江西省南昌市2018-2019学年高一下期中数学测试卷(附答案)

合集下载

2019学年江西省高一下学期期中考试数学试卷【含答案及解析】

2019学年江西省高一下学期期中考试数学试卷【含答案及解析】

2019学年江西省高一下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 下列命题正确的是(________ )A .第二象限角必是钝角______________ B.相等的角终边必相同C.终边相同的角一定相等_________ D.不相等的角终边必不相同2. 与-46 0°终边相同的角可表示为(________ )A .k·360 °+10 0°(k ∈ Z )B .k·360 °+43 3°(k ∈ Z )C. k·360 °+ 2 60°(k ∈ Z )D .k·360 °- 2 60°(k ∈ Z )3. 函数的最小正周期为()A. B. C. D.4. 已知向量反向,下列等式中成立的是(________ )A.B.C._________________________________D.5. 己知 ,则与共线的条件为(________ )A. ___________B. ___________C. _________D.或6. 已知函数,则(________ )A.与都是奇函数________________________B.与都是偶函数C.是偶函数,是奇函数________D.是奇函数,是偶函数7. 函数的图象的一条对称轴方程是(________ )A._________ B. ______________ C.____________________ D.8. 如果,那么()A .B . ________C .D .9. 如图,曲线对应的函数是(________ )A. y= - sin| x | ___________ B. y=sin| x |_________C. y=|sin x |________________________ D. y= - |sin x |10. 设,,则有(________ )A. ___________B. ______________C. ______________D.11. 函数的单调递减区间是(_________ )A.B.C.D.12. 给出下列命题:其中正确命题的序号是(_________ )①已知 ,若 ,则 =1, =4②不存在实数 ,使③ 是函数的一个对称轴中心④ 已知函数 .A.①②________________________ B.②④________________________C.①③____________________ D.④二、填空题13. 已知正方形 ABCD 的边长为1, = a , = b , = c ,则| a +b +c |等于_________________ .14. , 当时,,则 =___________________________________ .15. ,则______________ .16. 设函数满足且当时,又函数 ,则函数在上的零点个数为 _____________ .三、解答题17. 平面内给定三个向量: = ( 3, 2 ) , = ( -1, 2 ) , = ( 4, 1 ) .( 1 )求 ;( 2 )若 , 求实数的值.18. 已知角终边上一点P(-3,4),求:(1)(2)的值。

2018-2019学年高一数学下学期期中试题(含解析)

2018-2019学年高一数学下学期期中试题(含解析)

