初中数学九年级《圆锥的侧面积和全面积》公开课教学设计

合集下载

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计1

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计1

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计1一. 教材分析人教版数学九年级上册《计算圆锥的侧面积和全面积》这一节内容,是在学生掌握了圆锥的基本概念、性质和圆锥的体积计算的基础上进行学习的。

本节课的主要内容是引导学生掌握圆锥的侧面积和全面积的计算方法,培养学生运用几何知识解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了圆锥的基本概念和性质,对圆锥的体积计算也有一定的了解。

但是,对于圆锥的侧面积和全面积的计算,学生可能还存在一定的困难。

因此,在教学过程中,教师需要引导学生通过观察、思考、操作、交流等活动,自主探索圆锥的侧面积和全面积的计算方法,从而提高学生的空间想象能力和解决问题的能力。

三. 教学目标1.知识与技能目标:使学生掌握圆锥的侧面积和全面积的计算方法,能够运用所学知识解决实际问题。

2.过程与方法目标:通过观察、思考、操作、交流等活动,培养学生的空间想象能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探究的精神。

四. 教学重难点1.重点:圆锥的侧面积和全面积的计算方法。

2.难点:圆锥的全面积的计算方法。

五. 教学方法1.情境教学法:通过实物演示、图片展示等手段,引导学生观察、思考,激发学生的学习兴趣。

2.启发式教学法:教师提出问题,引导学生主动探究,培养学生的问题解决能力。

3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作意识。

4.操作教学法:学生动手操作,直观地感受圆锥的性质,提高学生的空间想象能力。

六. 教学准备1.教师准备:教材、课件、圆锥模型、黑板、粉笔等。

2.学生准备:笔记本、尺子、圆规、剪刀等。

七. 教学过程1.导入(5分钟)教师通过展示圆锥模型,引导学生回顾圆锥的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过课件呈现圆锥的侧面积和全面积的计算方法,引导学生观察、思考,让学生初步了解圆锥的侧面积和全面积的计算方法。

人教版九年级数学上册《圆锥的侧面积和全面积》优秀教学设计

人教版九年级数学上册《圆锥的侧面积和全面积》优秀教学设计

人教版九年级数学上册《圆锥的侧面积和全面积》优秀教学设计一. 教材分析人教版九年级数学上册《圆锥的侧面积和全面积》这一节,是在学生学习了平面几何、立体几何基础知识之后,进一步深化对圆锥几何特征的理解。

通过本节课的学习,学生能够掌握圆锥的侧面积和全面积的计算方法,为后续学习圆锥的体积和表面积打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何和立体几何有一定的了解。

但是,对于圆锥的侧面积和全面积的计算,还需要通过实例和引导,让学生逐步理解和掌握。

三. 教学目标1.知识与技能:学生能够理解圆锥的侧面积和全面积的定义,掌握计算方法。

2.过程与方法:通过实例分析,培养学生解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。

四. 教学重难点1.重点:圆锥的侧面积和全面积的计算方法。

2.难点:理解圆锥的侧面积和全面积的计算原理。

五. 教学方法1.采用问题驱动法,引导学生主动思考问题。

2.利用实物模型和动画演示,直观展示圆锥的侧面积和全面积的计算过程。

3.通过小组合作交流,培养学生的团队协作能力。

六. 教学准备1.准备圆锥模型和动画演示素材。

2.设计相关问题,准备黑板和粉笔。

七. 教学过程1.导入(5分钟)通过展示圆锥模型和动画演示,引导学生观察圆锥的形状,提出问题:“大家能想到如何计算圆锥的侧面积和全面积吗?”让学生思考并回答问题。

2.呈现(10分钟)呈现圆锥的侧面积和全面积的定义,讲解计算方法。

以一个具体的圆锥为例,展示如何计算其侧面积和全面积。

引导学生理解圆锥的侧面积和全面积的计算原理。

3.操练(10分钟)学生分组合作,每组选择一个圆锥模型,按照刚刚学到的方法计算其侧面积和全面积。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)针对学生刚刚完成的小组练习,进行讲解和点评。

