋中市煤管局以市煤总发【2013】第19号文件予以批复。

设计工期为33.5个月。

2011年6月30日山西煤矿安全监察局晋中监察分局以“晋煤监晋中字【2011】119号文件关于对山西灵石国泰红岩煤业有限公司兼并重组整合项目初步设计安全专篇的批复”。

2012年山西省环境保护厅以晋环函(2012)2472号文件批准了矿井兼并重组整合项目环境影响报告书2011年8月10日晋中市煤炭工业局以"市煤规发【2011】144号文件关于对山西灵石国泰红岩煤业有限公司兼并重组整合项目工程开工的批复"。

二、改造项目设计概况1、矿井服务年限矿井保有资源/储量1891kt,可采储量为9615.9kt,服务年限为15.2a。

2、井田开拓矿井采用斜井平硐混合开拓,全井田划分一个开采水平,主水平标高+788m,辅助水平标高为+808m,开采7、10、11号煤层,布臵主、副斜井、回风平硐3个井筒。

关于下发《新、旧规范替换目录统计表》的通知

关于下发《新、旧规范替换目录统计表》的通知

工程2009 [01]号关于告知《新、旧规分类目录对照统计表》的通知
公司各单位(项目部)、机关各部室:
由于规程、规标准替换较频繁,为了保证规程、规的时效性。

公司资料室定期进行新、旧规逐项对照,查找出已作废的规对其进行分类统计并列出相对应的新标准规。

现将《新、旧对照分类目录统计表》公布如下,希望接此通知后及时进行清理作废规,并按现行有效规实施执行。

如需征订相关规程、规的单位,请将征订单填好后与工程管理部联系。

特此通知。

工程管理部
二OO九年十一月二十三日
附:《新、旧规分类目录对照统计表》
新、旧规对照分类目录统计表
注:表中<旧规>为作废规,请按照<新规>作为技术指导标准。

(并购重组)某投资公司煤矿兼并重组实施方案

(并购重组)某投资公司煤矿兼并重组实施方案

最新卓越管理方案您可自由编辑贵州中纸投资有限公司煤矿兼并重组实施方案编制日期:2013年10月20日目录第一部分目的任务、编制依据 (4)第二部分兼并重组主体企业简介 (7)一、企业概况: (7)二、煤矿现状: (11)(一)盘县红果镇打牛厂煤矿 (11)(二)盘县红果镇中纸厂煤矿 (19)(三)盘县红果镇上纸厂煤矿 (26)(四)盘县红果镇银河煤矿 (32)(五)盘县红果镇小关河边煤矿 (40)(六)盘县火铺镇兴源煤矿 (48)(七)盘县火铺镇雄兴煤矿 (59)(八)盘县石桥镇鹏程煤矿 (71)(九)晴隆县新华煤矿 (81)(十)盘县红果镇福地煤矿 (93)(十一)盘县断江镇兴黔煤矿 (102)(十二)盘县红果镇军沙煤矿 (114)(十三)龙里县猫场镇正红煤矿 (114)(十四)龙里县水场乡凯鸿煤矿 (114)(十五)龙里县醒狮镇元宝煤矿 (114)第三部分兼并重组方案 (114)一、整合(扩能、扩能扩界)煤矿 (115)二、关闭煤矿 (119)三、实施兼并重组的预期结果 (120)第四部分存在的主要问题及建议 (128)第五部分兼并重组整合方案的主要结论 (129)第六部分保障措施 (130)贵州中纸投资有限公司煤矿兼并重组实施方案贵州中纸投资有限公司于2012年3月经贵州省六盘水市工商局注册(注册号:520223000071018),由盘县境内12家煤矿组成的私营合作股份有限公司,至2013年10月,已发展成为拥有15对煤矿、产能276万吨规模的大型煤炭企业,是贵州省煤矿企业兼并重组工作领导小组办公室公示的全省第一批基本具备兼并重组主体资格的煤矿企业(集团)。

第一部分目的任务、编制依据一、任务来源。

贵州中纸投资有限公司(以下简称公司)于2013年2月申请,经省煤矿兼并重组工作领导小组办公室审查核实基本具备兼并重组主体资格并予公示后,根据《省人民政府办公厅关于进一步深入推进全省煤矿企业兼并重组工作的通知》(黔府办发[2013]46号)、《省能源局关于印发(贵州省煤矿企业兼并重组工作实施细则)的通知》(黔府办发[2013]120号)等有关煤矿企业兼并重组工作的一系列文件要求,在省市县各级政府和职能部门的指导下,按照煤矿兼并重组政策规定,以资源为基础,以产权为纽带,采取企业并购、协议转让、股权置换、控股等方式,积极主动,安全平稳,有序有效推进煤矿企业兼并重组工作。

