泰州市姜堰区2019-2020学年八年级(上)期末考试数学试题及答案【推荐】.doc

合集下载

江苏省泰州市泰兴市2019-2020年八年级(上)期末数学试卷 解析版

江苏省泰州市泰兴市2019-2020年八年级(上)期末数学试卷  解析版

2019-2020学年八年级(上)期末数学试卷一.选择题(共6小题)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列各数:,﹣3.14,,2π,无理数有()A.1个B.2个C.3个D.4个3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)4.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.25.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.56.在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形二.填空题(共10小题)7.1﹣π的相反数是.8.17.85精确到十分位是.9.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=.10.点P(﹣5,12)到原点的距离是.11.若函数y=2x+3﹣m是正比例函数,则m的值为.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=°.13.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于.14.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为.16.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为.三.解答题(共10小题)17.(1)计算:(2)求x的值:8(x+1)3=118.已知,+(x+y﹣1)2=0,求y﹣2x的平方根.19.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.20.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为.21.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.22.如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=8m,CD=4m,求报亭H到小路端点A的距离.23.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?25.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB 上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.26.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.参考答案与试题解析一.选择题(共6小题)1.下列交通标志图案是轴对称图形的是()A.B.C.D.【分析】根据轴对称的定义结合选项所给的特点即可得出答案.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.2.下列各数:,﹣3.14,,2π,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【解答】解:无理数有2π,共2个.故选:B.3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出A的对称点的坐标,从而可以确定所在象限.【解答】解:∵点P(1,﹣2)关于y轴对称,∴点P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2).故选:A.4.已知一次函数y=kx+b的图象经过第一、二、三象限,则b的值可以是()A.﹣2 B.﹣1 C.0 D.2【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【解答】解:∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.5.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.5【分析】欲求证是否为勾股数,这里给出三边的长,只要验证a2+b2=c2即可.【解答】解:A、72+62≠82,故此选项错误;B、不是整数,故此选项错误;C、32+42=52,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.6.在△ABC中,∠C=90°,∠B=60°,下列说法中,不一定正确的是()A.BC2+AC2=AB2B.2BC=ABC.若△DEF的边长分别为1,2,,则△DEF和△ABC全等D.若AB中点为M,连接CM,则△BCM为等边三角形【分析】根据勾股定理、等边三角形的判定以及相似三角形的判定即可求出答案.【解答】解:(A)由勾股定理可知BC2+AC2=AB2,故A正确.(B)∵∠C=90°,∠B=60°,∴∠A=30°,∴AB=2BC,故B正确.(C)若△DEF的边长分别为1,2,,则△DEF和△ABC相似.(D)∵CM是△ACB的中线,∴CM=BM=CB,∴△BCM是等边三角形,故D正确.故选:C.二.填空题(共10小题)7.1﹣π的相反数是π﹣1 .【分析】根据相反数的定义即可得到结论.【解答】解:1﹣π的相反数是﹣(1﹣π)=π﹣1.故答案为:π﹣1.8.17.85精确到十分位是17.9 .【分析】把百分位上的数字5进行四舍五入即可.【解答】解:17.85精确到十分位是17.9.故答案为17.9.9.已知△ABC≌△A'B'C',∠A=60°,∠B=40°,则∠C′=80°.【分析】直接利用全等三角形的性质得出对应角相等进而得出答案.【解答】解:∵△ABC≌△A'B'C',∴∠A=∠A′=60°,∠B=∠B′=40°,∴∠C′=180°﹣60°﹣40°=80°.故答案为:80°.10.点P(﹣5,12)到原点的距离是13 .【分析】直接根据勾股定理进行解答即可.【解答】解:∵点P(﹣5,12),∴点P到原点的距离==13.故答案为:13.11.若函数y=2x+3﹣m是正比例函数,则m的值为 3 .【分析】直接利用正比例函数的定义得出答案.【解答】解:∵函数y=2x+3﹣m是正比例函数,∴3﹣m=0,解得:m=3.故答案为:3.12.如图,△ABC中,D是BC上一点,AC=AD=DB,∠C=70°,则∠B=35 °.【分析】根据等腰三角形的性质得到∠ADC=70°,再根据三角形外角的性质和等腰三角形可求∠B的度数.【解答】解:∵AC=AD,∠C=70°,∴∠ADC=∠C=70°,∵AD=DB,∴∠B=∠BAD,∴∠B=∠ADC=35°.故答案为:35.13.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线,CD=4,AB=16,则△ABD的面积等于32 .【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【解答】解:作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=×16×4=32.故答案为32.14.一次函数y1=ax+3与y2=kx﹣1的图象如图所示,则不等式kx﹣1<ax+3的解集是x <1 .【分析】结合图象,写出直线y1=ax+3在直线y2=kx﹣1上方所对应的自变量的范围.【解答】解:∵一次函数y1=ax+3与y2=kx﹣1的图象的交点坐标为(1,2),∴当x<1时,y1>y2,∴不等式kx﹣1<ax+3的解集为x<1.故答案为x<1.15.已知A(x1,y1)、B(x2,y2)是一次函数y=(2﹣m)x+3图象上两点,且(x1﹣x2)(y1﹣y2)<0,则m的取值范围为m>2 .【分析】根据(x1﹣x2)(y1﹣y2)<0,得出y随x的增大而减小,再根据2﹣m<0,求出其取值范围即可.【解答】解:(x1﹣x2)(y1﹣y2)<0,即:或,也就是,y随x的增大而减小,因此,2﹣m<0,解得,m>2,故答案为:m>2.16.如图,平面直角坐标系中,若点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k的值为k=±1 .【分析】根据一次函数y=kx+4(k≠0)图象一定过点(0,4),点A(3,0)、B(4,1)到一次函数y=kx+4(k≠0)图象的距离相等,可分为两种情况进行解答,即,①当直线y=kx+4(k≠0)与直线AB平行时,②当直线y=kx+4(k≠0)与直线AB不平行时分别进行解答即可.【解答】解:一次函数y=kx+4(k≠0)图象一定过(0,4)点,①当直线y=kx+4(k≠0)与直线AB平行时,如图1,设直线AB的关系式为y=kx+b,把A(3,0),B(4,1)代入得,,解得,k=1,b=﹣3,∴一次函数y=kx+4(k≠0)中的k=1,②当直线y=kx+4(k≠0)与直线AB不平行时,如图2,则:直线y=kx+4(k≠0)一定过点C,点C的坐标为(4,0),代入得,4k+4=0,解得,k=﹣1,因此,k=1或k=﹣1.故答案为:k=±1.三.解答题(共10小题)17.(1)计算:(2)求x的值:8(x+1)3=1【分析】(1)首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.(2)根据立方根的含义和求法,求出x的值是多少即可.【解答】解:(1)=1+2﹣﹣2=1﹣(2)∵8(x+1)3=1,∴(x+1)3=,∴x+1=,解得x=﹣.18.已知,+(x+y﹣1)2=0,求y﹣2x的平方根.【分析】直接利用非负数的性质得出关于x,y的方程组进而得出答案.【解答】解:∵+(x+y﹣1)2=0,∴,解得:,故y﹣2x=2+2=4,则y﹣2x的平方根为:±2.19.已知:如图点A、B、C、D在一条直线上,EA∥FB,EC∥FD,AB=CD,求证:EA=FB.【分析】首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD.【解答】证明:∵EA∥FB,∴∠A=∠FBD,∵EC∥FD,∴∠D=∠ECA,∵AB=CD,∴AC=BD,在△EAC和△FBD中,,∴△EAC≌△FBD(AAS),∴EA=FB.20.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于x轴对称的图形△A1B1C1;②将△A1B1C1向右平移7个单位得到△A2B2C2.(2)△A2B2C2中顶点B2坐标为(1,﹣1).【分析】(1)①分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;②分别作出△A1B1C1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【解答】解:(1)①如图所示,△A1B1C1即为所求;②如图所示,△A2B2C2即为所求.(2)由图知,△A2B2C2中顶点B2坐标为(1,﹣1),故答案为:(1,﹣1).21.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)求∠DAF的度数;(2)若△DAF的周长为10,求BC的长.【分析】(1)根据三角形内角和定理求出∠BAC,根据线段垂直平分线的性质得到DA=DB,FA=FC,得到∠DAB=∠ABC=30°,∠FAC=∠ACB=50°,结合图形计算,得到答案;(2)根据三角形的周长公式计算即可.【解答】解:(1)∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣30°﹣50°=100°,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,∵FG是AC的垂直平分线,∴FA=FC,∴∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣(∠DAB+∠FAC)=20°;(2)∵△DAF的周长为10,∴AD+DF+FC=10,∴BC=BD+DF+FC=AD+DF+FC=10.22.如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭H,使报亭H到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭H的位置(不写作法,但需保留作图痕迹,交代作图结果)(2)如果AD=8m,CD=4m,求报亭H到小路端点A的距离.【分析】(1)作AC的垂直平分线交AD与点G,进而得出答案;(2)利用勾股定理以及线段垂直平分线的性质得出即可.【解答】解:(1)如图所示:H点即为所求;(2)设AH=xm,则DH=(80﹣x)m,HC=xm,在Rt△DHC中,DH2+CD2=HC2,∴(80﹣x)2+402=x2,解得:x=50,答:报亭到小路端点A的距离50m.23.如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)AB=12,AC=9,求四边形AEDF的周长;(2)EF与AD有怎样的位置关系?证明你的结论.【分析】(1)根据在直角三角形中,斜边上的中线等于斜边的一半可得ED=EB=AB,DF=FC=AC,再由AB=12,AC=9,可得答案;(2)根据到线段两端点距离相等的点在线段的垂直平分线证明.【解答】解:(1)∵AD是高,∴∠ADB=∠ADC=90°,∵E、F分别是AB、AC的中点,∴ED=EB=AB,DF=FC=AC,∵AB=8,AC=6,∴AE+ED=12,AF+DF=9,∴四边形AEDF的周长为12+9=21;(2)EF⊥AD,理由:∵DE=AE,DF=AF,∴点E、F在线段AD的垂直平分线上,∴EF⊥AD.24.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【分析】根据函数图象中点的坐标利用待定系数法求出一次函数解析式,再根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,此题得解.【解答】解:(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,,解得:,∴该一次函数解析式为y=﹣x+60.(2)当y=﹣x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.25.已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB 上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试用等式表示AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【分析】(1)①证明△ADF≌△CDE(ASA),即可得出AF=CE;②由①得△ADF≌△CDE(ASA),得出AF=CE;同理△CDF≌△BDE(ASA),得出CF=BE,在Rt△CEF中,由勾股定理得CE2+CF2=EF2,即可得出结论;(2)分两种情况:①点E在线段CB上时,求出CE=BC﹣BE=1,由(1)得AF=CE=1,AF2+EB2=EF2,即可得出答案;②点E在线段CB延长线上时,求出CE=BC+BE=7,同(1)得△ADF≌△CDE(ASA),得出AF=CE,求出CF=BE=3,在Rt△EF中,由勾股定理即可得出答案.【解答】(1)①证明:∵△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,∴∠DCE=45°=∠A,CD=AB=AD,CD⊥AB,∴∠ADC=90°,∵DF⊥DE,∴∠FDE=90°,∴∠ADC=∠FDE,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE(ASA),∴AF=CE;②解:AF2+EB2=EF2,理由如下:由①得:△ADF≌△CDE(ASA),∴AF=CE;同理:△CDF≌△BDE(ASA),∴CF=BE,在Rt△CEF中,由勾股定理得:CE2+CF2=EF2,∴AF2+EB2=EF2;(2)解:分两种情况:①点E在线段CB上时,∵BE=3,BC=4,∴CE=BC﹣BE=1,由(1)得:AF=CE=1,AF2+EB2=EF2,∴EF==;②点E在线段CB延长线上时,如图2所示:∵BE=3,BC=4,∴CE=BC+BE=7,同(1)得:△ADF≌△CDE(ASA),∴AF=CE,∴CF=BE=3,在Rt△EF中,由勾股定理得:CF2+CE2=EF2,∴EF==;综上所述,当EB=3时,EF的长为或.26.在平面直角坐标系中,直线l1:y=kx+b(k、b为常数,且k≠0)经过A、B两点,点A在y轴上.(1)若B点坐标为(﹣1,2).①b=2+k(用含有字母k的代数式表示)②当△OAB的面积为2时,求直线l1的表达式;(2)若B点坐标为(k﹣2b,b﹣b2),点C(﹣1,s)也在直线l1上,①求s的值;②如果直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),且0<x1<2,求k的取值范围.【分析】(1)①把B(﹣1,2)代入y=kx+b即可求得b的值;②根据三角形的面积即可求得k的值,从而可得直线解析式;(2)①把点B和点C代入函数解析式即可求得s的值;②根据两条直线的交点坐标的横坐标的取值范围即可求得k的取值范围.【解答】解:(1)①把B(﹣1,2)代入y=kx+b,得b=2+k.故答案为2+k;②∵S△OAB=(2+k)×1=2解得k=2,所以直线l1的表达式为:y=2x+4;(2)①∵直线l1:y=kx+b经过点B(k﹣2b,b﹣b2)和点C(﹣1,s).∴k(k﹣2b)+b=b﹣b2,﹣k+b=s整理得,(b﹣k)2=0,所以s=b﹣k=0.②∵直线l1:y=kx+b(k≠0)与直线l2:y=x交于点(x1,y1),∴kx1+b=x1(1﹣k)x1=b,∵b﹣k=0∴b=k∴x1=∵0<x1<2,∴>0或<2解得k<.答:k的取值范围是k<.。