强调圆锥侧面积和全面积计算的关键点。

5.拓展(10分钟)出示一些有关圆锥侧面积和全面积的实际问题,让学生尝试解决。

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计3

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计3

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计3一. 教材分析人教版数学九年级上册《计算圆锥的侧面积和全面积》是本册教材中的一个重要内容,它是在学生已经掌握了圆的性质、扇形的性质等知识的基础上进行学习的。

本节课的主要内容是让学生掌握圆锥的侧面积和全面积的计算方法,并能够运用这些方法解决实际问题。

教材中通过生动的图片和直观的图形,引导学生探究圆锥的侧面积和全面积的计算方法,使得学生能够更好地理解和掌握这些知识。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于圆锥的形状和性质有一定的了解。

但是,学生在计算圆锥的侧面积和全面积时,可能会因为对圆锥的结构的把握不准确而导致计算错误。

因此,在教学过程中,教师需要注重引导学生正确理解圆锥的侧面展开图与圆锥的关系,并通过实际的操作和练习,让学生熟练掌握计算方法。

三. 教学目标1.知识与技能目标:让学生掌握圆锥的侧面积和全面积的计算方法,并能够运用这些方法解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。

四. 教学重难点1.重点:圆锥的侧面积和全面积的计算方法。

2.难点:理解圆锥的侧面展开图与圆锥的关系,以及如何将圆锥的侧面展开图转化为计算侧面积和全面积的依据。

五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生主动探究圆锥的侧面积和全面积的计算方法。

2.操作法:教师学生进行实际的操作,让学生通过观察、实践,理解圆锥的侧面展开图与圆锥的关系。

3.讨论法:教师学生进行小组讨论,让学生在合作中交流思想,共同解决问题。

六. 教学准备1.教师准备:教师需要准备相关的教学材料,如圆锥的模型、圆锥的侧面展开图等。

2.学生准备:学生需要准备好笔记本、尺子、圆规等学习工具。

七. 教学过程1.导入(5分钟)教师通过展示一些与圆锥相关的实际问题,如饮料杯、火箭等,引导学生关注圆锥的形状和性质,激发学生的学习兴趣。

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》教案

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》教案

浙教版数学九年级上册3.6《圆锥的侧面积和全面积》教案一. 教材分析《圆锥的侧面积和全面积》是浙教版数学九年级上册第三章第六节的内容。

本节主要让学生掌握圆锥的侧面积和全面积的计算方法,理解圆锥侧面积和全面积的由来,为后续学习圆锥体积和表面积的应用打下基础。

二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、性质和运算,具备一定的空间想象能力。

但部分学生对圆锥的侧面展开图的理解和应用还不够深入,因此,在教学过程中需要注重引导学生通过实物操作、直观演示等方式,加深对圆锥侧面积和全面积的理解。

三. 教学目标1.理解圆锥的侧面积和全面积的概念,掌握计算方法。

2.能够运用圆锥的侧面积和全面积解决实际问题。

3.培养学生的空间想象能力、动手操作能力和解决问题的能力。

四. 教学重难点1.圆锥的侧面展开图与圆锥侧面积的关系。

2.圆锥全面积的计算方法。

五. 教学方法1.实物操作法:通过让学生观察、触摸实物,加深对圆锥侧面积和全面积的理解。