煤矿兼并重组发文统计

煤矿兼并重组发文统计

煤矿兼并重组发文统计:领文月日字号矿管发往单位事由办文编号(证号)备注5.15 290 水城县黔源煤矿(王国黔)关于水城县鸡场乡黔源煤矿申请采矿权转让(兼并重组)的审核意见02-201301686.5 326 贵阳市修文县六广镇大桥沟煤矿(王树喜)关于修文县六广镇大桥沟煤矿申请采矿权转让(兼并重组)的审核意见02-201303176.7 331 修文县六桶乡清水沟煤矿(周汉成)关于修文县六桶乡清水沟煤矿申请采矿权转让(兼并重组)的审核意见02-201303246.6 333 修文县谷堡乡天治煤矿(林高贯) 关于修文县谷堡乡天治煤矿申请采矿权转让(兼并重组)的审核意见02-201303516.3 334 修文县六广镇龙窝煤矿(张宗秋)关于修文县六广镇龙窝煤矿申请采矿权转让(兼并重组)的审核意见02-201303576.5 335 修文县六广镇银山煤矿(白植珊)关于修文县六广镇银山煤矿申请采矿权转让(兼并重组)的审核意见02-201303676.9 339 普定县龙场乡打磨冲煤矿(黄乐华)关于普定县龙场乡打磨冲煤矿申请采矿权转让(兼并重组)的审核意见02-201302295.13 340 贵州鑫悦煤炭有限公司(唐明钦)关于息烽县养龙司乡利发煤矿申请采矿权转让(兼并重组)的审核意见02-20130342341 息烽大宏煤矿有限公司(蒋俊林)关于息烽县石硐乡大宏煤矿申请采矿权转让(兼并重组)的审核意见02-20130363 未领6.4 342 修文县大石乡何家湾煤厂(张加宝)关于修文县大石乡何家湾煤矿申请采矿权转让(兼并重组)的审核意见02-201303916.4 343 贵阳市修文县谷堡乡大营煤矿(杨占新)关于修文县谷堡乡大营煤矿申请采矿权转让(兼并重组)的审核意见02-201303926.4 344 修文县六广镇黔丰煤矿(张其鹤)关于修文县六广镇黔丰煤矿申请采矿权转让(兼并重组)的审核意见02-201303936.4 345 贵州修文谷堡红星煤矿(李长春)关于修文县谷堡乡红星煤矿申请采矿权转让(兼并重组)的审核意见02-201303946.3 346 贵阳市修文县洒坪乡栗木山煤矿(秦钲武)关于修文县洒坪乡栗木山煤矿申请采矿权转让(兼并重组)的审核意见02-201303956.5 347 贵州三利矿业有限公司(黄启敏)关于修文县六广镇三利煤矿申请采矿权转让(兼并重组)的审核意见02-201303966.14 348 修文县六广镇丁家寨煤矿(袁凤友)关于修文县六广镇丁家寨煤矿申请采矿权转让(兼并重组)的审核意见02-201304216.27 363 清镇市砂锅田煤矿(徐建明)关于清镇市暗流乡砂锅田煤矿申请采矿权转让(兼并重组)的审核意见02-201303446.18 365 赫章县哲庄顺安煤矿(温小三)关于赫章县哲庄顺安煤矿申请采矿权转让(兼并重组)的审核意见02-201302425.30 366 盘县新民龙源煤业有限公司(徐中悦)关于盘县新民龙源煤业有限公司龙鑫煤矿申请采矿权转让(兼并重组)的审核意见02-201302097.2 367 贵阳市清镇流长金利煤矿(高焕强)关于清镇市流长乡金利煤矿申请采矿权转让(兼并重组)的审核意见02-201304236.24 368 贵阳清镇市暗流学忠煤矿(黄兆庆)关于清镇市暗流乡学忠煤矿申请采矿权转让(兼并重组)的审核意见02-201304456.5 369 织金县牛房煤矿(郑文圣、周世欲)关于织金县少普乡牛房煤矿申请采矿权转让(兼并重组)的审核意见02-201301846.5 370 织金县少普岩脚煤矿(周勇、吴勇)关于织金县少普乡岩脚煤矿申请采矿权转让(兼并重组)的审核意见02-201301856.5 371 大方县星宿乡吉利煤矿(邱卧红) 关于大方县星宿乡吉利煤矿申请采矿权转让(兼并重组)的审核意见02-201301966.17 372 织金县苍海矿业有限责任公司(龙正芬)关于织金县阿弓镇苍海煤矿申请采矿权转让(兼并重组)的审核意见02-201303546.5 