2018-2019学年高一数学下学期期中试题(含解析)注意事项:1.答卷前,考生务必将自己所在的班级、姓名、学号填写在答题卡上.2.选择题每小题选出答案后,用2B铅笔把答题卡.上对应题目选项的答案信息涂黑,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置上.考试结束后,将答题卡交回.一、选择题(本题共12个小题,每小题5分,共60分,每小题的四个选项中,只有一个是正确的)1.已知,,且,则()A. 2B. 1C. 0D. -1【答案】D【解析】∵,∴∵∴∴故选D2.在中,角,,所对边分别是,,,若,,,则角()A. B. C. D.【答案】C【解析】根据余弦定理,,选C.3.是顶角为的等腰三角形,且,则()A. B. C. D.【答案】C【解析】【分析】利用已知条件求出向量的长度以及向量的夹角,然后求解向量的数量积即可.【详解】解:是顶角为的等腰三角形,且,则,则.故选:.【点睛】本题考查向量的数量积的应用及运算,是基本知识的考查.4.在数列中,,且,则()A. B. C. D.【答案】B【解析】【分析】当时,可求出,当时,得,即可得数列为等比数列.【详解】解:当时,则,当时,由得故数列是以为首项等比数列故选【点睛】本题考查由数列的递推公式求数列的通项公式,属于基础题.5.记等差数列的前项和为,若,则该数列的公差()A. 2B. 3C. 6D. 7【答案】B【解析】【详解】,6.等比数列中,,则等于( )A. 16B. ±4C. -4D. 4【答案】D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.7.已知平面向量满足,且,则向量的夹角为A. B. C. D.【答案】A【解析】【分析】由,结合可得,利用平面向量的数量积公式可得结果.【详解】,,所以,可得,即,,设两向量夹角为,则,,,即为,故选A.【点睛】本题主要考查向量的模、夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).8.数列的前项和为,若,则()A. B. C. D.【答案】B【解析】【分析】利用裂项相消法求数列的前项和为.【详解】解:故选【点睛】本题考查裂项相消法求数列的前项和为,属于基础题.9.中,角,,对边分别为,,,,,,则()A. B. C. D.【答案】A【解析】【分析】利用正弦定理边化角求得,再利用余弦定理求边.【详解】,,,又,由余弦定理得故选【点睛】本题考查正弦定理和余弦定理在解三角形中的应用,属于基础题.10.若两个等差数列,的前项和分别为,且满足,则的值为()A. B. C. D.【答案】D【解析】【分析】把转化为,然后借助于已知得答案.【详解】解:等差数列、前项和分别为,,且,得.故选.【点睛】本题考查等差数列的性质,考查等差数列的前项和,考查数学转化思想方法,是中档题.11.在中,,,,在边的中线上,则的最小值为()A. B. C. D.【答案】A【解析】【分析】本题可设,然后将用向量作为基底向量表示出来,再根据向量的运算,即可将问题转化为二次函数求最值问题.【详解】解:由题意,画图如下:可设,,,.,..由二次函数的性质,可知:当时,取得最小值.故选:.【点睛】本题主要考查基底向量的设立以及用基底向量表示所求向量,最后转化为二次函数求最值问题,本题属基础题.12.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如将一定数目的点在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.如图所示,三角形数,,,……在这个自然数中三角形数的个数是()A. B. C. D.【答案】A【解析】【分析】求出这一列数的通项,即可求出在中三角形数的个数.【详解】解:由题意知,,……可归纳为则,故在中三角形数的个数为个.故选【点睛】本题考查数列的通项公式,及数列的项的计算,属于基础题.第Ⅱ卷(共90分)二、填空题:本大共4小题,每小题5分,满分20分.13.在ΔABC中,已知a=1,b=, A=30°,则B等于____________;【答案】或【解析】分析:根据正弦定理求解即可.详解:由正弦定理可知,解得,故解得或点睛:本题为易错题,根据大角对大边,正弦值在一、二象限均有取值,只要角大于角即可.14.如果数列的前项和,则此数列的通项公式__________.【答案】【解析】【分析】利用数列中与关系,得出,但,由此判定数列从第项起为等比数列,通项公式可求.【详解】解:当时,,得.当时,,得,当时,不成立,故数列为从第项起为等比数列.故答案为【点睛】本题考查利用数列中与关系求数列通项,考查等比数列判定,通项公式求解.需具有转化、变形、计算能力.15.某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是______.【答案】【解析】【分析】连结,由余弦定理可求,在中由正弦定理可求,利用面积公式分别求出,,即可求出四边形的面积.【详解】解:如图,连结,由余弦定理可知,故,,,,在中由正弦定理得:,即,故.故答案为【点睛】本题考查正弦定理、余弦定理及三角形面积公式,属于基础题.16.已知等差数列中,,公差d>0,则使得前n项和取得最小值时的正整数n的值是______.【答案】6或7【解析】【分析】将转化为的形式,得到,即,由此判断前或项的和最小.详解】]由且得,,且,即,即,即,故且最小.【点睛】本题主要考查利用基本元的思想,求等差数列的前项和取得最小值时的值.直接用等差数列的通项公式,将已知条件转化为的形式,由此得到为零,从而求得使等差数列的前项和取得最小值时的值.属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)an=2n–9,(2)Sn=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18.如图,在中,,是边上一点,,,,为锐角.(1)求角大小;(2)求的长.【答案】(1)(2)【解析】【分析】(1)在三角形中,利用正弦定理表示出,求出,确定出的度数;(2)在中,设,由余弦定理可得,即可求出的长.【详解】(1)在中,,,由正弦定理可得,,即,,为锐角,,(2)在中,设,由正弦定理可得,,即,,即.【点睛】考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.19.数列满足,,.(1)设,证明是等差数列;(2)求的通项公式.【答案】(1)证明见解析(2)【解析】【分析】(1)要证是等差数列,即证,即由已知可得.(2)由(1)可得,利用累加法,求出数列的通项公式.【详解】(1)由得,又,所以是首项为,公差为的等差数列;(2)由(1)得,,由得,,则,,,,,所以,又,所以的通项公式.【点睛】本题考查:①用定义法证明等差数列;②等差数列的通项公式;③累加法求数列的通项公式;形如“”的递推关系式,求通项时一般利用累加法,属于中档题.20.的内角,,的对边分别为,,,且.(1)求;(2)若,求【答案】(1)(2)【解析】【分析】(1)由正弦定理化简已知等式可得:,由余弦定理可得,结合范围,可求的值.(2)可设,,由余弦定理可得,再由余弦定理,得,利用同角三角函数基本关系式可求的值.【详解】(1)由及正弦定理可得:,即.由余弦定理可得,又,.(2),所以可设,,则由余弦定理可得,,再由余弦定理得,故,.【点睛】本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题.21.已知是等差数列,是各项为正数的等比数列,且,,.⑴求数列和的通项公式;⑵若,求数列的前项和.【答案】(1) ,;(2) .【解析】【分析】设等差数列的公差为,等比数列的公比为,根据等差数列和等比数列的通项公式,结合已知条件,,.可列出关于的方程组,解方程组求出的值,最后求出数列和的通项公式;(2)用错位相消法,结合等比数列前项和公式,可以求出数列的前项和.【详解】(1)设等差数列的公差为,等比数列的公比为,因为,,所以有,所以,.(2)因为,.,所以,因此①,②,①—②得:,.【点睛】本题考查了等比数列和等差数列的通项公式,考查了用错位相消法求数列前项和.22.已知、、、为同一平面上的四个点,且满足,,设,的面积为,的面积为.(1)当时,求的值;(2)当时,求的值.【答案】(1).(2).【解析】试题分析:(I)在中,由余弦定理得,在中,由余弦定理得到,即可求解的值;(II)由,得到,从而,由此能求出.试题解析:(Ⅰ)在中,由余弦定理得所以在中,由余弦定理得所以所以.(Ⅱ)因为,所以所以解得考点:余弦定理;三角函数的恒等变换.【方法点晴】本题主要考查了三角形的面积的求法等问题,其中解答中涉及到三角形的面积,余弦定理,三角恒等变换等知识点综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了转化与化归思想,解题是要认真审题,注意余弦定理的合理运用,试题有一定的难度,属于中档试题.2018-2019学年高一数学下学期期中试题(含解析)注意事项:1.答卷前,考生务必将自己所在的班级、姓名、学号填写在答题卡上.2.选择题每小题选出答案后,用2B铅笔把答题卡.上对应题目选项的答案信息涂黑,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置上.考试结束后,将答题卡交回.一、选择题(本题共12个小题,每小题5分,共60分,每小题的四个选项中,只有一个是正确的)1.已知,,且,则()A. 2B. 1C. 0D. -1【答案】D【解析】∵,∴∵∴∴故选D2.在中,角,,所对边分别是,,,若,,,则角()A. B. C. D.【答案】C【解析】根据余弦定理,,选C.3.是顶角为的等腰三角形,且,则()A. B. C. D.【答案】C【解析】【分析】利用已知条件求出向量的长度以及向量的夹角,然后求解向量的数量积即可.【详解】解:是顶角为的等腰三角形,且,则,则.故选:.【点睛】本题考查向量的数量积的应用及运算,是基本知识的考查.4.在数列中,,且,则()A. B. C. D.【答案】B【解析】【分析】当时,可求出,当时,得,即可得数列为等比数列.【详解】解:当时,则,当时,由得故数列是以为首项等比数列故选【点睛】本题考查由数列的递推公式求数列的通项公式,属于基础题.5.记等差数列的前项和为,若,则该数列的公差()A. 2B. 3C. 6D. 7【答案】B【解析】【详解】,6.等比数列中,,则等于( )A. 16B. ±4C. -4D. 4【答案】D【解析】分析:利用等比中项求解.详解:,因为为正,解得.点睛:等比数列的性质:若,则.7.已知平面向量满足,且,则向量的夹角为A. B. C. D.【答案】A【解析】【分析】由,结合可得,利用平面向量的数量积公式可得结果.【详解】,,所以,可得,即,,设两向量夹角为,则,,,即为,故选A.【点睛】本题主要考查向量的模、夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).8.数列的前项和为,若,则()A. B. C. D.【答案】B【解析】【分析】利用裂项相消法求数列的前项和为.【详解】解:故选【点睛】本题考查裂项相消法求数列的前项和为,属于基础题.9.中,角,,对边分别为,,,,,,则()A. B. C. D.【答案】A【解析】【分析】利用正弦定理边化角求得,再利用余弦定理求边.【详解】,,,又,由余弦定理得故选【点睛】本题考查正弦定理和余弦定理在解三角形中的应用,属于基础题.10.若两个等差数列,的前项和分别为,且满足,则的值为()A. B. C. D.【答案】D【解析】【分析】把转化为,然后借助于已知得答案.【详解】解:等差数列、前项和分别为,,且,得.故选.【点睛】本题考查等差数列的性质,考查等差数列的前项和,考查数学转化思想方法,是中档题.11.在中,,,,在边的中线上,则的最小值为()A. B. C. D.【答案】A【解析】【分析】本题可设,然后将用向量作为基底向量表示出来,再根据向量的运算,即可将问题转化为二次函数求最值问题.【详解】解:由题意,画图如下:可设,,,.,..由二次函数的性质,可知:当时,取得最小值.故选:.【点睛】本题主要考查基底向量的设立以及用基底向量表示所求向量,最后转化为二次函数求最值问题,本题属基础题.12.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如将一定数目的点在等距离的排列下可以形成一个等边三角形,这样的数被称为三角形数.如图所示,三角形数,,,……在这个自然数中三角形数的个数是()A. B. C. D.【答案】A【解析】【分析】求出这一列数的通项,即可求出在中三角形数的个数.【详解】解:由题意知,,……可归纳为则,故在中三角形数的个数为个.故选【点睛】本题考查数列的通项公式,及数列的项的计算,属于基础题.第Ⅱ卷(共90分)二、填空题:本大共4小题,每小题5分,满分20分.13.在ΔABC中,已知a=1,b=, A=30°,则B等于____________;【答案】或【解析】分析:根据正弦定理求解即可.详解:由正弦定理可知,解得,故解得或点睛:本题为易错题,根据大角对大边,正弦值在一、二象限均有取值,只要角大于角即可.14.如果数列的前项和,则此数列的通项公式__________.【答案】【解析】【分析】利用数列中与关系,得出,但,由此判定数列从第项起为等比数列,通项公式可求.【详解】解:当时,,得.当时,,得,当时,不成立,故数列为从第项起为等比数列.故答案为【点睛】本题考查利用数列中与关系求数列通项,考查等比数列判定,通项公式求解.需具有转化、变形、计算能力.15.某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是______.【答案】【解析】【分析】连结,由余弦定理可求,在中由正弦定理可求,利用面积公式分别求出,,即可求出四边形的面积.【详解】解:如图,连结,由余弦定理可知,故,,,,在中由正弦定理得:,即,故.故答案为【点睛】本题考查正弦定理、余弦定理及三角形面积公式,属于基础题.16.已知等差数列中,,公差d>0,则使得前n项和取得最小值时的正整数n 的值是______.【答案】6或7【解析】【分析】将转化为的形式,得到,即,由此判断前或项的和最小.详解】]由且得,,且,即,即,即,故且最小.【点睛】本题主要考查利用基本元的思想,求等差数列的前项和取得最小值时的值.直接用等差数列的通项公式,将已知条件转化为的形式,由此得到为零,从而求得使等差数列的前项和取得最小值时的值.属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)an=2n–9,(2)Sn=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{an}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{an}的通项公式为an=2n–9.(2)由(1)得Sn=n2–8n=(n–4)2–16.所以当n=4时,Sn取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18.如图,在中,,是边上一点,,,,为锐角.(1)求角大小;(2)求的长.【答案】(1)(2)【解析】【分析】(1)在三角形中,利用正弦定理表示出,求出,确定出的度数;(2)在中,设,由余弦定理可得,即可求出的长.【详解】(1)在中,,,由正弦定理可得,,即,,为锐角,,(2)在中,设,由正弦定理可得,,即,,即.【点睛】考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.19.数列满足,,.(1)设,证明是等差数列;(2)求的通项公式.【答案】(1)证明见解析(2)【解析】【分析】(1)要证是等差数列,即证,即由已知可得.(2)由(1)可得,利用累加法,求出数列的通项公式.【详解】(1)由得,又,所以是首项为,公差为的等差数列;(2)由(1)得,,由得,,则,,,,,所以,又,所以的通项公式.【点睛】本题考查:①用定义法证明等差数列;②等差数列的通项公式;③累加法求数列的通项公式;形如“”的递推关系式,求通项时一般利用累加法,属于中档题.20.的内角,,的对边分别为,,,且.(1)求;(2)若,求【答案】(1)(2)【解析】【分析】(1)由正弦定理化简已知等式可得:,由余弦定理可得,结合范围,可求的值.(2)可设,,由余弦定理可得,再由余弦定理,得,利用同角三角函数基本关系式可求的值.【详解】(1)由及正弦定理可得:,即.由余弦定理可得,又,.(2),所以可设,,则由余弦定理可得,,再由余弦定理得,故,.【点睛】本题主要考查了正弦定理,余弦定理,三角函数恒等变换的应用,考查了计算能力和转化思想,属于中档题.21.已知是等差数列,是各项为正数的等比数列,且,,.⑴求数列和的通项公式;⑵若,求数列的前项和.【答案】(1) ,;(2) .【解析】【分析】设等差数列的公差为,等比数列的公比为,根据等差数列和等比数列的通项公式,结合已知条件,,.可列出关于的方程组,解方程组求出的值,最后求出数列和的通项公式;(2)用错位相消法,结合等比数列前项和公式,可以求出数列的前项和.【详解】(1)设等差数列的公差为,等比数列的公比为,因为,,所以有,所以,.(2)因为,.,所以,因此①,②,①—②得:,.【点睛】本题考查了等比数列和等差数列的通项公式,考查了用错位相消法求数列前项和.22.已知、、、为同一平面上的四个点,且满足,,设,的面积为,的面积为.(1)当时,求的值;(2)当时,求的值.【答案】(1).(2).【解析】试题分析:(I)在中,由余弦定理得,在中,由余弦定理得到,即可求解的值;(II)由,得到,从而,由此能求出.试题解析:(Ⅰ)在中,由余弦定理得所以在中,由余弦定理得所以所以.(Ⅱ)因为,所以所以解得考点:余弦定理;三角函数的恒等变换.【方法点晴】本题主要考查了三角形的面积的求法等问题,其中解答中涉及到三角形的面积,余弦定理,三角恒等变换等知识点综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了转化与化归思想,解题是要认真审题,注意余弦定理的合理运用,试题有一定的难度,属于中档试题.。

