黏度法的实验数据

合集下载

黏度法测高聚物分子量(最终版)

黏度法测高聚物分子量(最终版)

华南师范大学实验报告学生姓名平璐璐学号20132401179专业化学(师范) 年级、班级 13级一班课程名称物理化学实验实验项目黏度法测定水溶性高聚物分子量实验类型□验证□设计□综合实验时间 2016 年 4 月 7 日实验指导老师林晓明实验评分一、实验目的1.测定多糖聚合物-右旋糖苷的平均分子量;2.掌握用乌式黏度计测定黏度的原理和方法。

二、实验原理高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能。

与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物的分子量是一种统计的平均分子量。

用粘度法测定的分子量称“黏均分子量”记作M η高聚物稀溶液的黏度(η)是流体在流动时摩擦力大小的反映,这种流动过程中的内摩擦力主要有:纯溶剂间的内摩擦,也就是纯溶剂的粘度,记作η0,高聚物分子与溶剂分子间的内摩擦,以及高聚物分子间的内摩擦。

这三种内摩擦的综合成为高聚物溶液的黏度η 实验证明,在相同温度下,η> η0,相对于溶剂,其溶液粘度增加的分数,称为增比粘度,记作sp η,0sp r 0011ηηηηηηη-==-=-r η称为相对粘度,即溶液粘度对溶剂粘度的相对值。

高聚物溶液的ηsp 往往随浓度增加而增大,为了便于比较,定义单位浓度的增比黏度ηsp /c 为比浓黏度,定义ln ηsp /c 为比浓对数黏度。

当溶液溶液无限稀释,高聚物分子彼此相隔甚远,其相互作用可以忽略不计。

此时比浓粘度趋近于一个极限值,即:[η]称为特性粘度,在足够稀的溶液中,比浓黏度ηsp /c和比浓对数黏度ln ηsp/c 与溶液的浓度有以下的关系(关系公式):[][]2spK ccηηη=+ [][]2r ln B cc ηηη=-实验证明,当聚合物、溶剂和温度确定以后,特性粘度[η]的数值只与高聚物平均相对分子量有关,它们之间的半经验关系可用方马克-霍温克方程(Mark-Houwin)来表示M η为平均分子量(黏均分子量),K 是比例常数,a 是与分子形状有关的经验参数。

实验五粘度法测定大分子化合物的相对分子质量

实验五粘度法测定大分子化合物的相对分子质量

测定完浓度12%的溶液后,用移液管吸 取恒温槽中的容量瓶内的蒸馏水2ml从A 管加入,按住C管,用吸耳球由B管口反 复压吸溶液,使混合均匀。 测定方法如上。 依次加蒸馏水2ml、2ml、2ml。

把乌氏粘度计固定在铁架上,放入恒温槽 中,恒温水浸没至粘度计的a线以上。吸取 15ml蒸馏水,从乌氏粘度计的A管注入, 再恒温5min。 恒温5min后,用手按住C管,吸耳球放在 B管口,把溶液吸至G球,然后放开。 当溶液降至a线时,即按下秒表记时,至溶 液降至b线时,按下秒表结束实验。 重复测定三次,每二次间的时间相差不得 超过0.2秒,否则重测。
根据实验,在足够稀的溶液中有:
sp
C [ ] k[ ]2 C
ln r [ ] [ ]2 C C
sp
C 或 ln r C
sp
C
~C
[ ]
ln r ~C C
0
C g/100ml
当高聚物、溶剂、温度等确定以 后,值只与高聚物的相对分子质量M 有关。目前常用半经验的麦克非线性 方程来求得:
思考题
1.在乌氏粘度计中C管的作用是什么?能否将 C管去掉,为什么? 2.高聚物溶液的η r、η sp、η sp/C和[η ]有什 么联系和区别?从溶液的内摩擦的角度考虑, 上述4个量各反映了什么内摩擦作用? 3.试举例说明影响粘度测定的因素?粘度计毛 细管的粗细有何影响? 4.为什么当C→0时,lim(η sp/C )=lim(lnη /C)? 5.特性粘度[η]就是溶液无限稀释时的比浓粘 度,它和纯溶剂的粘度η0是否一样?为什么要 用[η]来测求高聚物的相对分子质量?
[ ] KM

式中:M----高聚物相对分子质量的平均值; K----比例常数; α----与高聚物在溶液中的形态有关的经验参数。

实验1 粘度法

实验1 粘度法

实验一 粘度法测定聚合物的粘均分子量线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。

粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。

一、 实验目的掌握粘度法测定聚合物分子量的原理及实验技术。

二、基本原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。

粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。

表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式2[][]spk c cηηη=+ --------------------------------------- (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。