378 织金县志成煤矿(周贤德)关于织金县后寨乡志成煤矿申请采矿权转让(兼并重组)的审核意见02-201301836.5 379 织金县后寨乡屹塬精煤矿(赵文元) 关于织金县后寨乡屹塬精煤矿申请采矿权转让(兼并重组)的审核意见02-201301876.5 380 织金县后寨乡湘黔煤矿(刘胜贤) 关于织金县后寨乡湘黔煤矿申请采矿权转让(兼并重组)的审核意见02-201301926.5 381 大方县星宿乡瑞丰煤矿(钟德新) 关于大方县星宿乡瑞丰煤矿申请采矿权转让(兼并重组)的审核意见02-201301956.5 382 织金县杨柳煤矿(杨志学)关于织金县普翁乡杨柳煤矿申请采矿权转让(兼并重组)的审核意见02-201302156.19 393 大方县黄泥乡盈营煤矿(刁勇) 关于大方县黄泥乡盈营煤矿申请采矿权转让(兼并重组)的审核意见02-201302117.2 394 贵阳市清镇市流长乡青山煤矿(叶宏勋)关于清镇市流长乡青山煤矿申请采矿权转让(兼并重组)的审核意见02-201304226.19 398 金沙县长坝乡河边煤矿(焦青海) 关于金沙县长坝乡河边煤矿申请采矿权转让(兼并重组)的审核意见02-201302126.21 403 晴隆县粗糠田煤矿(刘福林)关于晴隆县粗糠田煤矿采矿权转让(兼并重组)的审核意见02-201302166.24 405 遵义县俊峰泮水煤矿有限公司(王志同)关于遵义县泮水镇泮水煤矿采矿权转让(兼并重组)的审核意见02-201302396.24 406 贵州天健田湾煤业有限公司(吴进)关于金沙县源村乡田湾煤矿申请采矿权转让(兼并重组)的审核意见02-201302716.25 407 大方县高店煤矿(刘义章)关于大方县高店煤矿申请采矿权转让(兼并重组)的审核意见02-201302956.25 408 大方县马场煤矿(刁勇) 关于大方县马场煤矿申请采矿权转让(兼并重组)的审核意见02-20130298 7.31 410 都匀市金达煤矿关于都匀市金达煤矿采矿权转让(兼并重组)的审核意见02-201303077.4 411 修文县六广镇永兴煤矿(李明和)关于修文县六广镇永兴煤矿申请采矿权转让(兼并重组)的审核意见02-201304206.19 412 开阳县高寨乡建国煤矿(钟建国)关于开阳县高寨乡建国煤矿申请采矿权转让(兼并重组)的审核意见02-201304887.2 413 开阳县高寨乡陡山煤矿(陈特木勒)关于开阳县高寨乡陡山煤矿申请采矿权转让(兼并重组)的审核意见02-201305516.24 417 遵义县山盆镇李梓煤矿(张建华)关于遵义县山盆镇李梓煤矿采矿权转让(兼并重组)的审核意见02-201302086.25 418 遵义县大林煤矿(郭永红)关于遵义县平正乡大林煤矿采矿权转让(兼并重组)的审核意见02-201302256.24 419 遵义县沙湾镇鲁家坝煤矿(赖思房)关于遵义县沙湾镇鲁家坝煤矿采矿权转让(兼并重组)的审核意见02-201302356.24 420 遵义县山盆镇丁村煤矿(林年胜)关于遵义县山盆镇丁村煤矿采矿权转让(兼并重组)的审核意见02-201302366.24 421 遵义县三合镇光明煤矿(何炜)关于遵义县三合镇光明煤矿采矿权转让(兼并重组)的审核意见02-201302376.24 422 遵义县遵金煤业有限责任公司(高福全)关于遵义县泮水镇遵金煤矿采矿权转让(兼并重组)的审核意见02-201302436.25 423 遵义县鸭溪镇万顺煤矿(傅其明)关于遵义县鸭溪镇万顺煤矿申请采矿权转让(兼并重组)的审核意见02-201302456.20 424 仁怀市湾子煤矿(周青岱)关于仁怀市湾子煤矿采矿权转让(兼并重组)的审核意见02-201302746.25 425 遵义县鸭溪镇金钟煤矿(朱贤聪)关于遵义县鸭溪镇金钟煤矿采矿权转让(兼并重组)的审核意见02-201302906.24 426 贵州省大方县正达煤矿(王茂穴) 关于大方县大山乡正达煤矿申请采矿权转让(兼并重组)的审核意见02-201303006.28 