江西省南昌市八一中学、洪都中学等七校2018-2019学年高一下学期期中考试数学试题附答案

江西省南昌市八一中学、洪都中学等七校2018-2019学年高一下学期期中考试数学试题附答案

江西省南昌市八一中学、洪都中学等七校 2018~2019学年度第二学期高一数学期中联考试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求) 1.若,则下列不等式不成立的是( )A .22ac bc > B .C .D .2. 若0a b <<且1a b +=,则下列四个数中最大的是( ) A .12B .bC .2abD .22a b + 3.在△ABC 中,4:2:3sin :sin :sin =C B A ,则cosB 的值为( ) A .41-B .78C .41D .11164.设等差数列{}n a 的前n 项和n S ,若1155S =,则279a a a ++=( ) A .15 B .27 C .18 D .12 5.中,若2cos a b C =,则的形状为( )A .直角三角形B .等腰或直角三角形C .等边三角形D .等腰三角形 6.在公差不为0的等差数列中,137161,,,a a a a =成等比数列,则公差d =( )A .34 B .15- C .56D .1 7.在 ABC ∆中,10,9,45a b A ===︒,则满足上述条件的三角形有( ) A .无数个B .2个C .0个D .1个8.若不等式0ax b ->的解集为(,1)-∞,则关于x 的不等式305bx ax +>-的解集为( ) A .(-5,3)B .(,5)(3,)-∞-+∞ C .(-3,5) D .(,3)(5,)-∞-⋃+∞9.在等比数列中,6124146,5a a a a ⋅=+=,则255a a = A .94或49 B .32 C .32或23 D .32或9410.设0,0.a b >>若3a 与3b的等比中项,则11a b+的最小值为( )A .12B .4C .34 D .4311.在△ABC 中,已知b =1,cos sin 0c A A b a +--=,sin 2sin AB=,则CA CB ⋅=( )A .1或1-B .2C .1D .2或2-12.已知n S 为等差数列{}n a 的前n 项和,若201920201a a >-且n S 有最小值,则使前n 项和0>n S 成立的最大自然数n 为( )A .4038B .4039 C. 4040 D .4041 二、填空题(本大题共4个小题. 每小题5分,共20分) 13.不等式2131x x ->+的解集为 14.已知数列{}n a 中,11a =-,且131n n a a n +=+-,则数列的通项公式n a = 15.不等式2(1)3(1)0m x m x m -+--<对任意的x R ∈恒成立,则m 的取值范围为16.下列说法中:①若,0x y >,满足2x y +=,则22x y +的最大值为4; ②若12x <,则函数1221y x x =+-的最小值为3; ③若,0x y >,满足25x y +=21x y +3④若,0x y >,满足3x y xy ++=,则x y +的最小值为2; ⑤函数2214sin cos y x x=+的最小值为9. 正确的...有________.(把你认为正确的序号全部写上) 三、解答题(本大题共6小题,共70分.解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 17.(本题满分10分) 已知等差数列满足 7114,6a a == .(1) 求通项公式n a ;(2) 设等比数列{}n b 满足13431,b a b a ==,求{}n b 的前n 项和n T .18.(本题满分12分) 在中,角的对边分别为,且cos 2cos cos a C b A c A =--(1)求角A 的大小; (2)若4a =,求周长的最大值19.(本题满分12分) 如图,D 是直角斜边BC 上一点.1若2AC DC =,,求的大小; 2若3AC DC =,,且,求AD 的长.20.(本题满分12分)解关于的不等式:2(24)80ax a x +-->21.(本题满分12分)2018年10月19日,由中国工信部、江西省政府联合主办的世界VR (虚拟现实)产业大会在南昌开幕,南昌在红谷滩新区建立VR 特色小镇项目.现某厂商抓住商机在去年用450万元购进一批VR 设备,经调试后今年投入使用,计划第一年维修、保养费用22万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该设备使用后,每年的总收入为180万元,设使用x 年后设备的盈利额为y 万元. (1)写出y 与x 之间的函数关系式;(2)使用若干年后,当年平均盈利额达到最大值时,求该厂商的盈利额.22.(本题满分12分)已知正项数列}{n a 的首项11=a ,前n 项和n S(1)求数列}{n a 的通项公式;(2)记数列}1{1+n n a a 的前n 项和为n T ,若对任意的*N n ∈,不等式25n T a a <-恒成立,求实数a 的取值范围.高一数学下学期期中联考参考答案一、选择题(5分×12=60分)二、填空题(5分×4=20分)13. (4,1)-- 14. 2352n n na -=15. 9,113⎛⎤⎥⎝⎦16. ③④⑤ 三、解答题(共70分)17.解:(1)由7111164106a a d a a d =+=⎧⎨=+=⎩得1112a d =⎧⎪⎨=⎪⎩,---------------- 4分故{}n a 的通项公式11122n n n a -+=+=.---------------- 5分 (2)由(1)得134312,16b a b a ====. 设{}n b 的公比为q ,则3418b q b ==,从而2q =,---------------- 8分 故{}n b 的前n 项和12(12)2212n n n T +-==--.---------------- 10分 18.解析:(1)因为cos 2cos cos a C b A c A =--所以由正弦定理可得sin cos 2sin cos sin cos A C B A C A =--sin cos sin cos 2sin cos A C C A B A +=-,sin()2sin cos A C B A +=-即sin 2sin cos B B A =-,因为sin 0B ≠, 所以1cos 2A =-即23A π=.---------------- 6分 (2)由(1)可得23A π=,则2221cos 22b c a A bc +-==- 22()()16162b c b c bc +∴+=+≤+,即b c +≤分当且仅当b c ==故当为等腰三角形,周长最大为4---------------- 12分 19.解:1,,,在中,由正弦定理可得:,2sin sin 2AC ADC DAC DC ∠=∠=, 3sin 4ADC π∴∠=---------------- 6分 2,,在中,由勾股定理可得:,可得:,,,,令,由余弦定理: 在中,,在中,,可得:,解得:,可得:---------------- 12分20.解:2(24)80ax a x +-->可得(2)(4)0ax x +->, 当0a =时,不等式的解为4x >;---------------- 2分 当0a >时,不等式的解为4x >或2x a<----------------- 5分 当0a <时, 即2()(4)0x x a+-<(1)当24a -<即12a <-时,不等式的解为24a a -<<, (2)当24a ->即102a -<<时,不等式的解为24a a <<-,(3)当24a -=即12a =-时,不等式的解集为空集---------------- 12分21.解 :(1)依题得: ()2118022445021604502x x y x x x x -⎡⎤=-+⨯-=-+-⎢⎥⎣⎦(x ∈N *)---------------- 6分 (2)4504502160160(2)160100y x x x x x =-+-=-+≤-= 当且仅当4502x x=时,即x =15时等号成立. ∴使用15年后平均盈利额达到最大值,该厂商盈利额为1500万元.-------------- 12分22.解:(1)当2n ≥时,12n n n a S S -=+,∴112()n n n n S S S S ---=+,即 所以数列{}n S 是首项为1,公差为12的等差数列,2n ≥), 分121n +++又∵25n T a a <-,∴212a a ≤-,解得3a ≤-或4a ≥.即所求实数a 的范围是3a ≤-或4a ≥.---------------- 12分。

江西省南昌市2018-2019学年高一下期中数学测试卷(附参考答案)

江西省南昌市2018-2019学年高一下期中数学测试卷(附参考答案)