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷及答案解析

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷及答案解析

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共6小题,共18.0分)1. 下列图案是轴对称图形的有( )个.A. 1B. 2C. 3D. 4 2. 在3.14,π,−0.10010001,3.7.,−√4,√93,13中,无理数有( )A. 1个B. 2个C. 3个D. 4个3. 下列各组数据不是勾股数的是( )A. 12,18,22B. 3,4,5C. 7,24,25D. 9,12,154. 若点A(a +1,b −2)在第二象限,则点B(−a,1−b)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知△ABC 的六个元素,下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6. 下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx(m 、n 为常数,且mn ≠0)的图象的是( )A. B. C. D.二、填空题(本大题共10小题,共30.0分)7. 16的平方根是______.8. 3.1415精确到百分位的近似数是______.9. 已知点P(−2,1),那么点P 关于x 轴对称的点Q 的坐标是______.10. 已知一次函数y =(k −1)x −2,y 随x 的增大而减小,那么k 的取值范围是______.11. 若等腰三角形中一个底角等于50°,则这个等腰三角形的顶角=______°.12. 若二元一次方程组{4x −y =1y =2x −m的解是{x =2y =7,则一次函数y =2x −m 的图象与一次函数y =4x −1的图象的交点坐标为______.13. 如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为_________.14. 如图,函数y =3x 和y =ax +4的图象相交于点A(m,3),不等式3x ≥ax +4的解集为______.15. 已知点A(3+2a,3a −5),点A 到两坐标轴的距离相等,点A 的坐标为_____.16. 如图,在矩形ABCD 中,AB =6cm ,点E 、F 分别是边BC 、AD 上一点,将矩形ABCD 沿EF 折叠,使点C 、D 分别落在点C′、D′处.若C′E ⊥AD ,则EF 的长为______ cm .三、解答题(本大题共10小题,共102.0分)17.计算:√12−|1−√3|+(7+π)0.18.已知:y与x+1成正比例,当x=−2时,y=−4。