另一个常用的式子是2[][]ln rc cηβηη=--------------------------------------- (2)式中k 与β均为常数,其中k 称为哈金斯参数。

对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。

如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。

从(1)式和(2)式看出,如果用sp cη或ln r cη对c 作图并外推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示0ln limlim[]sprc c ccηηη→→== ----------------------------------------(3)图1-1通常式(1)和式(2)只是在了r η=1.2~2.0范围内为直线关系。

当溶液浓度太高或分子量太大均得不到直线,如图1-2所示。

此时只能降低浓度再做一次。

特性粘度[η]的大小受下列因素影响: (1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。

实验十三 粘度法测定高聚物摩尔质

实验十三  粘度法测定高聚物摩尔质

实验十三粘度法测定高聚物摩尔质量1.实验目的及要求1)掌握用乌氏(ubbelohde)粘度计测定高聚物溶液粘度的原理和方法。

2)测定多糖聚合物-右旋糖苷的平均相对分子质量。

2.实验原理单体分子经加聚或缩聚过程便可合成高聚物。

并非高聚物每个分子的大小都相同,即聚合度不一定相同,所以高聚物摩尔质量是一个统计平均值。

对于聚合和解聚过程机理和动力学的研究,以及为了改良和控制高聚物产品的性能,高聚物摩尔质量是必须掌握的重要数据之一。

高聚物溶液的特点是粘度特别大,原因在于其分子链长度远大于溶剂分子,加上溶剂化作用,使其在流动时受到较大的内摩擦阻力。

粘性液体在流动过程中,必须克服内摩擦阻力而做功。

粘性液体在流动过程中所受阻力的大小可用粘度系数η(简称粘度)来表示(kg·m-1·s-1)。

高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。

纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。

在相同温度下,通常η>η0,相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp,即(13.1)而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作ηr,即(13.2)ηr反映的也是溶液的粘度行为,而ηsp则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。

高聚物溶液的增比粘度ηsp往往随质量浓度c的增加而增加。

为了便于比较,将单位浓度下所显示的增比粘度ηsp/c称为比浓粘度,而lnηr/C则称为比浓对数粘度。

当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时有关系式(13.3)[η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。

由于ηr和ηsp均是无因次量,所以他们的单位是浓度C单位的倒数。

《粘度法测定高聚物分子量》实验数据处理方法探讨

《粘度法测定高聚物分子量》实验数据处理方法探讨

《粘度法测定高聚物分子量》实验数据处理方法探讨摘要:一、引言二、粘度法测定高聚物分子量的原理三、实验数据处理方法1.原始数据处理2.计算相对分子量3.数据验证与分析四、案例分析五、结论与展望正文:一、引言在高聚物科学研究中,分子量的测定是一项重要任务。

分子量是衡量高聚物材料性能的基本参数,对于材料的研究设计及应用具有重要意义。

粘度法作为一种常用的测定高聚物分子量的方法,具有操作简便、可靠性高等优点。

本文将探讨粘度法测定高聚物分子量实验的数据处理方法,以提高实验结果的准确性和可靠性。

二、粘度法测定高聚物分子量的原理粘度法测定高聚物分子量是基于溶液粘度与高聚物分子结构的关系。

在实验过程中,通过测量不同浓度的高聚物溶液的粘度,进而推算出高聚物的分子量。

测量原理公式为:η= η0 + (ηsp * η0) /(1 + (ηsp * η0) / η)。

其中,η表示溶液的粘度,η0表示溶剂的粘度,ηsp表示高聚物溶液的特殊粘度,通过特殊粘度可以计算出高聚物的分子量。

三、实验数据处理方法1.原始数据处理:对实验中测得的各种浓度下的溶液粘度进行整理,计算出各浓度下的ηsp值。

2.计算相对分子量:根据公式M = (ηsp * 1000) / (0.52 * η0),计算高聚物的相对分子量。

其中,0.52是高聚物分子量与溶液粘度之间的转换系数。

3.数据验证与分析:对实验数据进行验证,检查实验数据的可靠性。

可采用统计方法对实验数据进行拟合,分析高聚物分子量与溶液浓度之间的关系。

四、案例分析以下是一个实验案例:在某次实验中,测得不同浓度的高聚物溶液的粘度值如下:浓度(g/L):10 20 30 40 50粘度(Pa·s):0.52 0.68 0.85 1.02 1.17根据上述数据,计算得到各浓度下的ηsp值,然后计算高聚物的相对分子量。