2018-2019学年江西省南昌市高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},则A∩B=()A.{﹣1,0} B.{﹣1,0,1} C.{﹣2,﹣1,0} D.{﹣2,﹣1,1}2.设函数f(x)=,则f[f(3)]等于()A.﹣1 B.1 C.﹣5 D.53.函数y=sin2x是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数4.已知log b a c,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.函数f(x)=2x﹣1+x﹣5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.要得到函数y=sin(x﹣)的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.在数列{a n}中,a1=1,a n+1=a n+2,S n为{a n}的前n项和,若S n=100,则n等于()A.7 B.8 C.9 D.108.设a,b∈R,且a>b,则下列结论中正确的是()A.>l B.<C.|a|>|b| D.a3>b39.下列表达式中,正确的是()A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+β)=cosαcosβ+sinαsinβC.sin(α﹣β)=cosαsinβ﹣sinαcosβ D.cos(α﹣β)=cosαcosβ﹣sinαsinβ10.函数f(x)=3sin(ωx+φ)的部分图象如图,则f(x)的单调递增区间为()A.(kπ﹣,kπ﹣),k∈Z B.(2kπ﹣,2kπ﹣),k∈ZC.(2k﹣,2k﹣),k∈Z D.(k﹣,k﹣),k∈Z11.已知等比数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项和S n的值为()A.3n﹣1B.3(3n﹣1)C. D.12.菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.log64+log69﹣8=.14.不等式≥0的解集是.15.函数y=sinx﹣cosx的最大值为.16.设x>0,y>0,若log23是log2x与log2y的等差中项,则+的最小值为.三、解答题:本大题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤.17.向量=(4,﹣3),=(2x,y),=(x+,2),已知∥,⊥,求x,y的值.18.已知函数f(x)=的定义域是集合A,函数g(x)=ln(x﹣a)的定义域是集合B.(1)求集合A、B;(2)若C={x|2<1},求A∩C.19.已知函数f(x)=b•a x(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(﹣1,3)(1)试求a、b的值;(2)若不等式a x+b x≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.21.已知等比数列{a n},满足a n+1>a n,a1+a4=9,a2•a3=8.(1)求数列{a n}的通项公式;(2)求数列{(2n﹣1)a n}的前n项和T n.22.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案更合算?2018-2019学年江西省南昌市高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},则A∩B=()A.{﹣1,0} B.{﹣1,0,1} C.{﹣2,﹣1,0} D.{﹣2,﹣1,1}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},∴A∩B={﹣2,﹣1,0},故选:C.2.设函数f(x)=,则f[f(3)]等于()A.﹣1 B.1 C.﹣5 D.5【考点】函数的值.【分析】根据分段函数的表达式,利用代入法进行求解即可.【解答】解:f(3)=32﹣3﹣5=9﹣3﹣5=1,f(1)=1﹣2=﹣1,即f[f(3)]=f(1)=﹣1,故选:A3.函数y=sin2x是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】三角函数的周期性及其求法;正弦函数的奇偶性.【分析】根据三角函数的周期公式算出最小正周期T=π,结合正弦函数的奇偶性即可得到本题答案.【解答】解:∵函数y=sin2x中ω=2∴最小正周期为T==π又∵y=sin2x满足f(﹣x)=﹣f(x)∴函数y=sin2x是奇函数因此,函数y=sin2x是最小正周期为π的奇函数故选:D4.已知log b a c,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】直接利用对数函数的单调性结合已知得答案.【解答】解:∵函数y=是减函数,∴由log b a c,得c<a<b.故选:B.5.函数f(x)=2x﹣1+x﹣5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【分析】根据零点的判定定理,对选项逐一验证即可.【解答】解:∵f(0)f(1)=()(1+1﹣5)>0,排除A.f(1)f(2)=(1+1﹣5)(2+2﹣5)>0,排除Bf(2)f(3)=(2+2﹣5)(4+3﹣5)<0,一定有零点故选C.6.要得到函数y=sin(x﹣)的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:将函数y=sinx的图象向右平移个单位,可得函数y=sin(x﹣)的图象,故选:B.7.在数列{a n}中,a1=1,a n+1=a n+2,S n为{a n}的前n项和,若S n=100,则n等于()A.7 B.8 C.9 D.10【考点】数列的求和.【分析】由已知可得数列{a n}是首项为1,公差为2的等差数列,求出其前n项和后得答案.【解答】解:由a1=1,a n+1=a n+2,得数列{a n}是首项为1,公差为2的等差数列,则,由S n=100,得n=10.故选:D.8.设a,b∈R,且a>b,则下列结论中正确的是()A.>l B.<C.|a|>|b| D.a3>b3【考点】不等式的基本性质.【分析】对于A,B,C,举反例即可判断,对于D,根据幂函数的性质即可判断.【解答】解:对于A,若a=1,b=﹣1,则<1,故A不成立,对于B,若a=1,b=﹣1,则>,故B不成立,对于C,若a=1,b=﹣1,则|a|=|b|,故C不成立,对于D,对于幂函数y=x3为增函数,故a3>b3,故D成立,故选:D.9.下列表达式中,正确的是()A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+β)=cosαcosβ+sinαsinβC.sin(α﹣β)=cosαsinβ﹣sinαcosβ D.cos(α﹣β)=cosαcosβ﹣sinαsinβ【考点】两角和与差的余弦函数.【分析】由条件根据根据两角和差的正弦、余弦公式,得出结论.【解答】解:根据两角和差的正弦、余弦公式可得,sin(α+β)=cosαsinβ+sinαcosβ成立,而cos(α+β)=cosαcosβ+sinαsinβ、sin(α﹣β)=cosαsinβ﹣sinαcosβ、cos(α﹣β)=cosαcosβ﹣sinαsinβ都不正确,故选:A.10.函数f(x)=3sin(ωx+φ)的部分图象如图,则f(x)的单调递增区间为()A.(kπ﹣,kπ﹣),k∈Z B.(2kπ﹣,2kπ﹣),k∈ZC.(2k﹣,2k﹣),k∈Z D.(k﹣,k﹣),k∈Z【考点】正弦函数的图象.【分析】由周期求出ω,由五点法作图求出φ的值,再利用正弦函数的单调性,求得f(x)的增区间.【解答】解:根据函数f(x)=3sin(ωx+φ)的部分图象,可得•=,求得ω=π.再根据五点法作图可得π•+φ=π,求得φ=,∴(x)=3sin(πx+).令2kπ﹣≤πx+≤2kπ+,求得2k﹣≤x≤2k﹣,故函数的增区间为2k﹣,2k﹣),k∈Z,故选:C.11.已知等比数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项和S n的值为()A.3n﹣1B.3(3n﹣1)C. D.【考点】等比数列的前n项和.【分析】求出等比数列{a n}中的第二项和第四项,求得新数列的公比,由等比数列的求和公式,即可得到所求.【解答】解:等比数列{a n}中,a n=2×3n﹣1,即有a2=6,a4=54,则新数列的公比为9,即有S n==.故选:D.12.菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【考点】平面向量的基本定理及其意义.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由若•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,得﹣2λ﹣2μ+2λμ=﹣②,结合①②求得λ+μ的值.【解答】解:由题意可得•==+++=2×2×cos120°++=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)=(1﹣λ)=(1﹣λ)•(1﹣μ)═(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣2λ﹣2μ+2λμ=﹣②,由①②求得λ+μ=,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.log64+log69﹣8=﹣2.【考点】对数的运算性质.【分析】利用对数的运算法则及有理数指数幂的运算法则即可求得.【解答】解:原式=log6(4×9)﹣=2﹣22=﹣2.故答案为:﹣2.14.不等式≥0的解集是.【考点】其他不等式的解法.【分析】解不等式转化为不等式组,解出即可.【解答】解:原不等式可化为:或,解得:﹣≤x<,故答案为:.15.函数y=sinx﹣cosx的最大值为2.【考点】两角和与差的正弦函数.【分析】变形可得y=2(cos sinx﹣sin cosx)=2sin(x﹣),易得最值.【解答】解:化简可得y=sinx﹣cosx=2(sinx﹣cosx)=2(cos sinx﹣sin cosx)=2sin (x ﹣)∴当sin (x ﹣)=1时,原函数取最大值2故答案为:216.设x >0,y >0,若log 23是log 2x 与log 2y 的等差中项,则+的最小值为 .【考点】基本不等式;对数的运算性质.【分析】由已知结合等差中项的概念求得xy=9,再利用不等式的性质求得+的最小值. 【解答】解:∵log 23是log 2x 与log 2y 的等差中项, ∴log 2x+log 2y=2log 23=log 29, 则log 2xy=log 29, ∴xy=9.则+.故答案为:.三、解答题:本大题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤.17.向量=(4,﹣3),=(2x ,y ),=(x+,2),已知∥,⊥,求x ,y 的值. 【考点】平面向量共线(平行)的坐标表示;平面向量数量积的运算.【分析】由已知向量的坐标,结合向量共线与垂直的坐标表示列关于x ,y 的方程组,求解方程组得答案.【解答】解: =(4,﹣3),=(2x ,y ),=(x+,2), 由已知a ∥b ,a ⊥c ,可得, 解得:x=6,y=﹣9.18.已知函数f (x )=的定义域是集合A ,函数g (x )=ln (x ﹣a )的定义域是集合B .(1)求集合A 、B ;(2)若C={x|2<1},求A ∩C .【考点】交集及其运算;函数的定义域及其求法.【分析】根据函数的定义域的求法,求出集合A ,B ,C ,再根据交集的定义即可求出. 【解答】解:(1)因为(1+x )(2﹣x )≥0所以﹣1≤x≤2,集合A={x|﹣1≤x≤2};…因为x﹣a>0,所以x>a,集合B={x|x>a}…(2)因为,所以x2﹣2x﹣3<0解得:{x|﹣1<x<3},…则A∩C={x|﹣1<x≤2}.…19.已知函数f(x)=b•a x(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(﹣1,3)(1)试求a、b的值;(2)若不等式a x+b x≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.【考点】指数函数的图象与性质;函数恒成立问题.【分析】(1)根据点A、B在图象列出方程组,求出a、b的值;(2)由(1)可得m≤3x+9x,令u(x)=3x+9x,由指数函数的单调性判断出函数u(x)在[1,+∞)上单调性,求出u(x)min,由恒成立求出实数m的取值范围.【解答】解:(1)由已知可得,,解得a=3,b=9…(2)由(1)可得m≤3x+9x,x∈[1,+∞),令u=(x)3x+9x,x∈[1,+∞),只需m≤u min…,因为函数u(x)=3x+9x在[1,+∞)为单调增函数,…所以u(x)min=12,即实数m的取值范围是:{m|m≤12}.…20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【考点】正弦定理;余弦定理.【分析】(1)由bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,化简整理即可得出.(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,代入计算即可得出.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.21.已知等比数列{a n},满足a n+1>a n,a1+a4=9,a2•a3=8.(1)求数列{a n}的通项公式;(2)求数列{(2n﹣1)a n}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【分析】(1)由已知求得a1,a4的值,进一步求得公比,代入等比数列的通项公式得答案;(2)直接利用错位相减法求数列{(2n﹣1)a n}的前n项和T n.【解答】解:(1)在等比数列{a n}中,∵,∴,解得:或(舍去),∴,得q=2,∴;(2)设,则T n=c1+c2+c3+…+c n=1+3•2+5•22+…+(2n﹣1)•2n﹣1,①,②由①﹣②得:=1+22+23+…+2n﹣(2n﹣1)•2n=2+22+23+…+2n﹣(2n﹣1)•2n﹣1=,∴.22.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案更合算?【考点】函数模型的选择与应用.【分析】(1)由入纯收入等于n年的收入减去n年总的支出,我们可得f(n)=50n﹣[12+16+…+(8+4n)]﹣98,化简可得到纯收入关于使用时间n的函数解析式,然后构造不等式,解不等式即可得到n的取值范围.(2)由(1)中的纯收入关于使用时间n的函数解析式,我们对两种方案分析进行分析比较,易得哪种方案更合算.【解答】解:(1)由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f(n),则f(n)=50n﹣[12+16+…+(8+4n)]﹣98=40n﹣2n2﹣98,由f(n)>0,得10﹣又∵n∈N*,∴3≤n≤17.即从第3年开始获利.(2)①年平均收入为40﹣2×14=12,当且仅当n=7时,年平均获利最大,为12万元/年.此时,总收益为12×7+26=110(万元).②f(n)=﹣2(n﹣10)2+102,∵当n=10时,f(n)max=102(万元).此时,总收益为102+8=110(万元).由于这两种方案总收入都为110万元,而方案①只需7年、而方案②需要10年,故方案①更合算.。