2019-2020学年泰州市姜堰市八年级上期末数学试卷(有答案)【推荐】.doc

2019-2020学年泰州市姜堰市八年级上期末数学试卷(有答案)【推荐】.doc

2019-2020学年江苏省泰州市姜堰市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1. (3分)在平面直角坐标系中,点P (- 2, 3)在第()象限.A. —B.二C.三D.四2. (3分)若分式二;7有意义,则x的取值范围是()A. X M2B. x=2C. x>2D. x v23. (3分)为了鼓励学生课外阅读,学校公布了阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中a的度数为()4. (3分)在平面直角坐标系中,把直线y=-2X+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A. y=- 2X+1B. y=- 2X - 5C. y=- 2X+5D. y= - 2X+75. (3分)如图,在△ ABC中,/ ABC和/ACB的平分线相交于点F,过F作DE// BC,交C. 10°D.无法确定AB于点D,交AC于点E.若BD=4, DE=7,则线段EC的长为()6.A.(3分)若关于X的分式方程十=2的解为非负数,贝U m的取值范围是()m>- 1 B. m> 1 C. m>- 1 且m工1 D. m>- 1 且m工1、填空题(本大题共10小题,每小题3分,计30 分)7. (3分)2026精确到百位记作为______ .8 . (3分)如果分式. 的值为零,那么x= _________ .x +19. (3分」)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距_______ km .10. (3分)如果点P坐标为(3,- 4),那么点P到x轴的距离为_______ .11. ______________________________________ (3 分)若.-!+ (1 - y)2=0,则心-:;:= _____________________________________________ .12. (3分)某班在一次适应性考试中,分数落在130 - 140分数段的人数为18人,频率为0.3,则该班共有 ________ 人.13. (3分)如图,直线y1=x+n与y2=mx- 1相交于点N,则关于x的不等式x+n v mx- 1的解集为.J,11r亠/XyjlWr -114. (3分)如图,折叠长方形纸片ABCD使点D落在边BC上的点F处,折痕为AE.已知AB=3cm, BC=5cm 贝U EC的长为_____ cm.415. (3分)分式二一的值是正整数,则整数m= ______16. (3分)已知/ AOB=45,点P在/AOB内部,点R与点P关于OA对称,点P?与点P关于OB对称,连接P1P2交OA、OB于E、F,若RE&,OP=「,则EF的长度是_________ .三、解答题(本大题共10小题,共102分.) 17. (10 分)(1)计算:(3- n 0-| 2| --(2)解方程:厶+2=:4-xx-4A _i118. (8分)先化简:_十(a - _),并从0、1、2中选取一个恰当的数值代入求值. 19. (10分)已知y+2与x 成正比,当x=1时,y=-6. (1) 求y 与x 之间的函数关系式;(2) 若点(a , 2)在这个函数图象上,求a 的值.20. (10分)家庭过期药品属于 国家危险废物 处理不当将污染环境,危害健康•某市药 监部门为了了解市民家庭处理过期药品的方式, 决定对全市家庭作一次简单随机抽样调查 本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:户数A500 400 300 200 10022.(10分)如图,△ ABC 中,边AB AC 的垂直平分线分别交BC 于D 、E . (1) 若BC=10,则厶ADE 周长是多少?为什么? (2) 若/ BAC=128,则/ DAE 的度数是多少?为什么?23. (1051080nil 上 3丄進续便用C:送回收站 D:搁置家中丘卖给药贩 F 直接奖烧分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2. (1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?24. (10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y (件)之间的关系如表:25…x/元 (15)20y/件•…252015•…已知日销售量y是销售价x的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25. (12分)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲,乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x (h),y 甲, y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)________ a= ;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;26. (14分)如图,在平面直角坐标系xOy中,点A的坐标为(0, 3),点B的坐标为(4,0), C为第一象限内一点,AC丄y轴,BC丄x轴,D坐标为(m, 0) (0v m v4).(1)若D为OB的中点,求直线DC的解析式;(2)若厶ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边-BC上,满足△ AOD^A DBE求m的值;②若使△ EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.2019-2020学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1. (3分)在平面直角坐标系中,点P (- 2, 3)在第()象限.A. —B.二C.三D.四【解答】解:点P (-2, 3)在第二象限.故选:B.2 . (3分)若分式亡有意义,则x的取值范围是()A. X M2B. x=2C. x>2D. x v2【解答】解:由题意得,X- 2工0,解得X M2.故选:A.3. (3分)为了鼓励学生课外阅读,学校公布了阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中a的度数为()无所谓A. 36°B. 20°C. 10°D.无法确定【解答】解:由图知无所谓”意见人数占总人数的10%,所以图中a的度数为360°x 10%=36,故选:A.4. (3分)在平面直角坐标系中,把直线y=-2X+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A. y=—2x+1B. y=—2x - 5C. y=—2x+5D. y= - 2x+7【解答】解:由题意得:平移后的解析式为:y=—2x+3+2=-2x+5.故选:C.5. (3分)如图,在△ ABC中,/ ABC和/ACB的平分线相交于点F,过F作DE// BC ,交AB于点D,交AC于点E.若BD=4, DE=7,则线段EC的长为()A. 3B. 4C. 3.5D. 2【解答】解:I/ ABC和/ACB的平分线相交于点F,•••/ DBF=Z FBC / ECF/ BCF••• DF/ BC,交AB于点D,交AC于点E././ DFB=Z DBF, / CFE/ BCF••• BD=DF=4 FE=CE••• CE=D—DF=7- 4=3.故选:A.6. (3分)若•关于x的分式方程「=2的解为非负数,贝U m的取值范围是()A. m>—1B. m> 1C. m>—1 且m工1D. m>—1 且m工1【解答】解:去分母得:m-仁2x- 2 , 解得:x=丨一,由题意得:耳》0且耳工1 , 解得:m》-1且m工1 , 故选:D、填空题(本大题共10小题,每小题3分,计30 分)7. (3分)2026精确到百位记作为_2.0X 103_.【解答】解:2026精确到百位记作为2.0X103,故答案为:2.0 X103.8 . (3分)如果分式. 的值为零,那么x=_3—.x +1【解答】解:由题意,得x- 3=0 且x2+1 工0,解得x=3,故答案为:3.9. (3分)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距_5_km.【解答】解:如图,AOB=90,OA=4km, OB=3km••• AB= - - =5km.10. (3分)如果点P坐标为(3,- 4),那么点P到x轴的距离为4 【解答】解:点P (3,- 4)到x轴的距离为4.故答案为:4.11. (3 分)若肓+ (1-y) 2=0,贝U 二=_2—【解答】解:+ (1 - y)2=0,• x- 4= 0, 1 - y=0, 解得:x=4, y=1,则■■_■= -1=2.故答案为:2.12. (3分)某班在一次适应性考试中,分数落在 130- 140分数段的人数为18人,频率 为0.3,则该班共有_60_人. 【解答】解:18-0.3=60 (人). 故答案为:60.13. (3分)如图,直线y 1=x+ n 与y 2=mx - 1相交于点N ,则关于x 的不等式x+n v mx - 1 的解集为 x v- 1.14. (3分)如图,折叠长方形纸片 ABCD 使点D 落在边BC 上的点F 处,折痕为AE .已【解答】解:•••△人丘卩由厶AED 折叠而来,x+n v mx - 1 的解集为 x v - 1.4—cm .故答案为 x v - 1••• AD=AF, DE=FE在 Rt A ABF 中,AB=3cm, AF=5cm, BF= i : ; =4cm , CF=BG BF=1cm.设 EC=xcn ,贝U EF=ED=(3 - x ) cm ,在 Rt A CEF 中, EF 2=CE 2+Cf i ,即(3 - x ) 2=x 2+12, 解得:x=". 故答案为:[I415. (3分)分式,一的值是正整数,则整数 m=_1 — 【解答】解:由题意可知:2m - 1=1或2或4, 当 2m - 1=1 时, .m=1,符合题意 当 2m - 1=2 时,当 2m - 1=4 时, .m 卡,不符合题意, 综上所述,m=1, 故答案为:m=116. (3分)已知/ AOB=45,点P 在/ AOB 内部,点P 1与-点P 关于0A 对称,点 P 关于0B 对称,连接P 1P 2交OA 、OB 于E 、F ,若RE=. , 0P=】,则EF 的长度是【解答】解::P , P 1关于直线0A 对称,P 、P 2关于直线0B 对称,_3 m=:, 不符合题意,P 2与点5—r —.•••OP=OP=OR=£,/ AOP=Z AOP,/ BOP=/ BOR,vZ AOB=45,•••/ P I OP2=2Z AOP F2Z BOP=2 (Z AOP+Z BOP =90°•••△ P1OP2是等腰直角三角形,--P1P2=」j i ■〕■■门1=2,设EF=xv P I E= F PE•PF=P2F= - x,由轴对称可得,/ OPEN OP I E=45°, Z OPF=Z ORF=45°•Z EPF=90,•P^+P F"=E^,即([)2+ C. -x) 2=X2,解得X=〔.&三、解答题(本大题共10小题,共102分.)17. (10 分)(1)计算:(3 - n H - 2| -虽3 1 ~v(2)解方程:;,+2二:【解答】解:(1)原式=1 - 2+二-二二-1;(2)去分母得:-3+2x- 8=1 - x,解得:x=4,经检验x=4是方程的增根,方程无解.18. (8分)先化简:旦宁(」a-丄),并从0、1、2中选取一个恰当的数值代入求值.a a【解答】解:原式宁止0 a二J?a (a+1)(a-1)二]a+1 '当a=2时,原式=.;.19. (10分)已知y+2与x成正比,当x=1时,y= - 6.(1)求y与x之间的函数关系式;(2)若点(a, 2)在这个函数图象上,求a的值.【解答】解:(1 )••• y+2与x成正比,.••设y-2=kx,将x=1、y= - 6 代入y+2=kx 得-6+2=k X 1,••• k=- 4,y= - 4x- 2(2)v点(a, 2)在函数y=-4x- 2图象上,• 2=- 4a- 2,--a= —1.20. (10分)家庭过期药品属于国家危险废物处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:户数A500 400 300 200 10051020080nilA B50X继续庚用C:送回收站D:搁置家中E:卖给药贩F直接獎烧(1)求m、n的值;(2) 补全条形统计图;(3) 家庭过期药品的正确处理方式是送回收站,若该市有 多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)v 抽样调査的家庭总户数为:80 - 8%=1000 (户),••• m %=「=2。