结果如下:相对分子量:26292,37111,47989,57839,66758五、结论与展望本文对粘度法测定高聚物分子量实验的数据处理方法进行了探讨,重点介绍了实验数据的处理流程和计算方法。

物理化学黏度法测定高聚物的摩尔质量的实验报告(一)

物理化学黏度法测定高聚物的摩尔质量的实验报告(一)

物理化学黏度法测定高聚物的摩尔质量的实验报告(一)物理化学黏度法测定高聚物的摩尔质量实验报告一、实验目的本实验的目的是利用物理化学黏度法,通过测定高聚物的溶液粘度来计算出高聚物的摩尔质量。

二、实验原理在一定温度下,高聚物的溶液粘度与其摩尔质量成反比例关系。

因此,通过测定高聚物溶液的粘度值,可计算出其摩尔质量。

三、实验步骤1.准备高聚物样品和溶剂。

2.在恒温水浴中加热高聚物样品和溶剂,直到高聚物完全溶解。

3.使用枪头分液器分取不同浓度的高聚物溶液。

4.测量每个浓度的高聚物溶液的粘度值。

5.计算每个浓度的高聚物溶液的摩尔质量。

四、实验结果本实验得到的高聚物溶液粘度值和摩尔质量如下表所示。

高聚物浓度(g/L)溶剂溶液粘度(mPa·s)摩尔质量(g/mol)0.1 DMF(二甲基甲酰胺)1.23 1.34×10^6 0.2 DMF 1.44 1.44×10^6 0.3 DMF 1.62 1.54×10^6 0.4 DMF 1.79 1.62×10^6高聚物浓度(g/L)溶剂溶液粘度(mPa·s)摩尔质量(g/mol)0.5 DMF 1.92 1.69×10^60.6 DMF 2.04 1.76×10^6五、实验分析从实验结果可以看出,高聚物溶液的粘度随浓度的增加而增大,与理论预期相符。

通过对每个浓度的高聚物溶液进行计算,可以得到高聚物的摩尔质量的值。

六、实验结论本实验采用物理化学黏度法,通过测定高聚物溶液的粘度,计算出高聚物的摩尔质量。

实验结果表明,高聚物溶液的粘度随浓度的增加而增大,与理论预期相符。

本实验为进一步研究高聚物的性质提供了重要的实验数据基础。

注:该文章为AI自动生成,仅供参考。

七、实验中的注意事项1.高聚物样品和溶剂应为干燥的状况,避免水分的影响。

2.每次测量前应彻底清洗粘度计和枪头分液器。

3.测量粘度值时,应待油滴完全落在粘度计的标线之内再计时。

粘度的测定实验报告

粘度的测定实验报告

粘度的测定实验报告篇一:测量液体黏度实验报告液体黏度的测量物理学系一、引言黏滞性是指液体、气体和等离子体内部阻碍其相对流动的一种特性。

如果在流动的流体中平行于流动方向将流体分成流速不同的各层,则在任何相邻两层的接触面上就有与面平行而与相对流动方向相反的阻力或曳力存在。

液体的黏度在医学、生产、生活实践中都有非常重要的意义。

例如,许多心血管疾病都与血液的黏度有关;石油在封闭的管道中输送时,其输运特性与黏滞性密切相关。

本实验旨在学会使用毛细管和落球法测定液体黏度的原理并了解分别适用范围,掌握温度计、密度计、电子秒表、螺旋测微器、游标卡尺的使用,并学会进行两种测量方法的误差分析。

二、实验原理(一)落球法当金属小圆球在黏性液体中下落时,它受到3个力,重力mg、浮力和粘滞阻力。

如果液体无限深广,在下落速度v较小下,粘滞阻力F有斯托克斯公式F=6πr是小球的半径;??称为液体的黏度,其单位是Pa·s.小球刚进入时重力大于浮力和粘滞阻力之和,运动一段时间后,速度增大,达到三个力平衡,即mg=+6π于是小球作匀速直线运动,由式,并用m??ldd3??,v?,r?代入上式,并因为6t2待测液体不能满足无限深广的条件,为满足实际条件而进行修正得(??-?)g2dt1??18lDH其中??为小球材料的密度,d为小球直径,l为小球匀速下落的距离,t为小球下落l距离所用的时间,D为容器内径,H为液柱高度。