427 道真仡佬族苗族自治县平木山煤炭有限责任公司(冯光永)关于道真仡佬族苗族自治县平模镇平模山煤矿采矿权转让(兼并重组)的审核意见02-201303166.24 428 兴仁县新龙场镇这都大发煤矿(雷明高) 关于兴仁县新农场镇这都大发煤矿采矿权转让(兼并重组)的审核意见02-201303186.19 429 盘县淤泥乡金河煤矿(何成强)关于盘县淤泥乡金河煤矿采矿权转让(兼并重组)的审核意见02-201303486.19 430 盘县羊场乡羊场煤矿(秦江)关于盘县羊场乡羊场煤矿采矿权转让(兼并重组)的审核意见02-201303496.24 431 大方县大营矿业有限责任公司(吴玉书)关于大方县凤山乡大营煤矿申请采矿权转让(兼并重组)的审核意见02-201303536.24 432 织金县兴隆矿业有限责任公司(黄昌魁) 关于织金县少普乡兴隆煤矿申请采矿权转让(兼并重组)的审核意见02-201303556.28 433 贵州金沙金泰煤矿有限公司(孙为国)关于金沙县长坝乡金泰煤矿申请采矿权转让(兼并重组)的审核意见02-201303746.19 434 普定县川黔煤矿(高儒云) 关于普定县猴场乡川黔煤矿采矿权转让(兼并重组)的审核意见02-201304266.25 435 贵阳市清镇暗流胡家田煤矿(林晓伟)关于清镇市暗流乡胡家田煤矿申请采矿权转让(兼并重组)的审核意见02-201304866.28 437 遵义市汇川区宝山煤矿(卢正禄) 关于遵义市汇川区高坪镇宝山煤矿采矿权转让(兼并重组)的审核意见02-201303726.24 438 仁怀市高大坪乡光华煤矿(罗祥平)关于仁怀市高大坪乡光华煤矿采矿权转让(兼并重组)的审核意见02-201303646.21 439 兴仁县王家寨煤矿(刘华)关于兴仁县潘家庄镇王家寨煤矿采矿权转让(兼并重组)的审核意见02-201303666.28 440 道真仡佬族苗族自治县三江煤炭有限责任公司(唐徳强)关于道真仡佬族苗族自治县三江镇三江煤矿采矿权转让(兼并重组)的审核意见02-201303706.24 441 盘县淤泥大河煤矿(柳光怀)关于盘县淤泥大河煤矿采矿权转让(兼并重组)的审核意见02-201303856.28 442 金沙县双井煤矿(黄乐华)关于金沙县新化乡双井煤矿申请采矿权转让(兼并重组)的审核意见02-201304386.24 444 贵阳市花溪区麦坪乡兴丰煤矿(韦德宏) 关于贵阳市花溪区麦坪乡兴丰煤矿申请采矿权转让(兼并重组)的审核意见02-201305666.24 445 开阳龙岗镇赶场路煤矿(饶德聪)关于开阳县龙岗镇赶场路煤矿申请采矿权转让(兼并重组)的审核意见02-201305686.24 446 贵阳市开阳县禾丰乡岩脚煤矿(卢必生) 关于开阳县禾丰乡岩脚煤矿申请采矿权转让(兼并重组)的审核意见02-201305926.24 447 息烽永靖镇火烧井煤矿(吴天德)关于息烽县永靖镇火烧井煤矿申请采矿权转让(兼并重组)的审核意见02-201305966.27 463 黔南州荔波县佳荣镇金达煤矿(龙正芬)关于荔波县佳荣镇金达煤矿采矿权转让(兼并重组)的审核意见02-201302146.24 464 惠水县长田乡大冲煤矿(金伟博)关于惠水县长田乡大冲煤矿采矿权转让(兼并重组)的审核意见02-201302697.23 465 安顺市平坝县马场镇平源煤矿(魏刚)关于安顺市平坝县马场镇平源煤矿采矿权转让(兼并重组)的审核意见02-201303096.24 466 织金县大雁矿业有限责任公司(刘芝平)关于织金县少普乡大雁煤矿申请采矿权转让(兼并重组)的审核意见02-201303526.28 467 桐梓县众源煤业有限公司(欧泉忠)关于桐梓县官仓镇众源煤矿采矿权转让(兼并重组)的审核意见02-201303766.24 468 安龙县海子乡安王寨煤矿(喻礼顺)关于安龙县海子乡安王寨煤矿采矿权转让(兼并重组)的审核意见02-201303776.28 469 