姜堰数学八年级上试卷答案

姜堰数学八年级上试卷答案

一、选择题(每题3分,共30分)1. 如果a > b,那么下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 < b - 1C. a + 2 < b + 2D. a - 2 > b - 2答案:A2. 下列各组数中,互为相反数的是()A. 3和-3B. 0和-2C. 2和-1D. -5和5答案:D3. 若x^2 - 5x + 6 = 0,则x的值为()A. 2和3B. 1和4C. 2和-3D. -1和6答案:A4. 在直角坐标系中,点P(-2, 3)关于y轴的对称点坐标为()A. (2, 3)B. (-2, -3)C. (2, -3)D. (-2, 3)答案:A5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2 - 1D. y = 5x^3答案:B6. 若一个三角形的三个内角分别为30°,60°,90°,则这个三角形是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 钝角三角形答案:B7. 下列数中,是偶数的是()A. 3B. 4C. 5D. 6答案:B8. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2答案:D9. 下列图形中,是圆的是()A. 正方形B. 等边三角形C. 矩形D. 圆答案:D10. 下列数中,是完全平方数的是()A. 16B. 18C. 20D. 22答案:A二、填空题(每题5分,共20分)11. 若a + b = 7,a - b = 3,则a = ______,b = ______。

答案:a = 5,b = 212. 已知一元二次方程x^2 - 5x + 6 = 0,其两个根的乘积为 ______。

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷

2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)下列图案中,不是轴对称图形的是( )A .B .C .D . 2.(3分)在2、0.3、227-、38中,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个3.(3分)下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,134.(3分)已知点(1,3)P m +在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m -D .1m -5.(3分)如图,已知ABC ∆的三条边和三个角,则甲、乙、丙三个三角形中和ABC ∆全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙6.(3分)下列图象中,可以表示一次函数y kx b =+与正比例函数(y kbx k =,b 为常数,且0)kb ≠的图象的是( )A .B .C .D .二、填空题(本大题共有10小题,每小题3分,计30分)7.(3分)4的平方根是 . 8.(3分)3.145精确到百分位的近似数是 .9.(3分)(1,3)P -关于x 轴对称的点Q 的坐标是 .10.(3分)已知一次函数(1)2y k x =-+,若y 随x 的增大而减小,则k 的取值范围是 .11.(3分)已知等腰三角形的顶角是80︒,那么这个三角形的一个底角是 ︒. 12.(3分)已知一次函数3y kx =+与2y x b =+的图象交点坐标为(1,2)-,则方程组32y kx y x b =+⎧⎨=+⎩的解为 . 13.(3分)如图,ABC ∆中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则AEG ∆周长为 .14.(3分)如图,函数3y x =-和4y ax =+的图象相交于点(,3)A m ,则不等式34x ax ->+的解集为 .15.(3分)若点(2,25)P a a -+到两坐标轴的距离相等,则a 的值为 .16.(3分)如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点A '恰好落在边OC 上,则OE 的长为 .三、解答题(本大题共10小题,计102分)17.(10分)(1)计算:02|13|(2019)(2)π-+-+-(2)解方程:2416x =18.(8分)已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.19.(8分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与ABC ∆关于y 轴对称;(2)点A 的对称点1A 的坐标为 ;(3)求△111A B C 的面积.20.(8分)如图,ABC ∆中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =.21.(10分)如图,四边形ABCD 中,5AC =,4AB =,12CD =,13AD =,90B ∠=︒.(1)求BC 边的长;(2)求四边形ABCD 的面积.22.(10分)一次函数(0)y kx b k =+≠的图象为直线l .(1)若直线l 与正比例函数2y x =的图象平行,且过点(0,2)-,求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.23.(10分)如图,某斜拉桥的主梁AD 垂直于桥面MN 于点D ,主梁上两根拉索AB 、AC 长分别为13米、20米.(1)若拉索AB AC ⊥,求固定点B 、C 之间的距离;(2)若固定点B 、C 之间的距离为21米,求主梁AD 的高度.24.(12分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()s km 与所用时间()t h 之间的函数关系.试根据函数图象解答下列问题:(1)小明在途中停留了 h ,小明在停留之前的速度为 /km h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t h =时,两人同时到达乙地,求t 为何值时,两人在途中相遇.25.(12分)已知ABC∆.(1)在图中用直尺和圆规作出B∠的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD,OE 求证:OD OE=;(3)如图,在(1)的条件下,点E、F分别是AB、BC边上的点,且BEF∆的周长等于BC 边的长,试探究ABC∠的数量关系,并说明理由.∠与EOF26.(14分)如图,一次函数4(0)=+≠的图象与x轴交于点A,与y轴交于点B,y kx k k且经过点(2,)C m.(1)当92m=时;①求一次函数的表达式;②BD平分ABO∠交x轴于点D,求点D的坐标;(2)若AOC∆为等腰三角形,求k的值;(3)若直线42y px p=-+也经过点C,且24p<,求k的取值范围.2019-2020学年江苏省泰州市姜堰区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)下列图案中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:D.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(32、0.3、227-38()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0.3是循环小数,属于有理数;227-382,是整数,属于有理数.2共1个.故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.3.(3分)下列各组数不是勾股数的是( )A .3,4,5B .6,8,10C .4,6,8D .5,12,13【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、2226810+=,能构成直角三角形,是正整数,故是勾股数;C 、222468+≠,不能构成直角三角形,故不是勾股数;D 、22251213+=,能构成直角三角形,是正整数,故是勾股数;故选:C .【点评】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知ABC ∆的三边满足222a b c +=,则ABC ∆是直角三角形4.(3分)已知点(1,3)P m +在第二象限,则m 的取值范围是( )A .1m <-B .1m >-C .1m -D .1m -【分析】根据第二象限点的坐标的特点,得到关于m 的不等式,解可得答案.【解答】解:点(1,3)P m +在第二象限,则10m +<,解可得1m <-.故选:A .【点评】此题要求学生能根据各个象限点的坐标特点,列出关于m 的不等式;进而求解.5.(3分)如图,已知ABC ∆的三条边和三个角,则甲、乙、丙三个三角形中和ABC ∆全等的是( )A .甲和乙B .甲和丙C .乙和丙D .只有乙【分析】根据全等三角形的判定一一判断即可【解答】解:根据SAS 可以判定甲与ABC ∆全等,根据ASA 可以判定丙与ABC ∆全等, 故选:B .