2018-2019学年度高一下学期期中考试数学试卷(解析版)

2018-2019学年度高一下学期期中考试数学试卷(解析版)

2018-2019学年度第二学期期中考试高一数学一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()A. B. C. D.【答案】A【解析】【分析】直接利用两角差的正弦公式计算即可.【详解】由两角差的正弦公式可得故选A.【点睛】本题考查两角差的正弦公式的应用,属基础题.2.下列函数中,以为周期且在区间上为增函数的是()A. B.C. D.【答案】D【解析】试题分析:A选项周期为,不满足条件;B选项周期为;C选项周期为,且在区间为减函数,不满足条件;D选项周期为,且在区间为增函数;故选D.考点:(1)正弦函数的单调性(2)函数的周期性3.已知向量.若为实数,,则()A. B. C. 1 D. 2【答案】B【解析】试题分析:因为,,所以,又因为,所以,故选B.考点:1、向量的坐标运算;2、向量平行的性质.视频4.给出下面四个命题:①;②;③;④.其中正确的个数为A. 1个B. 2个C. 3个D. 4个【答案】B【解析】①;②;③;④,所以正确的为①②,选B.5.已知,,与的夹角为,则在方向上的投影为()A. B. C. D.【答案】C【解析】【分析】由条件及投影的计算公式便可得出向量在方向上的投影为,从而得出该投影的值.【详解】根据条件,在方向上的投影为:故选C.【点睛】本题考查一个向量在另一个向量方向上的投影的定义及计算公式,向量夹角的概念.6.已知函数的部分图象如下图所示,则函数的解析式()学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...学|科|网...A.B.C.D.【答案】D【解析】【分析】根据函数的图象求出A,ω 和φ的值即可.【详解】由函数的图象得即则,则,则则则∵,∴当k=0时,则函数.故选D.【点睛】本题主要考查三角函数的图象和性质,根据图象求出A,ω和φ的值是解决本题的关键.7.将函数y=sin2x的图象向左平移(>0)个单位,得到的图象恰好关于直线对称,则的一个值是()A. B. C. D.【答案】A【解析】【分析】根据左加右减,写出三角函数平移后的解析式,根据平移后图象的对称轴,把对称轴代入使得函数式的值等于±1,写出自变量的值,根据求最小值得到结果.【详解】∵把函数y=sin2x的图象向左平移(>0)个单位,∴平移后函数的解析式是,∵所得图象关于直线对称,∴由正弦函数的图象和性质可得:解得:∴当时,的最小值是.故选:A.【点睛】本题考查由三角函数图象的平移求函数的解析式,本题解题的关键是先表示出函数的解析式,再根据题意来写出结果,属于基础题.8.在中,,,则()A. B. C. D.【答案】D【解析】【分析】利用平面向量数量积的定义进行运算即可【详解】故选D.【点睛】本题考查平面向量数量积的运算,属基础题.9.若是锐角,且满足,则的值为()A. B. C. D.【答案】B【解析】是锐角,且,所以也为锐角,所以..故选B.点睛:在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法为——配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和差的公式展开求值即可,再利用公式求解前,需将每一个三角函数值确定下来,尤其是要利用角的终边确定好正负.10.中,,,分别是的中点,则()A. 4B. -4C.D.【答案】B【解析】【分析】利用平面向量的加法表示,再利用平面向量数量积的运算法则计算即可.【详解】由题中,,,分别是的中点,则,则故选B.【点睛】本题考查面向量的加法法则及平面向量数量积的运算,属基础题.11.在△ABC中,设=2,那么动点M的轨迹必通过△ABC的()A. 垂心B. 内心C. 外心D. 重心【答案】C【解析】【分析】假设BC的中点是O,先化简已知得2=2,即()·=0, 所以, 所以动点M的轨迹必通过△ABC的外心.【详解】假设BC的中点是O,则=()·()=2=2,即()·=0,所以,所以动点M在线段BC的中垂线上,所以动点M的轨迹必通过△ABC的外心.故答案为:C【点睛】(1)本题主要考查平面向量的数量积运算和向量的减法法则,考查向量垂直的表示,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是在于熟练掌握向量的运算法则.12.函数()的图象经过、两点,则()A. 最小值为B. 最大值为C. 最小值为D. 最大值为【答案】A【解析】【分析】当A、B为函数的图象的相邻的两个顶点时,函数的周期最小,最大,此时,由,求得的值【详解】由题意可得A、B为函数的图象的顶点,故当A、B为函数的图象的相邻的两个顶点时,周期最大小,最小,此时,,,故选:A.【点睛】本题主要考查函数的图象和性质,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分)13.若扇形的弧长为,圆心角为弧度,则扇形的面积为_________。

2018-2019学年江西省南昌市八一中学高一下学期期中考试数学试题Word版含答案

2018-2019学年江西省南昌市八一中学高一下学期期中考试数学试题Word版含答案

2018-2019学年江西省南昌市八一中学下学期期中考试高一数学试题一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知等差数列{}n a ,37810,8a a a +==,则公差d =( ) A.1 B .12 C .14D .1- 2.若0a b <<,则下列各式一定..成立的是( ) A .a c b c +>+B .22a b <C .ac bc >D .11a b>3.△ABC 中,若2cos c a B =,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .锐角三角形4.下列各式中,最小值为4的是( ).A .82x y x=+ B .4sin (0π)sin y x x x=+<<C .e 4e x x y -=+D .y =5.在R 上定义运算⊗:(1)x y x y ⊗=-.若不等式()()0x a x b -⊗->的解集是(2,3),则a b +=( ) A .1 B .2 C .4 D .56.已知ABC △在正方形网格中的位置如图所示,则cos ABC ∠=( ) A .310B .25C .35D .457.已知ABC △中,sin 2sin cos 0A B C +=,c =,则tan A 的值是( )A B C D8.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .166D .1809.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S =( )A. 27B. 21C. 14D. 510.《数书九章》是中国南宋时期杰出数学家秦九韶的著作.其中在卷五“三斜求积”中提出了已知三角形三边a 、b 、c ,求面积的公式,这与古希腊的海伦公式完全等价,其求法是“以小斜冥并大斜冥减中斜冥,余半之,自乘于上,以小斜冥乘大斜冥减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写出公式,即若a >b >c有周长,ABC∆满A. 36 B. 34 C. 54 D. 5611.已知等差数列{}n a 的等差0≠d ,且1331,,a a a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A .4B .3CD12.设锐角ABC ∆的三个内角,,A B C 的对边分别为,,a b c 且1c =, 2A C =,则ABC ∆周长的取值范围为()A. (2,2B. (2,3+C. (2++D. (2+二、填空题:本题共4小题,每小题5分,共20分。

2018-2019学年江西省南昌八中、南昌二十三中等四校高一下学期期中联考数学试题(解析版)

2018-2019学年江西省南昌八中、南昌二十三中等四校高一下学期期中联考数学试题(解析版)