广元杨家岩煤业有限责任公司(吕厚德)关于仁怀市沙滩年发煤矿采矿权转让(兼并重组)的审核意见-02-201303786.25 470 毕节市海嘎煤矿(袁浩) 关于毕节市野角乡海嘎煤矿申请采矿权转让(兼并重组)的审核意见02-201304356.25 471 贵州融达金鑫煤业有限公司(程永)关于毕节市小坝镇王家坝煤矿申请采矿权转让(兼并重组)的审核意见02-201304526.25 473 普定普盛煤矿(韦振群)关于普定县鸡场坡乡普盛煤矿采矿权转让(兼并重组)的审核意见02-201303116.25 474 黔南州荔波县茂兰镇安匀煤矿(王群)关于黔南州荔波县茂兰镇安匀煤矿采矿权转让(兼并重组)的审核意见02-201303146.25 475 黔南州长顺县新寨乡福兴煤矿(常瑞华)关于黔南州长顺县新寨乡福兴煤矿采矿权转让(兼并重组)的审核意见02-201303458.23 476 独山县羊凤煤矿(刘金乾)关于贵州省独山县羊凤煤矿采矿权转让(兼并重组)的审核意见-02-201304057.2 479 瓮安县白沙乡龙井煤矿(皮有元)关于瓮安县白沙乡龙井煤矿采矿权转让(兼并重组)的审核意见02-201303256.27 480 贵州白岩脚煤业有限公司(李世亮)关于黔西县金坡乡白岩脚煤矿申请采矿权转让(兼并重组)的审核意见02-201303316.27 481 贵州黔西化窝煤业有限公司(朱龙飞)关于黔西县金坡乡化窝煤矿申请采矿权转让(兼并重组)的审核意见02-201303356.28 482 正安县桴焉煤矿(王大春)关于正安县桴焉乡桴焉煤矿采矿权转让(兼并重组)的审核意见02-201303797.1 483 织金县金西煤矿(胡德忠) 关于织金县白泥乡金西煤矿申请采矿权转让(兼并重组)的审核意见02-201302507.2 484 金沙县兴安煤矿(王茂地) 关于金沙县安洛乡兴安煤矿申请采矿权转让(兼并重组)的审核意见-02-201302886.26 485 习水县长青煤业有限责任公司(丁正勇) 关于习水县长青煤矿二矿采矿权转让(兼并重组)的审核意见02-201303586.26 486 习水县长青煤业有限责任公司(丁正勇) 关于习水县长青煤矿一矿采矿权转让(兼并重组)的审核意见02-201303606.26 487 贵州习水福平煤矿(刘振福) 关于贵州习水福平煤矿采矿权转让(兼并重组)的审核意见02-201303616.28 488 正安县东山煤矿(韩韬) 关于正安县安场镇东山煤矿采矿权转让(兼并重组)的审核意见02-201303806.25 489 织金县苦李树煤矿(李安举) 关于织金县三塘镇苦李树煤矿申请采矿权转让(兼并重组)的审核意见02-201303816.28 490 贵州索坤春雷煤业有限公司(刘东凡)关于正安县格林镇春雷煤矿采矿权转让(兼并重组)的审核意见02-201303836.28 491 道真仡佬族苗族自治县云峰煤炭有限责任公司(况敬于) 关于道真仡佬族苗族自治县三江镇云峰煤矿采矿权转让(兼并重组)的审核意见02-201303866.27 492 兴仁县下山镇远程煤矿(沈大超)关于兴仁县下山镇远程煤矿采矿权转让(兼并重组)的审核意见02-201304007.29 493 黔南州都匀市河阳煤矿(沈大超)关于黔南州都匀市河阳煤矿采矿权转让(兼并重组)的审核意见02-201304016.27 494 遵义县三渡镇鑫源煤矿(谢美群)关于遵义县三渡镇鑫源煤矿采矿权转让(兼并重组)的审核意见02-201304037.2 495 贵州省福泉市牛场镇清水煤矿(兰远东)关于贵州省福泉市牛场镇清水煤矿采矿权转让(兼并重组)的审核意见02-201304107.4 496 水城县阿戛捡材沟煤矿(刘磊)关于水城县阿戛捡材沟煤矿采矿权转让(兼并重组)的审核意见02-201304117.1 497 普定县鸡场坡乡雷家桥煤矿(周绪田)关于普定县鸡场坡乡雷家桥煤矿采矿权转让(兼并重组)的审核意见02-201304287.1 498 