【点评】本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3分)下列图象中,可以表示一次函数y kx b =+与正比例函数(y kbx k =,b 为常数,且0)kb ≠的图象的是( )A .B .C .D .【分析】根据一次函数的图象与系数的关系,由一次函数y kx b =+图象分析可得k 、b 的符号,进而可得k b 的符号,从而判断y kbx =的图象是否正确,进而比较可得答案.【解答】解:根据一次函数的图象分析可得:A 、由一次函数y kx b =+图象可知0k <,0b >,0kb <;正比例函数y kbx =的图象可知0kb <,故此选项正确;B 、由一次函数y kx b =+图象可知0k >,0b >;即0kb >,与正比例函数y kbx =的图象可知0kb <,矛盾,故此选项错误;C 、由一次函数y kx b =+图象可知0k <,0b >;即0kb <,与正比例函数y kbx =的图象可知0kb >,矛盾,故此选项错误;D 、由一次函数y kx b =+图象可知0k >,0b <;即0kb <,与正比例函数y kbx =的图象可知0kb >,矛盾,故此选项错误;故选:A .【点评】此题主要考查了一次函数图象,注意:一次函数y kx b =+的图象有四种情况: ①当0k >,0b >,函数y kx b =+的图象经过第一、二、三象限;②当0k >,0b <,函数y kx b =+的图象经过第一、三、四象限;③当0k <,0b >时,函数y kx b =+的图象经过第一、二、四象限;④当0k <,0b <时,函数y kx b =+的图象经过第二、三、四象.二、填空题(本大题共有10小题,每小题3分,计30分)7.(3分)4的平方根是 2± .【分析】根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得2x a =,则x 就是a的平方根,由此即可解决问题.【解答】解:2(2)4±=,4∴的平方根是2±.故答案为:2±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)3.145精确到百分位的近似数是 3.15 .【分析】根据题目中的数据和四舍五入法可以解答本题.【解答】解:3.145精确到百分位的近似数是3.15,故答案为:3.15.【点评】本题考查近似数和有效数字,解答本题的关键是明确题意,利用四舍五入法解答本题.9.(3分)(1,3)P -关于x 轴对称的点Q 的坐标是 (1,3)-- .【分析】坐标平面内两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数,点P 关于x 轴对称,可得出点Q 的坐标.【解答】解:根据坐标平面内两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数的特点,得出点P 关于x 轴对称的点Q 的坐标为(1,3)--,故答案为(1,3)--.【点评】本题考查了坐标平面内两个点关于x 轴对称的特点,横坐标不变,纵坐标互为相反数,难度适中.10.(3分)已知一次函数(1)2y k x =-+,若y 随x 的增大而减小,则k 的取值范围是 1k < .【分析】一次函数y kx b =+,当0k <时,y 随x 的增大而减小.据此列不等式解答即可.【解答】解:一次函数(1)2y k x =-+,若y 随x 的增大而减小,10k ∴-<,解得1k <,故答案为:1k <.【点评】本题主要考查了一次函数的性质.一次函数y kx b =+,当0k >时,y 随x 的增大而增大;当0k <时,y 随x 的增大而减小.11.(3分)已知等腰三角形的顶角是80︒,那么这个三角形的一个底角是 50 ︒.【分析】利用两底角相等和三角形内角和为180︒可求得底角.【解答】解:设底角为x ︒,由三角形内角和定理可得80180x x ++=,解得50x =,所以一个底角为50︒,故答案为:50.【点评】本题主要考查等腰三角形的性质,由底角相等结合三角形内角和定理得到关于底角的方程是解题的关键.12.(3分)已知一次函数3y kx =+与2y x b =+的图象交点坐标为(1,2)-,则方程组32y kx y x b =+⎧⎨=+⎩的解为 12x y =-⎧⎨=⎩. 【分析】根据两函数交点即为两函数组成的方程组的解,从而求出答案.【解答】解:一次函数3y kx =+与2y x b =+的图象交点坐标为(1,2)-,∴方程组32y kx y x b =+⎧⎨=+⎩的解为12x y =-⎧⎨=⎩. 故答案为12x y =-⎧⎨=⎩. 【点评】本题主要考查了一次函数与二元一次方程组的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.13.(3分)如图,ABC ∆中,5BC =,AB 边的垂直平分线分别交AB 、BC 于点D 、E ,AC 边的垂直平分线分别交AC 、BC 于点F 、G ,则AEG ∆周长为 5 .【分析】根据线段的垂直平分线的性质得到EA EB =,GA GC =,根据三角形的周长公式计算,得到答案.【解答】解:DE 是AB 的垂直平分线,EA EB ∴=,同理,GA GC =,AEG ∴∆周长5EA EG GA EB EG GC BC =++=++==,故答案为:5.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.(3分)如图,函数3y x =-和4y ax =+的图象相交于点(,3)A m ,则不等式34x ax ->+的解集为 1x <- .【分析】以交点为分界,结合图象写出不等式34x ax ->+的解集即可.【解答】解:函数3y x =-经过(,3)A m ,33m ∴=-,解得1m =-,∴点A 的坐标为(1,3)-,由图可知,不等式34x ax >+的解集为1x <-.故答案为1x <-.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A 点坐标以及利用数形结合的思想.15.(3分)若点(2,25)P a a -+到两坐标轴的距离相等,则a 的值为 1-或7- .【分析】根据点到两坐标轴的距离相等,即点的横纵坐标相等或互为相反数,计算即可.【解答】解:根据题意,得:225a a -=+或2250a a -++=,解得:1a =-或7a =-,故答案为:1-或7-.【点评】本题主要考查点的坐标,解决此题的关键是明确:当点的横纵坐标相同或互为相反数的时候,到两坐标轴的距离都是相等的,注意不要漏解.16.(3分)如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点A '恰好落在边OC 上,则OE 的长为 3 .【分析】连接A D ',AD ,根据矩形的性质得到4BC OA ==,3OC AB ==,90C B O ∠=∠==︒,求得3CD =,1BD =,根据折叠的性质得到A D AD '=,A E AE '=,根据全等三角形的性质得到1AC BD '==,根据勾股定理即可得到结论.【解答】解:连接A D ',AD ,四边形OABC 是矩形,8BC OA ∴==,6OC AB ==,90C B O ∠=∠=∠=︒,3CD DB =,6CD ∴=,2BD =,CD AB ∴=,将四边形ABDE 沿DE 折叠,若点A 的对称点A '恰好落在边OC 上,A D AD ∴'=,A E AE '=,在Rt △A CD '与Rt DBA ∆中,CD AB A D AD =⎧⎨'=⎩, Rt ∴△Rt DBA(HL)A CD '≅∆,2AC BD ∴'==,4AO ∴'=,222A O OE A E '+=',2224(8)OE OE ∴+=-,3OE =,故答案为3.【点评】本题考查了翻折变换(折叠问题),矩形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,计102分)17.(10分)(1)计算:02|13(2019)(2)π+--(2)解方程:2416x =【分析】(1)根据绝对值的性质,非0实数的0次幂以及非0实数的负整数次幂计算即可;(2)利用直接开平方法计算即可.【解答】解:(1)原式3112++32=;(2)2416x =,24x =,解得12x =,22x =-.【点评】本题考查的是实数的运算及解一元二次方程,熟知解一元二次方程的方法是解答此题的关键.18.(8分)已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.【分析】(1)利用待定系数法求出一次函数解析式,代入计算即可.(2)利用函数表达式,依据x 的取值范围,即可得到y 的取值范围.【解答】解:(1)y 与(2)x -成正比例,∴设(2)y k x =-,0k ≠,由题意得,2(12)k -=-,解得,2k =,y ∴与x 的函数表达式为24y x =-;(2)当2x =时,2240y =⨯-=,当1x =-时,246y =--=-,∴当12x -<<时,y 的取值范围为:60y -<<.【点评】本题考查的是待定系数法求一次函数解析式,掌握待定系数法求一次函数解析式一般步骤是解题的关键.19.(8分)在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△111A B C ,使它与ABC ∆关于y 轴对称;(2)点A 的对称点1A 的坐标为 (3,5)- ;(3)求△111A B C 的面积.