故选:C.
【点睛】
本题考查了一元二次不等式的解法,利用了转化的思想,这种转化的理论依据为两数相
乘(除),同号得正,异号得负的法则.
2.在正项等比数列{an} 中,若 a6 , 3a5, a7 依次成等差数列,则{an} 的公比为( )
A.2 【答案】A
B. 1 2
C.3
D. 1 3
【解析】由等差中项的性质可得 6a5 a6 a7 ,又{an} 为等比数列,所以
7.若关于 x 的一元二次不等式
的解集为 R,则实数 a 的取值范围是( )
A.
B.
C.
D.
【答案】B
【解析】由题意,得出 ,再分析不等式开口和判别式,可得结果.
【详解】
由题,因为为一元二次不等式,所以
又因为
的解集为 R
所以
故选 B 【点睛】 本题考查了一元二次不等式解法,利用二次函数图形解题是关键,属于基础题.
第 7 页 共 15 页
所以 sinB cosB ,又 B0, ,所以 B ,
4 故答案为 .
4
【点睛】
本题主要考查正弦定理及其应用,特殊角的三角函数值等知识,意在考查学生的转化能
力和计算求解能力.
15.在△ ABC 中,A=60°,b=1,S△ ABC= 3 ,则 a =____________. cos A
【详解】
选项 A,当 c=0 时,由 a>b,不能推出 ac2>bc2,故错误; 选项 B,当 a=﹣1,b=﹣2 时,显然有 a>b,但 a2<b2,故错误; 选项 C,当 a>b 时,必有 a3>b3,故正确; 选项 D,当 a=﹣2,b=﹣1 时,显然有 a2>b2,但却有 a<b,故错误. 故选:C. 【点睛】