普定县补郎乡兴源煤矿(袁国凤)关于普定县补郎乡兴源煤矿采矿权转让(兼并重组)的审核意见02-201304306.27 499 安龙县海子长湾煤矿(谢美华)关于安龙县海子乡长湾煤矿采矿权转让(兼并重组)的审核意见02-201304416.28 500 贵州索坤桥溪河煤业有限公司(何德金) 关于正安县安场镇桥溪河煤矿采矿权转让(兼并重组)的审核意见02-201303886.28 502 正安县永峰煤矿(周小红) 关于正安县碧峰乡永峰煤矿采矿权转让(兼并重组)的审核意见02-201303897.17 504 六枝特区中寨乡金来煤矿(曾泳盛)关于六枝特区中寨乡金来煤矿采矿权转让(兼并重组)的审核意见02-201304167.1 505 桐梓县羊磴煤矿(李武斌)关于桐梓县羊磴镇羊磴煤矿采矿权转让(兼并重组)的审核意见02-201304507.3 506 息烽县坪土煤矿(陈浩)关于息烽县温泉镇坪土煤矿申请采矿权转让(兼并重组)的审核意见02-201306097.3 507 息烽县永靖姜家堰煤矿(陈在强)关于息烽县永靖镇姜家堰煤矿申请采矿权转让(兼并重组)的审核意见02-201306357.1 511 桐梓县金阳煤矿(李武斌)关于桐梓县娄山关镇金阳煤矿采矿权转让(兼并重组)的审核意见02-201304537.1 512 桐梓县楚米镇双田煤矿(黎晶)关于桐梓县楚米镇双田煤矿采矿权转让(兼并重组)的审核意见02-201304557.18 518 贵阳市修文县谷堡乡尖山烂冲煤矿(陈亲艺) 关于修文县谷堡乡尖山烂冲煤矿申请采矿权转让(兼并重组)的审核意见02-201306667.5 519 贵州省清镇卫城镇红卑地煤矿(徐建明)关于清镇市卫城镇红稗地煤矿申请采矿权转让(兼并重组)的审核意见02-201306537.4 524 贵州金益煤炭开发有限公司关于习水县东皇镇木担坝煤矿采矿权转让(兼并重组)的审核意见02-201304477.1 528 贵州远宜洋江煤矿有限公司(王群)关于务川县涪洋镇洋江煤矿采矿权转让(兼并重组)的审核意见02-201303327.2 529 兴仁县兴隆煤矿关于兴仁县兴隆煤矿采矿权转让(兼并重组)的审核意见02-201303687.2 530 清镇市明锦煤矿关于清镇市明锦煤矿申请采矿权转让(兼并重组)的审核意见02-201305877.10 531 贵阳市花溪燕楼仙人石煤矿(黄晓波)关于花溪区燕楼乡仙人石煤矿申请采矿权转让(兼并重组)的审核意见-02-201307217.17 532 贵阳市花溪区燕楼乡高发煤厂(安德兴) 关于贵阳市花溪区燕楼乡高发煤矿申请采矿权转让(兼并重组)的审核意见02-201307537.15 533 息烽县小寨坝镇楠木桥煤矿(文军)关于息烽县小寨坝镇楠木桥煤矿申请采矿权转让(兼并重组)的审核意见02-201307557.9 536 兴仁县四海煤矿(李光义)关于兴仁县下山镇四海煤矿采矿权转让(兼并重组)的审核意见02-201303717.9 537 黔南州都匀市大坪镇老王冲煤矿(王建胜)关于黔南州都匀市大坪镇老王冲煤矿采矿权转让(兼并重组)的审核意见02-201304247.9 538 荔波县茂兰镇福利煤矿(郭万均)关于荔波县茂兰镇福利煤矿采矿权转让(兼并重组)的审核意见02-201304277.25 539 习水县天成煤矿有限公司关于习水县天成煤矿采矿权转让(兼并重组)的审核意见02-201304767.23 540 织金县中寨乡兴林煤矿(孙秀方) 关于织金县中寨乡兴林煤矿申请采矿权转让(兼并重组)的审核意见02-201304997.29 541 水城县泰麟煤矿关于水城县猴场乡泰麟煤矿采矿权转让(兼并重组)的审核意见02-201305047.4 542 六盘水华丰矿业有限公司(吕兴发)关于钟山区老鹰山镇八八煤矿采矿权转让(兼并重组)的审核意见02-201305057.5 543 贵州湘源新兴煤业有限公司(李长良)关于六枝特区新兴煤矿采矿权转让(兼并重组)的审核意见02-201305267.17 544 安顺市安谷铁龙煤矿(张文立) 