【分析】(1)依据轴对称的性质,即可得到△111A B C ,使它与ABC ∆关于y 轴对称;(2)依据点A 的对称点1A 的位置,即可得到坐标;(3)依据割补法进行计算,即可得出△111A B C 的面积.【解答】解:(1)如图所示,△111A B C 即为所求;(2)如图所示,点A 的对称点1A 的坐标为(3,5)-;故答案为:(3,5)-;(3)由题可得,△111A B C 的面积为11144142423162437222⨯-⨯⨯-⨯⨯-⨯⨯=---=. 【点评】本题主要考查了利用轴对称变换作图,解题的关键是熟练掌握对称轴的性质.20.(8分)如图,ABC ∆中,B C ∠=∠,点D 、E 在边BC 上,且AD AE =,求证:BE CD =.【分析】根据等腰三角形的性质得出BDA CEA ∠=∠,进而利用全等三角形的判定方法即可得出ABD ACE ∆≅∆,则结论可得出.【解答】证明:AD AE =,ADE AED ∴∠=∠,BDA CEA ∴∠=∠,在ABD ∆和ACE ∆中B C BDA CEA AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABD ACE AAS ∴∆≅∆.BD CE ∴=,BE CD ∴=.【点评】本题考查了全等三角形的判定与性质,根据等边对等角的性质得到三角形全等的条件是解题的关键.21.(10分)如图,四边形ABCD 中,5AC =,4AB =,12CD =,13AD =,90B ∠=︒.(1)求BC 边的长;(2)求四边形ABCD 的面积.【分析】(1)5AC =,4AB =,90B ∠=︒,由勾股定理可得3BC =;(2)由已知可得ACD ∆是直角三角形,四边形ABCD 的面积11345123622=⨯⨯+⨯⨯=. 【解答】解:(1)5AC =,4AB =,90B ∠=︒,3BC ∴=; (2)12CD =,13AD =,ACD ∴∆是直角三角形,∴四边形ABCD 的面积11345123622=⨯⨯+⨯⨯=. 【点评】本题考查三角形的面积;熟练掌握勾股定理,灵活运用勾股定理是解题的关键.22.(10分)一次函数(0)y kx b k =+≠的图象为直线l .(1)若直线l 与正比例函数2y x =的图象平行,且过点(0,2)-,求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值.【分析】(1)根据平行线的性质得出2k =,再把点(0,2)-代入求出b 即可;(2)先求出一次函数y kx by =+轴的交点,再利用三角形的面积公式得到关于b 的方程,解方程即可求出b 的值.【解答】解:(1)根据题意得:2k =,2y x b ∴=+,把点(0,2)-代入得:2b =-,∴一次函数的解析式为22y x =-;(2)令0x =,则y b =,函数图象与两坐标轴围成的三角形面积为3,∴13||32b⨯⨯=,即||2b=,解得:2b=±.【点评】本题考查两条直线相交或平行问题,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征和三角形的面积公式,有一定的综合性.23.(10分)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC 长分别为13米、20米.(1)若拉索AB AC⊥,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.【分析】(1)根据勾股定理即可得到结论;(2)根据勾股定理即可得到结论.【解答】解:(1)AB AC⊥,90BAC∴∠=︒,AB、AC长分别为13米、20米,22221320569BC AB AC m∴=++,答:固定点B、C569m;(2)21BC=,21BD CD∴=-,AD BC⊥,2222AB BD AC CD∴-=-,22221320(21)BD BD∴-=--,5BD∴=,222213512AD AB BD∴=--=.【点评】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.24.(12分)小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()s km 与所用时间()t h 之间的函数关系.试根据函数图象解答下列问题:(1)小明在途中停留了 2 h ,小明在停留之前的速度为 /km h ;(2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t h =时,两人同时到达乙地,求t 为何值时,两人在途中相遇.【分析】(1)由图象中的信息即可得到结论;(2)利用待定系数法解答即可;(3)根据题意求出小华的速度,再列方程解答即可.【解答】解:(1)小明在途中停留了2h ,小明在停留之前的速度为10/km h ;故答案为:2;10;(2)设线段BC 的函数表达式为s kt b =+,420535k b k b +=⎧⎨+=⎩, 解得1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为1540s t =-;(3)甲乙两地的距离为:2015(64)50+⨯-=(千米),小华的速度为:50(61)10(/)km h ÷-=,10(1)20t -=,解得3t =.答:t为3时,两人在途中相遇.【点评】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,理解问题的过程,并能通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.25.(12分)已知ABC∆.(1)在图中用直尺和圆规作出B∠的平分线和BC边的垂直平分线交于点O(保留作图痕迹,不写作法).(2)在(1)的条件下,若点D、E分别是边BC和AB上的点,且CD BE=,连接OD,OE 求证:OD OE=;(3)如图,在(1)的条件下,点E、F分别是AB、BC边上的点,且BEF∆的周长等于BC 边的长,试探究ABC∠与EOF∠的数量关系,并说明理由.【分析】(1)利用尺规根据要求作出点O即可.(2)构造全等三角形解决问题即可.(3)结论:2180=.首先证明EOF ABC∠+∠=︒.在CB上取一点D,使得CD BE∆≅∆,推出EOF FODOFE OFD SSS()∠=∠,再证明四边形BEOD对角互补即可解决问题.【解答】解:(1)如图1中,点O即为所求.(2)如图1中,连接OC.=,OB OC∴∠=∠,OBC OCB∠=∠,EBO OBC∴∠=∠,EBO DCO=,=,BO COBE CD∴∆≅∆,()OBE OCD SAS∴=.OE OD(3)如图2中,结论:2180∠+∠=︒.EOF ABC理由:在CB上取一点D,使得CD BE=.由(2)可知:OE OD=,++==++,BE BF EF BC BF DF CD∴=,EF DF=,OF OF∴∆≅∆,()OFE OFD SSS∴∠=∠,EOF FOD∆≅∆,OBE OCDBEO ODC∴∠=∠,∠+∠=︒,180ODC BDOBEO BDO∴∠+∠=︒,180∴∠+∠=︒,EOD ABC180∴∠+∠=︒.EOF ABC2180【点评】本题考查作图-基本作图,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.26.(14分)如图,一次函数4(0)y kx k k=+≠的图象与x轴交于点A,与y轴交于点B,且经过点(2,)C m.(1)当92m=时;①求一次函数的表达式;②BD平分ABO∠交x轴于点D,求点D的坐标;(2)若AOC∆为等腰三角形,求k的值;(3)若直线42y px p=-+也经过点C,且24p<,求k的取值范围.【分析】(1)①由待定系数法可求解析式;②如图1,过点D作DE AB⊥于E点,可证BED BOD∆≅∆,可得DE DO=,3BE BO==,由勾股定理可求解;(2)由两点距离公式可求解;(3)由两个解析式组成方程组可求m与p的关系,即可求解.【解答】解:(1)①当92m=时,∴点9 (2,)2 C,∴9242k k=+,34k∴=,∴一次函数的表达式为:334y x=+,②如图1,过点D作DE AB⊥于E点,一次函数334y x =+的图象与x 轴交于点A ,与y 轴交于点B , ∴点(0,3)B ,点(4,0)A -4AO ∴=,3BO =,221695AB AO BO ∴=+=+, BD 平分ABO ∠,ABD DBO ∴∠=∠,且BD BD =,90BED BOD ∠=∠=︒,()BED BOD AAS ∴∆≅∆DE DO ∴=,3BE BO ==,2AE ∴=,222AD DE AE =+,22(4)4DO DO ∴-=+,32DO ∴=, ∴点3(2D -,0); (2)一次函数4(0)y kx k k =+≠的图象与x 轴交于点A ,04kx k ∴=+,4x ∴=-,∴点(4,0)A -4AO ∴=,AOC ∆为等腰三角形4AO CO ∴==,22(20)(0)16m ∴-+-=,m ∴=±∴点(2,C ±,24k k ∴±=+k ∴=; (3)直线42y px p =-+与一次函数4y kx k =+交于点C ,∴24242m k k m p p =+⎧⎨=-+⎩ 31p k ∴=-+,24p <,2314k ∴-+<, 113k ∴-<-. 【点评】本题是一次函数综合题,考查了待定系数法求解析式,全等三角形的判定和性质,等腰三角形的性质,两点距离公式,勾股定理等知识,灵活运用这些性质进行推理是本题的关键.。