江西省南昌市2018-2019学年高一下期中数学试卷含答案解析

江西省南昌市2018-2019学年高一下期中数学试卷含答案解析

2018-2019学年江西省南昌市高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},则A∩B=()A.{﹣1,0} B.{﹣1,0,1} C.{﹣2,﹣1,0} D.{﹣2,﹣1,1}2.设函数f(x)=,则f[f(3)]等于()A.﹣1 B.1 C.﹣5 D.53.函数y=sin2x是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数4.已知log b a c,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.函数f(x)=2x﹣1+x﹣5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.要得到函数y=sin(x﹣)的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.在数列{a n}中,a1=1,a n+1=a n+2,S n为{a n}的前n项和,若S n=100,则n等于()A.7 B.8 C.9 D.108.设a,b∈R,且a>b,则下列结论中正确的是()A.>l B.<C.|a|>|b| D.a3>b39.下列表达式中,正确的是()A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+β)=cosαcosβ+sinαsinβC.sin(α﹣β)=cosαsinβ﹣sinαcosβ D.cos(α﹣β)=cosαcosβ﹣sinαsinβ10.函数f(x)=3sin(ωx+φ)的部分图象如图,则f(x)的单调递增区间为()A.(kπ﹣,kπ﹣),k∈ZB.(2kπ﹣,2kπ﹣),k∈ZC.(2k﹣,2k﹣),k∈Z D.(k﹣,k﹣),k∈Z11.已知等比数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项和S n 的值为()A.3n﹣1B.3(3n﹣1)C.D.12.菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.log64+log69﹣8=.14.不等式≥0的解集是.15.函数y=sinx﹣cosx的最大值为.16.设x>0,y>0,若log23是log2x与log2y的等差中项,则+的最小值为.三、解答题:本大题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤.17.向量=(4,﹣3),=(2x,y),=(x+,2),已知∥,⊥,求x,y的值.18.已知函数f(x)=的定义域是集合A,函数g(x)=ln(x﹣a)的定义域是集合B.(1)求集合A、B;(2)若C={x|2<1},求A∩C.19.已知函数f(x)=b•a x(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(﹣1,3)(1)试求a、b的值;(2)若不等式a x+b x≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.21.已知等比数列{a n},满足a n+1>a n,a1+a4=9,a2•a3=8.(1)求数列{a n}的通项公式;(2)求数列{(2n﹣1)a n}的前n项和T n.22.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案更合算?2018-2019学年江西省南昌市高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},则A∩B=()A.{﹣1,0} B.{﹣1,0,1} C.{﹣2,﹣1,0} D.{﹣2,﹣1,1}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},∴A∩B={﹣2,﹣1,0},故选:C.2.设函数f(x)=,则f[f(3)]等于()A.﹣1 B.1 C.﹣5 D.5【考点】函数的值.【分析】根据分段函数的表达式,利用代入法进行求解即可.【解答】解:f(3)=32﹣3﹣5=9﹣3﹣5=1,f(1)=1﹣2=﹣1,即f[f(3)]=f(1)=﹣1,故选:A3.函数y=sin2x是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】三角函数的周期性及其求法;正弦函数的奇偶性.【分析】根据三角函数的周期公式算出最小正周期T=π,结合正弦函数的奇偶性即可得到本题答案.【解答】解:∵函数y=sin2x中ω=2∴最小正周期为T==π又∵y=sin2x满足f(﹣x)=﹣f(x)∴函数y=sin2x是奇函数因此,函数y=sin2x是最小正周期为π的奇函数故选:D4.已知log b a c,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】直接利用对数函数的单调性结合已知得答案.【解答】解:∵函数y=是减函数,∴由log b a c,得c<a<b.故选:B.5.函数f(x)=2x﹣1+x﹣5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【分析】根据零点的判定定理,对选项逐一验证即可.【解答】解:∵f(0)f(1)=()(1+1﹣5)>0,排除A.f(1)f(2)=(1+1﹣5)(2+2﹣5)>0,排除Bf(2)f(3)=(2+2﹣5)(4+3﹣5)<0,一定有零点故选C.6.要得到函数y=sin(x﹣)的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:将函数y=sinx的图象向右平移个单位,可得函数y=sin(x﹣)的图象,故选:B.7.在数列{a n}中,a1=1,a n+1=a n+2,S n为{a n}的前n项和,若S n=100,则n等于()A.7 B.8 C.9 D.10【考点】数列的求和.【分析】由已知可得数列{a n}是首项为1,公差为2的等差数列,求出其前n项和后得答案.【解答】解:由a1=1,a n+1=a n+2,得数列{a n}是首项为1,公差为2的等差数列,则,由S n=100,得n=10.故选:D.8.设a,b∈R,且a>b,则下列结论中正确的是()A.>l B.<C.|a|>|b| D.a3>b3【考点】不等式的基本性质.【分析】对于A,B,C,举反例即可判断,对于D,根据幂函数的性质即可判断.【解答】解:对于A,若a=1,b=﹣1,则<1,故A不成立,对于B,若a=1,b=﹣1,则>,故B不成立,对于C,若a=1,b=﹣1,则|a|=|b|,故C不成立,对于D,对于幂函数y=x3为增函数,故a3>b3,故D成立,故选:D.9.下列表达式中,正确的是()A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+β)=cosαcosβ+sinαsinβC.sin(α﹣β)=cosαsinβ﹣sinαcosβ D.cos(α﹣β)=cosαcosβ﹣sinαsinβ【考点】两角和与差的余弦函数.【分析】由条件根据根据两角和差的正弦、余弦公式,得出结论.【解答】解:根据两角和差的正弦、余弦公式可得,sin(α+β)=cosαsinβ+sinαcosβ成立,而cos(α+β)=cosαcosβ+sinαsinβ、sin(α﹣β)=cosαsinβ﹣sinαcosβ、cos(α﹣β)=cosαcosβ﹣sinαsinβ都不正确,故选:A.10.函数f(x)=3sin(ωx+φ)的部分图象如图,则f(x)的单调递增区间为()A.(kπ﹣,kπ﹣),k∈ZB.(2kπ﹣,2kπ﹣),k∈ZC.(2k﹣,2k﹣),k∈Z D.(k﹣,k﹣),k∈Z【考点】正弦函数的图象.【分析】由周期求出ω,由五点法作图求出φ的值,再利用正弦函数的单调性,求得f(x)的增区间.【解答】解:根据函数f(x)=3sin(ωx+φ)的部分图象,可得•=,求得ω=π.再根据五点法作图可得π•+φ=π,求得φ=,∴(x)=3sin(πx+).令2kπ﹣≤πx+≤2kπ+,求得2k﹣≤x≤2k﹣,故函数的增区间为2k﹣,2k﹣),k∈Z,故选:C.11.已知等比数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项和S n 的值为()A.3n﹣1B.3(3n﹣1)C.D.【考点】等比数列的前n项和.【分析】求出等比数列{a n}中的第二项和第四项,求得新数列的公比,由等比数列的求和公式,即可得到所求.【解答】解:等比数列{a n}中,a n=2×3n﹣1,即有a2=6,a4=54,则新数列的公比为9,即有S n==.故选:D.12.菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【考点】平面向量的基本定理及其意义.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由若•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,得﹣2λ﹣2μ+2λμ=﹣②,结合①②求得λ+μ的值.【解答】解:由题意可得•==+++=2×2×cos120°++=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)=(1﹣λ)=(1﹣λ)•(1﹣μ)═(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣2λ﹣2μ+2λμ=﹣②,由①②求得λ+μ=,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.log64+log69﹣8=﹣2.【考点】对数的运算性质.【分析】利用对数的运算法则及有理数指数幂的运算法则即可求得.【解答】解:原式=log6(4×9)﹣=2﹣22=﹣2.故答案为:﹣2.14.不等式≥0的解集是.【考点】其他不等式的解法.【分析】解不等式转化为不等式组,解出即可.【解答】解:原不等式可化为:或,解得:﹣≤x<,故答案为:.15.函数y=sinx﹣cosx的最大值为2.【考点】两角和与差的正弦函数.【分析】变形可得y=2(cos sinx﹣sin cosx)=2sin(x﹣),易得最值.【解答】解:化简可得y=sinx﹣cosx=2(sinx﹣cosx)=2(cos sinx﹣sin cosx)=2sin(x﹣)∴当sin(x﹣)=1时,原函数取最大值2故答案为:216.设x>0,y>0,若log23是log2x与log2y的等差中项,则+的最小值为.【考点】基本不等式;对数的运算性质.【分析】由已知结合等差中项的概念求得xy=9,再利用不等式的性质求得+的最小值.【解答】解:∵log23是log2x与log2y的等差中项,∴log2x+log2y=2log23=log29,则log2xy=log29,∴xy=9.则+.故答案为:.三、解答题:本大题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤.17.向量=(4,﹣3),=(2x,y),=(x+,2),已知∥,⊥,求x,y的值.【考点】平面向量共线(平行)的坐标表示;平面向量数量积的运算.【分析】由已知向量的坐标,结合向量共线与垂直的坐标表示列关于x,y的方程组,求解方程组得答案.【解答】解:=(4,﹣3),=(2x,y),=(x+,2),由已知a∥b,a⊥c,可得,解得:x=6,y=﹣9.18.已知函数f(x)=的定义域是集合A,函数g(x)=ln(x﹣a)的定义域是集合B.(1)求集合A、B;(2)若C={x|2<1},求A∩C.【考点】交集及其运算;函数的定义域及其求法.【分析】根据函数的定义域的求法,求出集合A,B,C,再根据交集的定义即可求出.【解答】解:(1)因为(1+x)(2﹣x)≥0所以﹣1≤x≤2,集合A={x|﹣1≤x≤2};…因为x﹣a>0,所以x>a,集合B={x|x>a}…(2)因为,所以x2﹣2x﹣3<0解得:{x|﹣1<x<3},…则A∩C={x|﹣1<x≤2}.…19.已知函数f(x)=b•a x(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(﹣1,3)(1)试求a、b的值;(2)若不等式a x+b x≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.【考点】指数函数的图象与性质;函数恒成立问题.【分析】(1)根据点A、B在图象列出方程组,求出a、b的值;(2)由(1)可得m≤3x+9x,令u(x)=3x+9x,由指数函数的单调性判断出函数u(x)在[1,+∞)上单调性,求出u(x)min,由恒成立求出实数m的取值范围.【解答】解:(1)由已知可得,,解得a=3,b=9…(2)由(1)可得m≤3x+9x,x∈[1,+∞),令u=(x)3x+9x,x∈[1,+∞),只需m≤u min…,因为函数u(x)=3x+9x在[1,+∞)为单调增函数,…所以u(x)min=12,即实数m的取值范围是:{m|m≤12}.…20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【考点】正弦定理;余弦定理.【分析】(1)由bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,化简整理即可得出.(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,代入计算即可得出.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.21.已知等比数列{a n},满足a n+1>a n,a1+a4=9,a2•a3=8.(1)求数列{a n}的通项公式;(2)求数列{(2n﹣1)a n}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【分析】(1)由已知求得a1,a4的值,进一步求得公比,代入等比数列的通项公式得答案;(2)直接利用错位相减法求数列{(2n﹣1)a n}的前n项和T n.【解答】解:(1)在等比数列{a n}中,∵,∴,解得:或(舍去),∴,得q=2,∴;(2)设,则T n=c1+c2+c3+…+c n=1+3•2+5•22+…+(2n﹣1)•2n﹣1,①,②由①﹣②得:=1+22+23+…+2n﹣(2n﹣1)•2n=2+22+23+…+2n﹣(2n﹣1)•2n﹣1=,∴.22.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案更合算?【考点】函数模型的选择与应用.【分析】(1)由入纯收入等于n年的收入减去n年总的支出,我们可得f(n)=50n﹣[12+16+…+(8+4n)]﹣98,化简可得到纯收入关于使用时间n的函数解析式,然后构造不等式,解不等式即可得到n的取值范围.(2)由(1)中的纯收入关于使用时间n的函数解析式,我们对两种方案分析进行分析比较,易得哪种方案更合算.【解答】解:(1)由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f(n),则f(n)=50n﹣[12+16+…+(8+4n)]﹣98=40n﹣2n2﹣98,由f(n)>0,得10﹣又∵n∈N*,∴3≤n≤17.即从第3年开始获利.(2)①年平均收入为40﹣2×14=12,当且仅当n=7时,年平均获利最大,为12万元/年.此时,总收益为12×7+26=110(万元).②f(n)=﹣2(n﹣10)2+102,∵当n=10时,f(n)max=102(万元).此时,总收益为102+8=110(万元).由于这两种方案总收入都为110万元,而方案①只需7年、而方案②需要10年,故方案①更合算.2019年5月19日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年江西省南昌市高一(下)期中数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},则A∩B=()A.{﹣1,0} B.{﹣1,0,1} C.{﹣2,﹣1,0} D.{﹣2,﹣1,1}2.