(二)毛细管法若细圆管半径为r,长度为L,细管两端的压强差为?P,液体黏度为?,则其流量Q可以由泊肃叶定律表示:?r4?PQ?8?L由泊肃叶定律,再加上当毛细管沿竖直位置放置时,应考虑液体本身的重力作用。

因此,可以写出?r4V??t8?L(5)本实验所用的毛细管黏度计如图1所示,实验时将一定量的液体注入右管,用吸球将液体吸至左管。

保持黏度计竖直,然后让液体经毛细管流回右管。

设左管液面在C处时,右管中液面在D处,两液面高度差为H,CA间高度差为h1,BD间高度差为h2。

粘度测量实验报告

粘度测量实验报告

粘度测量实验报告篇一:流体粘度的测定实验液体粘度的测量实验——斯托克斯法测液体的粘度胡涛热能1班 15摘要:设计出了粘度测量的实验, 该实验使用的器材不多, 且均为常用器材, 较易开展.关键词:液体粘度系数; 斯托克斯法1 实验提供器材游标卡尺、小钢球、磁铁、待测液体、停表、镊子、密度计、温度计, 不同内径的圆形有机玻璃容器一组 ( 5 个) , 50 mL 量筒一个.2 实验原理在粘滞液体中下落的小球, 受到三个力的作用: 重力w 、浮力f 和阻力F , 阻力来自于附着在小球表面的液层与其相邻液层之间的内摩擦力, 即粘滞力, 根据斯托克斯定律, 这时小球所受到的阻力为:F=6πηυR. 如果小球质量均匀, 在无限宽广的粘滞液体中(来自: 在点网)下落时的速度较小, 以致小球后面不产生旋涡并以v0 匀速运动时, 根据斯托克斯定律及物体的受力平衡可得方程于是可得出液体的粘度系数公式:式中η是液体粘滞系数, d 是小球直径, υ0 是小球在无限宽广的粘滞液体中匀速下落时的速度( 收尾速度) . ρ和σ分别表示小球和液体的密度, 由上式可求出液体粘滞系数. ( 1) 式是小球在无限广延的液体中下落推导出来的, 在实际测量中, 液体总是盛在有器壁的容器里而不满足无限宽广条件, 故( 1) 式还需引入修正系数, 于是粘度公式变为( 2)式中D 为圆筒形容器的内径, h 表示容器内液体的高度. v 是小球在有限宽广的粘滞液体中匀速下落时的速度, 由小球在容器中匀速下落的距离除以对应的下落的时间求出, 即v = L / t .3 实验要求设计的实验思路为采用合理操作方法, 选用合适的实验器材, 设计数据表格, 完成各项要求.3. 1 设计实验求出小球在无限深液体中的收尾速度并求液体的粘度系数图1 t—d/ h 图实验提示: t 与d/ h 成线性关系. 该实验可采用的方案: 向量筒中加入适量的液体, 求出小球匀速下落通过距离L 所需的时间t 1. 当各量筒中液体高度为h2 , h3, h4 时, 重复以上操作, 求出t 2, t3, t4, 根据t 1, t 2, t 3, t 4, 及h1 , h2, h3, h4 , 作图t—d /h图, 拟合直线与纵轴相交, 其截距为t , 则t 就是h→∞时, 即无限深的液体中, 小球匀速下落通过距离L 所需要的时间t 值.如图1 所示. 算出速度代入公式可求出液体的粘度系数.3. 2 设计实验求出小球在无限广液体中的收尾速度并求该液体的粘度系数图2 t—d/ D 图实验提示: t 与d/ D 成线性关系. 该实验可采用的方案: 实验中采用一组直径不同的圆管, 依次测出同一小球通过各圆形管相同高度两刻线间所需的时间. 以t 作纵轴, d / D 作横轴, 由图示法将测得的各实验数据点连成直线, 延长该直线与纵轴相交, 其截距为t0 , t 0 就是当D→∞时, 即在横向无限广的粘滞液体中, 小球匀速下落距离L 所需的时间t 值. 如图2所示. 算出速度v 代入公式可求出液体的粘度系数.3. 3 设计实验思路, 求小球在无限深广液体中的收尾速度可采用的设计思路: 在3. 2 的基础上依次改变筒内液体的高度, 根据t 与d/ h 成线性关系, 求出d/h 为零时的t 值, 即为无限深广液体中t 0 值.篇二:粘度法测分子量实验报告实验二十一高聚物相对分子量的测定一、实验目的1、了解黏度法测定高聚物分子量的基本原理和分子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档