姜堰数学试卷八年级答案

姜堰数学试卷八年级答案

一、选择题(每题3分,共30分)1. 若a、b、c是等差数列的三项,且a+b+c=12,a+c=8,则b的值为:A. 2B. 4C. 6D. 8答案:B2. 下列函数中,为一次函数的是:A. y=x^2+1B. y=2x+3C. y=3x^2+1D. y=√x答案:B3. 已知正方形的边长为4,则其对角线的长度为:A. 4B. 8C. 6D. 12答案:C4. 若等比数列的前三项分别为a、b、c,且a+b+c=12,b=4,则该数列的公比为:A. 2B. 3C. 4D. 6答案:A5. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数为:A. 75°B. 90°C. 105°D. 120°答案:A6. 下列各数中,不是有理数的是:A. √4B. √9C. √16D. √-1答案:D7. 已知一元二次方程x^2-5x+6=0,则该方程的解为:A. x=2或x=3B. x=1或x=4C. x=2或x=5D. x=1或x=6答案:A8. 下列函数中,为反比例函数的是:A. y=x^2+1B. y=2x+3C. y=1/xD. y=√x答案:C9. 已知等差数列的前三项分别为a、b、c,且a+b+c=12,a+c=8,则该数列的公差为:A. 2B. 3C. 4D. 5答案:A10. 若等比数列的前三项分别为a、b、c,且a+b+c=12,b=4,则该数列的首项为:A. 2B. 4C. 6D. 8答案:A二、填空题(每题5分,共20分)11. 已知等差数列的前三项分别为2、5、8,则该数列的公差为______。

答案:312. 若等比数列的前三项分别为2、4、8,则该数列的公比为______。

答案:213. 在△ABC中,若∠A=30°,∠B=45°,则∠C的度数为______。

答案:105°14. 已知一元二次方程x^2-5x+6=0,则该方程的解为______。

泰州市姜堰区八年级上学期期末

泰州市姜堰区八年级上学期期末

2019~2020学年度第一学期期末考试八年级数学试题(满分:150分考试时间:120分钟)注意请将所有题目的答案填到答题纸上,答在试卷上无效。

一、选择题:(本大题共6小题,每小题3分,计18分)1.下列图案中不是轴对称图形的是A B C D2.我国2016年10月17日7时30分发射升空的神舟十一号载人飞船和天宫二号对接时的轨道高度是393000米,用科学计数法表示,其结果为A.3.93×105米B.3.9×105米C.3.93×104米D.3.9×104米3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是A.AB=AC B.BD=CDC.∠B=∠C D.∠BDA=∠CDA4.若分式11-x有意义,则的取值范围是A.≠1 B.=1 C.>1D.<15.一次函数y=m+|m﹣1|的图象过点(0,2),且y随的增大而减小,则m的值为A.﹣1 B.1 C.3 D.﹣1或36.下列命题:aa=33)1(;aa=2)2(;(3)无限小数都是无理数;(4)有限小数都是有理数;(5)实数包括正实数和负实数两类,其中正确命题的个数有A.1个B.2个C.3个D.4个二、填空题:(本大题共10小题,每小题3分,计30分)7.49的算术平方根是.8.如果分式xx--242的值为零,那么=.9.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC 直角三角形.(填“是”或“不是”)10.若031=-+-yx,则_____=xy.11.若点A(),21a a+在第一、三象限的两坐标轴夹角的平分线上,则a= .第3题图12.某班在一次适应性考试中,分数段在140-150分的频率为0.2,在此分数段共有8人,则该班有人.13.如图,平面直角坐标系oy 中,直线y 1=1+b 1的图像与直线y 2=2+b 2的图像相交于点(―1, ―3),当y 1<y 2时,实数的取值范围为 .14.底角为45°的等腰三角形一边长为4cm ,则此等腰三角形的底边长= cm .15.在△ABC 中,AB=2cm ,AC=1cm ,AD 平分∠BAC ,则△ABD 与△ACD 的面积之比是__________.16.如图,在平面直角坐标系oy 中,点A (0,6),点B (-8,0),过A 点的直线交轴于点C ,当△ABC 是以AB 为底的等腰三角形时,直线AC 对应的函数关系式为 .三、解答题(本大题共10小题,共102分.)17.(本题8分)(1)计算:()21333π-⎛⎫-+- ⎪⎝⎭(2)解方程:x x --21—21-x =318.(本题8分)已知3+81=0,求代数式423--x x ÷⎪⎭⎫ ⎝⎛--+252x x 的值.19.(本题10分)某初级中学围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(每位学生必须从“羽毛球、跳绳、足球、篮球、其他”五个选项中选一项且只能选填一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少学生进行了抽样调查?第9题图x2x+b 2第13题图 第16题图(2)本次抽样调查中,最喜欢篮球活动的有多少名学生?占被调查人数的百分比是多少? (3)若该校九年级共有300名学生,图2是根据该校各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?20.(本题10分)在平面直角坐标系oy 中,点A 、B 、C 的坐标分别为(-1,0)、(-2,3)、(-3,1). (1)作出△ABC 关于轴对称的 △A 1B 1C 1 ,直接写出B 1、C 1两点的坐标:B 1( , )C 1( , ) .(2)写出△ABC 的面积,S △ABC = . (3)在y 轴上找一点D ,使得BD+DA 的值最小, 求D 点的坐标.21.(本题10分)已知y 与4+2成正比例,当=3时,y =14. (1)求y 与之间的函数表达式;(2)若点),2(1y 与),1(2y 在该函数图像上,比较1y 与2y 的大小关系.图2七年级22.(本题10分)如图,在△ABE 中,AB=AE ,C 、D 是BE 边上两点且AC=AD , 求证:BC=DE .23.(本题10分)网购已成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原分拣450件包裹所需时间相同,求现在平均每人每天分拣多少件包裹?24.(本题10分)如图,△ABC 中,AD 是△ABC 的边BC 上的高,E 、F 分别是AB 、AC 的中点,AC=13、AB=20、BC=21. (1)求四边形AEDF 周长; (2)求△ABC 的面积.25.(本题12分)某蔬菜基地要把一批新鲜蔬菜运往外地,有汽车和火车两种运输方式可供选择,其中汽车运输的主要参考数据如下表:第24题图火车运输总费用y 2(元)与运输路程(m)之间的函数图像如上图所示:(1)请分别写出汽车、火车运输的总费用y 1(元)、y 2(元)与运输路程(m)之间的函数关系; (2)若蔬菜基地先由汽车把蔬菜运往60m 外的中转站再用火车运送(中转时间忽略不计),写出运输总费用y 与运输总路程(m)之间的函数关系,并求出当运输总路程为200m 时的总费用; (3)若只选择一种运输方式,你认为哪种运输方式运输的总费用较少?并说明理由.26.(本题14分)如图所示,在平面直角坐标系oy 中,直线y =3+3交轴于点B ,交y 轴于点A ,过点C (1,0)作轴的垂线l ,将直线l 绕点C 按逆时针方向旋转,旋转角为α(0°<α<180°). (1)当直线l 与直线y =3+3平行时,求出直线l 的解析式;(2)若直线l 经过点A ,①求线段AC 的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y 轴交于D 点,当△ABD 、△ACD 、△BCD 均为等腰三角形时,直接写出符合条件的旋转角α的度数.备用图(1)备用图(2)八上期末数学参考答案一、 选择题1、B2、A3、B4、A5、A6、B 二、填空题7、78、-29、是 10、3 11、-1 12、40 13、<-114、4或24(或写成82) 15、21 16、6724+=x y 三、解答题17、(1)()21333π-⎛⎫-+- ⎪⎝⎭759351=-+-+=(2)=2 检验:当=2时,-2=0. ∴=2是增根,原方程无解。

江苏省泰州市姜堰区2019-2020学年八年级上学期期末数学试题(word无答案)

江苏省泰州市姜堰区2019-2020学年八年级上学期期末数学试题(word无答案)