设函数f(x)=,则f[f(3)]等于()A.﹣1 B.1 C.﹣5 D.53.函数y=sin2x是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数4.已知log b a c,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.函数f(x)=2x﹣1+x﹣5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)6.要得到函数y=sin(x﹣)的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.在数列{a n}中,a1=1,a n+1=a n+2,S n为{a n}的前n项和,若S n=100,则n等于()A.7 B.8 C.9 D.108.设a,b∈R,且a>b,则下列结论中正确的是()A.>l B.<C.|a|>|b| D.a3>b39.下列表达式中,正确的是()A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+β)=cosαcosβ+sinαsinβC.sin(α﹣β)=cosαsinβ﹣sinαcosβ D.cos(α﹣β)=cosαcosβ﹣sinαsinβ10.函数f(x)=3sin(ωx+φ)的部分图象如图,则f(x)的单调递增区间为()A.(kπ﹣,kπ﹣),k∈Z B.(2kπ﹣,2kπ﹣),k∈ZC.(2k﹣,2k﹣),k∈Z D.(k﹣,k﹣),k∈Z11.已知等比数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项和S n的值为()A.3n﹣1B.3(3n﹣1)C. D.12.菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.log64+log69﹣8=.14.不等式≥0的解集是.15.函数y=sinx﹣cosx的最大值为.16.设x>0,y>0,若log23是log2x与log2y的等差中项,则+的最小值为.三、解答题:本大题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤.17.向量=(4,﹣3),=(2x,y),=(x+,2),已知∥,⊥,求x,y的值.18.已知函数f(x)=的定义域是集合A,函数g(x)=ln(x﹣a)的定义域是集合B.(1)求集合A、B;(2)若C={x|2<1},求A∩C.19.已知函数f(x)=b•a x(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(﹣1,3)(1)试求a、b的值;(2)若不等式a x+b x≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.21.已知等比数列{a n},满足a n+1>a n,a1+a4=9,a2•a3=8.(1)求数列{a n}的通项公式;(2)求数列{(2n﹣1)a n}的前n项和T n.22.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案更合算?2018-2019学年江西省南昌市高一(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},则A∩B=()A.{﹣1,0} B.{﹣1,0,1} C.{﹣2,﹣1,0} D.{﹣2,﹣1,1}【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={﹣2,﹣1,0,1},B={x|﹣2≤x<1},∴A∩B={﹣2,﹣1,0},故选:C.2.设函数f(x)=,则f[f(3)]等于()A.﹣1 B.1 C.﹣5 D.5【考点】函数的值.【分析】根据分段函数的表达式,利用代入法进行求解即可.【解答】解:f(3)=32﹣3﹣5=9﹣3﹣5=1,f(1)=1﹣2=﹣1,即f[f(3)]=f(1)=﹣1,故选:A3.函数y=sin2x是()A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】三角函数的周期性及其求法;正弦函数的奇偶性.【分析】根据三角函数的周期公式算出最小正周期T=π,结合正弦函数的奇偶性即可得到本题答案.【解答】解:∵函数y=sin2x中ω=2∴最小正周期为T==π又∵y=sin2x满足f(﹣x)=﹣f(x)∴函数y=sin2x是奇函数因此,函数y=sin2x是最小正周期为π的奇函数故选:D4.已知log b a c,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】直接利用对数函数的单调性结合已知得答案.【解答】解:∵函数y=是减函数,∴由log b a c,得c<a<b.故选:B.5.函数f(x)=2x﹣1+x﹣5的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【考点】函数零点的判定定理.【分析】根据零点的判定定理,对选项逐一验证即可.【解答】解:∵f(0)f(1)=()(1+1﹣5)>0,排除A.f(1)f(2)=(1+1﹣5)(2+2﹣5)>0,排除Bf(2)f(3)=(2+2﹣5)(4+3﹣5)<0,一定有零点故选C.6.要得到函数y=sin(x﹣)的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由条件利用y=Asin(ωx+φ)的图象变换规律,得出结论.【解答】解:将函数y=sinx的图象向右平移个单位,可得函数y=sin(x﹣)的图象,故选:B.7.在数列{a n}中,a1=1,a n+1=a n+2,S n为{a n}的前n项和,若S n=100,则n等于()A.7 B.8 C.9 D.10【考点】数列的求和.【分析】由已知可得数列{a n}是首项为1,公差为2的等差数列,求出其前n项和后得答案.【解答】解:由a1=1,a n+1=a n+2,得数列{a n}是首项为1,公差为2的等差数列,则,由S n=100,得n=10.故选:D.8.设a,b∈R,且a>b,则下列结论中正确的是()A.>l B.<C.|a|>|b| D.a3>b3【考点】不等式的基本性质.【分析】对于A,B,C,举反例即可判断,对于D,根据幂函数的性质即可判断.【解答】解:对于A,若a=1,b=﹣1,则<1,故A不成立,对于B,若a=1,b=﹣1,则>,故B不成立,对于C,若a=1,b=﹣1,则|a|=|b|,故C不成立,对于D,对于幂函数y=x3为增函数,故a3>b3,故D成立,故选:D.9.下列表达式中,正确的是()A.sin(α+β)=cosαsinβ+sinαcosβB.cos(α+β)=cosαcosβ+sinαsinβC.sin(α﹣β)=cosαsinβ﹣sinαcosβ D.cos(α﹣β)=cosαcosβ﹣sinαsinβ【考点】两角和与差的余弦函数.【分析】由条件根据根据两角和差的正弦、余弦公式,得出结论.【解答】解:根据两角和差的正弦、余弦公式可得,sin(α+β)=cosαsinβ+sinαcosβ成立,而cos(α+β)=cosαcosβ+sinαsinβ、sin(α﹣β)=cosαsinβ﹣sinαcosβ、cos(α﹣β)=cosαcosβ﹣sinαsinβ都不正确,故选:A.10.函数f(x)=3sin(ωx+φ)的部分图象如图,则f(x)的单调递增区间为()A.(kπ﹣,kπ﹣),k∈Z B.(2kπ﹣,2kπ﹣),k∈ZC.(2k﹣,2k﹣),k∈Z D.(k﹣,k﹣),k∈Z【考点】正弦函数的图象.【分析】由周期求出ω,由五点法作图求出φ的值,再利用正弦函数的单调性,求得f(x)的增区间.【解答】解:根据函数f(x)=3sin(ωx+φ)的部分图象,可得•=,求得ω=π.再根据五点法作图可得π•+φ=π,求得φ=,∴(x)=3sin(πx+).令2kπ﹣≤πx+≤2kπ+,求得2k﹣≤x≤2k﹣,故函数的增区间为2k﹣,2k﹣),k∈Z,故选:C.11.已知等比数列{a n}中,a n=2×3n﹣1,则由此数列的偶数项所组成的新数列的前n项和S n的值为()A.3n﹣1B.3(3n﹣1)C. D.【考点】等比数列的前n项和.【分析】求出等比数列{a n}中的第二项和第四项,求得新数列的公比,由等比数列的求和公式,即可得到所求.【解答】解:等比数列{a n}中,a n=2×3n﹣1,即有a2=6,a4=54,则新数列的公比为9,即有S n==.故选:D.12.菱形ABCD边长为2,∠BAD=120°,点E,F分别别在BC,CD上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.【考点】平面向量的基本定理及其意义.【分析】利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由若•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,得﹣2λ﹣2μ+2λμ=﹣②,结合①②求得λ+μ的值.【解答】解:由题意可得•==+++=2×2×cos120°++=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)=(1﹣λ)=(1﹣λ)•(1﹣μ)═(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣2λ﹣2μ+2λμ=﹣②,由①②求得λ+μ=,故选:C .二、填空题:本大题共4小题,每小题5分,共20分.13.log 64+log 69﹣8= ﹣2 .【考点】对数的运算性质.【分析】利用对数的运算法则及有理数指数幂的运算法则即可求得.【解答】解:原式=log 6(4×9)﹣=2﹣22=﹣2.故答案为:﹣2.14.不等式≥0的解集是.【考点】其他不等式的解法.【分析】解不等式转化为不等式组,解出即可. 【解答】解:原不等式可化为:或,解得:﹣≤x <,故答案为:.15.函数y=sinx ﹣cosx 的最大值为 2 . 【考点】两角和与差的正弦函数.【分析】变形可得y=2(cossinx ﹣sincosx )=2sin (x ﹣),易得最值.【解答】解:化简可得y=sinx ﹣cosx=2(sinx ﹣cosx )=2(cossinx ﹣sin cosx )=2sin (x ﹣)∴当sin (x ﹣)=1时,原函数取最大值2故答案为:216.设x >0,y >0,若log 23是log 2x 与log 2y 的等差中项,则+的最小值为 .【考点】基本不等式;对数的运算性质.【分析】由已知结合等差中项的概念求得xy=9,再利用不等式的性质求得+的最小值. 【解答】解:∵log 23是log 2x 与log 2y 的等差中项, ∴log 2x+log 2y=2log 23=log 29, 则log 2xy=log 29, ∴xy=9.则+.故答案为:.三、解答题:本大题共6个题,共70分.解答应写出文字说明、证明过程或演算步骤.17.向量=(4,﹣3),=(2x,y),=(x+,2),已知∥,⊥,求x,y的值.【考点】平面向量共线(平行)的坐标表示;平面向量数量积的运算.【分析】由已知向量的坐标,结合向量共线与垂直的坐标表示列关于x,y的方程组,求解方程组得答案.【解答】解:=(4,﹣3),=(2x,y),=(x+,2),由已知a∥b,a⊥c,可得,解得:x=6,y=﹣9.18.已知函数f(x)=的定义域是集合A,函数g(x)=ln(x﹣a)的定义域是集合B.(1)求集合A、B;(2)若C={x|2<1},求A∩C.【考点】交集及其运算;函数的定义域及其求法.【分析】根据函数的定义域的求法,求出集合A,B,C,再根据交集的定义即可求出.【解答】解:(1)因为(1+x)(2﹣x)≥0所以﹣1≤x≤2,集合A={x|﹣1≤x≤2};…因为x﹣a>0,所以x>a,集合B={x|x>a}…(2)因为,所以x2﹣2x﹣3<0解得:{x|﹣1<x<3},…则A∩C={x|﹣1<x≤2}.…19.已知函数f(x)=b•a x(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(﹣1,3)(1)试求a、b的值;(2)若不等式a x+b x≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.【考点】指数函数的图象与性质;函数恒成立问题.【分析】(1)根据点A、B在图象列出方程组,求出a、b的值;(2)由(1)可得m≤3x+9x,令u(x)=3x+9x,由指数函数的单调性判断出函数u(x)在[1,+∞)上单调性,求出u(x)min,由恒成立求出实数m的取值范围.【解答】解:(1)由已知可得,,解得a=3,b=9…(2)由(1)可得m≤3x+9x,x∈[1,+∞),令u=(x)3x+9x,x∈[1,+∞),只需m≤u min…,因为函数u(x)=3x+9x在[1,+∞)为单调增函数,…所以u(x)min=12,即实数m的取值范围是:{m|m≤12}.…20.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=a•cosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,分别求a和c的值.【考点】正弦定理;余弦定理.【分析】(1)由bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,化简整理即可得出.(2)由sinC=2sinA,可得c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,代入计算即可得出.【解答】解:(1)∵bsinA=a•cosB,由正弦定理可得:sinBsinA=sinAcosB,∵sinA≠0,∴sinB=cosB,B∈(0,π),可知:cosB≠0,否则矛盾.∴tanB=,∴B=.(2)∵sinC=2sinA,∴c=2a,由余弦定理可得:b2=a2+c2﹣2accosB,∴9=a2+c2﹣ac,把c=2a代入上式化为:a2=3,解得a=,∴.21.已知等比数列{a n},满足a n+1>a n,a1+a4=9,a2•a3=8.(1)求数列{a n}的通项公式;(2)求数列{(2n﹣1)a n}的前n项和T n.【考点】数列的求和;等比数列的通项公式.【分析】(1)由已知求得a1,a4的值,进一步求得公比,代入等比数列的通项公式得答案;(2)直接利用错位相减法求数列{(2n﹣1)a n}的前n项和T n.【解答】解:(1)在等比数列{a n}中,∵,∴,解得:或(舍去),∴,得q=2,∴;(2)设,则T n=c1+c2+c3+…+c n=1+3•2+5•22+…+(2n﹣1)•2n﹣1,①,②由①﹣②得:=1+22+23+…+2n﹣(2n﹣1)•2n=2+22+23+…+2n﹣(2n﹣1)•2n﹣1=,∴.22.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元.(1)问第几年开始获利?(2)若干年后,有两种处理方案:①年平均获利最大时,以26万元出售该渔船;②总纯收入获利最大时,以8万元出售该渔船.问哪种方案更合算?【考点】函数模型的选择与应用.【分析】(1)由入纯收入等于n年的收入减去n年总的支出,我们可得f(n)=50n﹣[12+16+…+(8+4n)]﹣98,化简可得到纯收入关于使用时间n的函数解析式,然后构造不等式,解不等式即可得到n的取值范围.(2)由(1)中的纯收入关于使用时间n的函数解析式,我们对两种方案分析进行分析比较,易得哪种方案更合算.【解答】解:(1)由题设知每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数的关系为f(n),则f(n)=50n﹣[12+16+…+(8+4n)]﹣98=40n﹣2n2﹣98,由f(n)>0,得10﹣又∵n∈N*,∴3≤n≤17.即从第3年开始获利.(2)①年平均收入为40﹣2×14=12,当且仅当n=7时,年平均获利最大,为12万元/年.此时,总收益为12×7+26=110(万元).②f(n)=﹣2(n﹣10)2+102,∵当n=10时,f(n)max=102(万元).此时,总收益为102+8=110(万元).由于这两种方案总收入都为110万元,而方案①只需7年、而方案②需要10年,故方案①更合算.。

相关文档
最新文档