关于安顺市安谷铁龙煤矿采矿权转让(兼并重组)的审核意见02-201305277.5 545 六枝特区大用镇黑石头煤矿(李其蕾)关于六枝特区大用镇黑石头煤矿采矿权转让(兼并重组)的审核意见02-201305337.8 546 桐梓县洋岩煤矿(何晏民)关于桐梓县洋岩煤矿采矿权转让(兼并重组)的审核意见02-201305477.29 547 纳雍县法都寨煤矿(李政文)关于纳雍县法都寨煤矿申请采矿权转让(兼并重组)的审核意见02-201305567.16 548 余庆县田坝煤矿(冉啟禄)关于余庆县兴关镇田坝煤矿采矿权转让(兼并重组)的审核意见02-201305577.11 549 余庆县高坡煤矿(陈法岩)关于余庆县构皮滩镇高坡煤矿采矿权转让(兼并重组)的审核意见02-20130567 7.8 550 习水县永安煤矿(张同玉)关于习水县永安煤矿采矿权转让(兼并重组)的审核意见02-201305697.10 551 仁怀市五马镇三元煤矿(宋超)关于仁怀市五马镇三元煤矿采矿权转让(兼并重组)的审核意见02-201305707.10 552 贵州省习水县泰龙煤业有限公司(刘志伟) 关于习水县民化乡泰龙煤矿采矿权转让(兼并重组)的审核意见02-201305727.10 553 习水县泰丰煤矿(黄永成)关于习水县泰丰煤矿采矿权转让(兼并重组)的审核意见02-201305737.31 554 金沙县安洛乡桂花煤矿(袁小龙) 关于金沙县安洛乡桂花煤矿申请采矿权转让(兼并重组)的审核意见02-201306447.9 557 黔南州荔波县恒姑煤矿(胡永雄)关于黔南州荔波县恒姑煤矿采矿权转让(兼并重组)的审核意见02-201304127.29 558 贵州金沙县新化乡新华煤矿有限公司(陈兴文)关于金沙县新化乡新华煤矿申请采矿权转让(兼并重组)的审核意见02-201304347.29 559 金沙县新化乡双堰塘煤矿(张跃宣) 关于金沙县新化乡双堰塘煤矿申请采矿权转让(兼并重组)的审核意见02-201304367.9 560 荔波县高坡煤矿(李子云)关于荔波县高坡煤矿采矿权转让(兼并重组)的审核意见02-201304377.19 561 六盘水市钟山区老鹰山镇石板河煤矿(雷善勇)关于六盘水市钟山区老鹰山镇石板河煤矿采矿权转让(兼并重组)的审核意见02-201305748.19 562 安龙县洒雨新兴煤矿(刘祥斌)关于安龙县洒雨新兴煤矿采矿权转让(兼并重组)的审核意见02-201305797.25 563 贵州天健金源煤业有限公司(陈卿) 关于金沙县新化乡金源煤矿申请采矿权转让(兼并重组)的审核意见02-201306577.18 564 贵州天健闽安煤业有限公司(朱少游)关于金沙县安洛乡闽安煤矿申请采矿权转让(兼并重组)的审核意见02-201306657.23 565 赫章县罗州煤矿(侯平光)关于赫章县罗州乡罗州煤矿申请采矿权转让(兼并重组)的审核意见02-201306847.23 566 贵州省纳雍县兴坝田煤矿有限责任公司(刘强) 关于纳雍县鬃岭镇兴坝田煤矿申请采矿权转让(兼并重组)的审核意见02-201307178.4 567 纳雍县勺窝乡吉祥煤矿(王斌) 关于纳雍县勺窝乡吉祥煤矿申请采矿权转让(兼并重组)的审核意见02-201307368.4 568 纳雍县勺窝乡永安煤矿(鄢正江) 关于纳雍县勺窝乡永安煤矿申请采矿权转让(兼并重组)的审核意见02-201307377.9 570 贵州兴仁县兴旺煤矿有限公司关于兴仁县兴隆煤矿采矿权转让(兼并重组)的审核意见-02-201303507.15 571 平坝县齐伯乡蒿芝田煤矿(路岭)关于平坝县齐伯乡蒿芝田煤矿采矿权转让(兼并重组)的审核意见02-201304177.9 572 黔南州龙里县永鑫煤矿(董松慧)关于黔南州龙里县永鑫煤矿采矿权转让(兼并重组)的审核意见02-201304927.10 573 习水县干坝子煤矿有限公司(汤中平) 关于习水县良村镇干坝子煤矿采矿权转让(兼并重组)的审核意见02-201305847.10 