江苏省泰州市姜堰区2019-2020学年八年级上学期期末数学试题(word无答案)一、单选题(★) 1 . 下列图案中,不是轴对称图形的是()A.B.C.D.(★★) 2 . 在、、、中,无理数的个数有()A.1个B.2个C.3个D.4个(★) 3 . 下列各组数不是勾股数的是()A.,,B.,,C.,,D.,,(★★) 4 . 已知点P(1+m,3)在第二象限,则的取值范围是()A.B.C.D.(★★) 5 . 如图,已知△ABC的三条边和三个角,则甲、乙、丙三个三角形中和△ABC全等的是()A.甲和乙B.甲和丙C.乙和丙D.只有乙(★★) 6 . 下列图象中,可以表示一次函数与正比例函数(,为常数,且)的图象的是()A.B.C.D.二、填空题(★) 7 . 4的平方根是.(★★) 8 . 3.145精确到百分位的近似数是____.(★) 9 . 点(−1,3)关于轴对称的点的坐标为____.(★★) 10 . 已知一次函数,若y随x的增大而减小,则的取值范围是___.(★★) 11 . 若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;(★★) 12 . 已知一次函数与的图像交点坐标为(−1,2),则方程组的解为____.(★★) 13 . 如图,△ 中,,边的垂直平分线分别交、于点、,边的垂直平分线分别交、于点、,则△ 周长为____.(★★) 14 . 如图,函数和的图像相交于点A(m,3),则不等式的解集为____.(★★) 15 . 若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.(★★) 16 . 如图,长方形中,,,点在边上,且,点是边上一点,连接,将四边形沿折叠,若点的对称点恰好落在边上,则的长为____.三、解答题(★★) 17 . (1)计算:(2)解方程:(★★) 18 . 已知与成正比例,且当时,.(1)求与的函数表达式;(2)当时,求的取值范围.(★★) 19 . 在每个小正方形的边长为1的网格中,建立如图所示的平面直角坐标系.(1)在网格中画出△ ,使它与△ 关于轴对称;(2)点的对称点的坐标为;(3)求△ 的面积.(★★) 20 . 如图,△ 中,,点、在边上,且,求证:(★★) 21 . 如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.(★★) 22 . 一次函数的图像为直线.(1)若直线与正比例函数的图像平行,且过点(0,−2),求直线的函数表达式;(2)若直线过点(3,0),且与两坐标轴围成的三角形面积等于3,求的值.(★★) 23 . 如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米.(1)若拉索AB⊥AC,求固定点B、C之间的距离;(2)若固定点B、C之间的距离为21米,求主梁AD的高度.(★★) 24 . 小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程与所用时间之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____ ,小明在停留之前的速度为____ ;(2)求线段的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,时,两人同时到达乙地,求为何值时,两人在途中相遇.(★★★★) 25 . 已知△ .(1)在图 中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;(3)如图 ,在(1)的条件下,点、分别是、边上的点,且△ 的周长等于边的长,试探究与的数量关系,并说明理由.(★★★★) 26 . 如图,一次函数的图像与轴交于点,与轴交于点,且经过点.(1)当时;①求一次函数的表达式;② 平分交轴于点,求点的坐标;(2)若△ 为等腰三角形,求的值;(3)若直线也经过点,且,求的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019~2020学年度第一学期期末考试
八年级数学试题
(考试时间:120分钟满分:150分)
命题人:八年级数学命题组审校:初中数学学科工作室
一、选择题(3分×6=18分)
1.下列四个图形中,是轴对称图形的是
A.B.C.D.2.点P(2,-5)关于x轴对称的点的坐标为
A.(-2,5)B.(2,5)C.(-2,-5)D.(2,-5)3.线段a、b、c的长度分别如下,能够以a、b、c为边长构成直角三角形的一组是A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6 4.已知△ABC中AB=AC,∠B=50°,则∠C的度数为
A.50°B.65°C.80°www D.50°或65°5.下列调查中,适宜采用普查方式的是
A.了解一批圆珠笔的寿命
B. 检查一枚用于发射卫星的运载火箭的各零部件
C.考察人们保护海洋的意识
D. 了解全国九年级学生的身高现状
6.一次函数y=kx+b(k≠0)的图像如图所示,则不等式kx+b-2>0的解集为
A.x>-1 B.x<-1 C.x>2 D.x>0
二、填空题(3分×10=30分)
7.比较大小:“>”或“<”).
8.若分式
1
5
x
有意义,则x的取值范围是.
9.从某校七年级学生中抽取100名学生,调查该校七年级学生双休日用于做数学作业的时间,调查中的样本容量是________________.
10.某市在一次扶贫助残活动中,共捐款3185800元,将3185800用科学记数法表示为________________
(精确到万位).
11.Rt △ABC 中,∠C =90°,点D 是AB 边的中点,则AB
CD =__________. 12.若点A 的坐标(x ,y )满足条件(x -3)2+||y +2=0,则点A 在第________象限.
13. 已知一次函数y =(m +4)x +2,若y 随x 的增大而减小,则m 的取值范围是__________.
14.某班围绕“舞蹈、乐器、声乐、其他四个项目中,你最喜欢哪项活动(每人限选一项)”的问题,
对全班50名学生进行问卷调查,根据调查结果绘制成如图所示的扇形统计图,则该班喜欢乐器的学生有_______名.
第14题图 第15题图 第16题图
15.在长、宽都是3,高是8的长方体纸箱的外部,一只蚂蚁从顶点A 沿纸箱表面爬到顶点B ,那么它
所爬行的最短路线的长是 .
16.如图,点A 、B 的坐标分别为(0,3)、(4,6),点P 为x 轴上的一个动点,若点B 关于直线AP 的对
称点B '恰好落在坐标轴上....
,则点B '的坐标为________________. 三、解答题
17.(12分)计算:(1
(2)
222b a ab a b a b a b ++-+-;
18.(8分)解方程:
12211
x x x +=-+.
19.(8分)小明用15元买软面笔记本,小丽用20元买硬面笔记本.每本硬面笔记本比软面笔记本贵1元,如果小明和小丽买到的笔记本数量相同,那么软面笔记本和硬面笔记本每本各多少元?
20.(8分)如图,△ABC中,AB=AC,∠C=70°,作AB的垂直平分线交AB于E,交AC于D,求∠DBC 的度数.
21. (10分)如图,在△ABC中,CD是AB边上高,若AD=16,CD=12,BD=9.
(1)求△ABC的周长.
(2)判断△ABC的形状并加以证明。

22. (10分)如图,在四边形ABCD中,∠BAD =∠BCD=90°,BC=D C.延长AD到E点,使DE=A B.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△ED C.
23.(10分)已知正比例函数图像(记为直线l1)经过(1,-1)点,现将它沿着y轴的正方向向上平移1个单位得到直线l2,
(1)求直线l2的函数表达式;
(2)若直线l2与x轴、y轴分别交于A点、B点,求△AOB的面积.
24.(10分)△ABC在平面直角坐标系中的位置如图所示.
(1)将△ABC沿x轴翻折得到△A1B1C1,作出△A1B1C1;
(2)将△A1B1C1向右平移3个单位后得△A2B2C2,作出△A2B2C2.
(3)在x轴上找一点P,使P A1+PC2的值最小,则点P的坐标为.
(不写解答过程,直接写出结果)
25. (12分)如图(1),公路上有A、B、C三个车站,一辆汽车从A站以速度v 1匀速驶向B站,到达B站后不停留,以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图像如图(2)所示.
(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;(2)求出v2的值;
(3)若汽车在某一段路程内刚好用50分钟行驶了90千米,求这段路程开始时x的值.
26.(14分)已知直线
4
4
3
y x
=-+与x轴和y轴分别交与A、B两点,另一直线过点A和点C(7,3).
(1)求直线AC对应的函数关系式;.
(2)求证:AB⊥AC
(3)若点P是直线AC上的一个动点,点Q是x轴上的一个动点,且以P、Q、A为顶点的三角形与△AOB全等,求点Q的坐标。

.
2019~2020学年度第一学期期末考试
八年级数学参考答案
1.A
2.B
3.C
4.A
5.B
6.D
7.>
8.5≠x 9.100 10. 61019.3⨯ 11.21 12.四 13.4-<m
14.20 15.10 16.)0,4(-)2,0(-()8,0 17.(1)218 (2)b a b a -+ 18. x =3
19.软面笔记本每本3元,硬面笔记本每本4元
20.30° 21.(1)60 (2)直角三角形,证明略
22.略
23.(1)y =-x +1 (2) 21 24.(1)(2)略(3)(1,0)
25.(1)y =100x 0<x <3 (2)120 (3)2.5 26.(1)4943-=x y (2)略 (3)(7,0)(8,0)(-1,0)(-2,0)。

相关文档
最新文档