574 六盘水市钟山区大湾镇兴旺煤矿(罗大忠)关于六盘水市钟山区大湾镇兴旺煤矿采矿权转让(兼并重组)的审核意见02-201305898.19 575 普安县三板桥麒麟煤矿(郑书位)关于普安县三板桥麒麟煤矿采矿权转让(兼并重组)的审核意见02-201305907.9 576 仁怀市梯子岩煤矿(叶友平)关于仁怀市梯子岩煤矿采矿权转让(兼并重组)的审核意见02-201305987.17 577 贵州前都煤业有限责任公司(彭丁明)关于贵州前都煤业有限责任公司煤矿采矿权转让(兼并重组)的审核意见02-201306107.18 578 贵州前都煤业有限责任公司(彭丁明)关于水城县蟠龙煤业有限责任公司煤矿采矿权转让(兼并重组)的审核意见02-201306148.4 579 纳雍县鬃岭镇吴家湾煤矿(何登明) 关于纳雍县鬃岭镇吴家湾煤矿申请采矿权转让(兼并重组)的审核意见02-201307398.4 580 纳雍县鬃岭镇鑫达煤矿(邓绍福) 关于纳雍县鬃岭镇鑫达煤矿申请采矿权转让(兼并重组)的审核意见02-201307467.29 581 织金县林贵煤矿(陈刚)关于织金县林贵煤矿申请采矿权转让(兼并重组)的审核意见02-201307528.5 582 威宁县马踏煤矿(周传喜)关于威宁县龙街镇马踏煤矿申请采矿权转让(兼并重组)的审核意见02-201307647.22 583 息烽星宇煤矿(王三三)关于息烽县石硐乡星宇煤矿申请采矿权转让(兼并重组)的审核意见02-201308967.22 584 息烽马家箐煤矿(周开德) 关于息烽县石硐乡马家箐煤矿申请采矿权转让(兼并重组)的审核意见02-201308987.31 590 荔波县茂兰镇富奇煤矿(莫润奇)关于荔波县茂兰镇富奇煤矿转让(兼并重组)的审核意见02-201304777.31 591 黔南州荔波县茂兰镇下甲介煤矿(欧鼎金)关于黔南州荔波县茂兰镇下甲介煤矿转让(兼并重组)的审核意见02-201304787.31 592 荔波县瑶麓乡鑫塬煤矿(陈江)关于荔波县瑶麓乡鑫塬煤矿转让(兼并重组)的审核意见02-201304797.9 593 平坝县乐平乡森鑫煤矿(肖文元)关于平坝县乐平乡森鑫煤矿采矿权转让(兼并重组)的审核意见02-201304877.22 594 贵定县沿山镇新兴煤矿(林运泉)关于贵定县沿山镇新兴煤矿采矿权转让(兼并重组)的审核意见02-201305227.15 597 纳雍县义中煤矿(陈晓)关于纳雍县沙包乡义中煤矿申请采矿权转让(兼并重组)的审核意见02-201302657.15 598 贵州金沙县盛安煤业有限责任公司(傅芝国)关于金沙县沙土镇盛安煤矿申请采矿权转让(兼并重组)的审核意见02-201302857.22 599 安顺市西秀区蔡官安发煤矿(刘强)关于西秀区蔡官镇安发煤矿采矿权转让(兼并重组)的审核意见02-201304547.22 600 安顺市西秀区蔡官宏发煤矿(孟传华)关于安顺市西秀区蔡官宏发煤矿采矿权转让(兼并重组)的审核意见02-20130456。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西吕梁离石永宁煤业有限公司
矿井兼并重组整合项目初步设计
(修改版)
主要机电设备目录
太原理工矿山设计研究所
二○一○年十二月
目录
一、采掘设备 (2)
二、井下运输设备 (7)
三、提升设备 (8)
四、排水设备 (9)
五、通风设备 (10)
六、地面生产系统 (11)
七、地面供配电 (15)
八、井下供电 (20)
九、安全仪器仪表及测量设备 (26)
十、通信及安全生产监控 (42)
十一、给排水及采暖供热设备 (46)
十二、辅助厂房及仓库 (53)
L=174m ,α=0°~15º~L=80.6m ,α=0°~
机电设备目录表
机电设备目录表
机电设备目录表
机电设备目录表
机电设备目录表
机电设备目录表
机电设备目录表
机电设备目录表
机电设备目录表。

相关文档
最新文档