2.直观演示法:利用多媒体课件,展示圆锥的侧面展开图,引导学生直观地理解圆锥侧面积和全面积的计算方法。

3.问题驱动法:设计一系列问题,引导学生思考、探讨,激发学生的学习兴趣。

4.合作学习法:学生进行小组讨论,培养学生的团队协作能力。

六. 教学准备1.准备一些圆锥实物,让学生观察、触摸。

2.制作多媒体课件,展示圆锥的侧面展开图。

3.设计相关问题,准备小组讨论的话题。

七. 教学过程1.导入(5分钟)利用多媒体课件展示各种圆锥实物,引导学生观察、触摸,让学生直观地感受圆锥的形状。

然后提问:“你们认为圆锥的侧面积和全面积应该如何计算呢?”2.呈现(10分钟)讲解圆锥的侧面积和全面积的概念,引导学生理解圆锥侧面积和全面积的由来。

通过多媒体课件展示圆锥的侧面展开图,让学生直观地了解圆锥侧面积和全面积的计算方法。

3.操练(10分钟)设计一些练习题,让学生运用圆锥的侧面积和全面积的计算方法进行解答。

九年级数学圆锥的侧面积和全面积教案

九年级数学圆锥的侧面积和全面积教案

教案一:九年级数学圆锥的侧面积和全面积一、教学目标:1.理解圆锥的定义,掌握圆锥的侧面积和全面积公式的推导过程;2.能够应用所学知识解决与圆锥的侧面积和全面积相关的问题。

二、教学重难点:1.掌握圆锥的侧面积和全面积的公式的推导过程;2.在解决实际问题时,能够正确应用所学知识。

三、教学准备:1.教学课件、黑板、多媒体设备;2.学生准备的教材、笔记本和学习用具。

四、教学过程:Step 1 导入1.向学生介绍圆锥的概念,指出圆锥是由一个圆形底面和从底面上其中一点出发,既可以平行于底面,也可以不平行于底面的射线所围成的立体。

要求学生将圆锥的概念写在笔记本上,并画出一个圆锥的示意图。

Step 2 探究1.向学生提问:当圆锥的射线是和底面相交于一个点时,这种圆锥的形状是什么样的?请举例说明。

2.让学生通过观察和思考,探究这种特殊圆锥的性质,并让学生将结论写在笔记本上。

3.学生展示并讨论自己的结论,并与全班进行讨论。

Step 3 概念1.向学生介绍圆锥的侧面积和全面积的定义,并将其写在黑板上。

2.让学生记录下定义并理解其中的关键概念。

3.提醒学生要注意定义中的单位。

Step 4 推导1.向学生展示圆锥的侧面积公式的推导过程,并讲解每一步的原理和思路。

2.让学生跟随教师的步骤,将推导过程写在黑板上。

Step 5 计算1.以一个具体的圆锥为例,向学生展示如何计算圆锥的侧面积和全面积。

2.让学生逐步完成计算,并将结果写在纸上。

Step 6 实例1.给学生提供一些实际问题,要求他们运用所学知识解决问题。

2.学生独立完成问题,并将解答写在纸上。

3.学生进行互评,并讨论解题方法和答案的正确性。

Step 7 总结1.教师对本堂课的重难点内容进行总结,并强调学生在学习过程中需要注意的要点。

2.学生将本节课的重点内容整理为笔记。

五、课后作业:1.复习本节课的内容,确保对圆锥的侧面积和全面积的计算方法掌握透彻;2.完成课后作业,练习应用所学知识解决实际问题。

九年级数学圆锥的侧面积和全面积教案

九年级数学圆锥的侧面积和全面积教案

九年级数学《圆锥的侧面积和全面积》教案九年级数学《圆锥的侧面积和全面积》教案一、学习目标:1、知道圆锥各部分的名称,理解圆锥的侧面展开图是扇形,能够计算圆锥的侧面积和全面积。

2、探索圆锥侧面积和全面积的计算公式以及综合运用相关知识解决现实生活中的一些实际问题。

二、教学重难点1.重点:圆锥侧面积和全面积的计算公式.2.难点:探索两个公式的由来.三、教学活动(一)预习导学自学指导阅读教材第112至114页,完成下列问题:1、什么是圆锥的母线?课本中用什么符号表示?2、圆锥的侧面展开图是什么图形?3、如何计算圆锥的侧面积?4、如何计算圆锥的全面积?知识探究1、圆锥的再认识:圆锥是由一个和一个围成的,连接圆锥和底面圆周上任意一点的线段叫做圆锥的,连接顶点和底面的线段叫圆锥的。

2、圆锥的侧面展开图:沿着圆锥的母线,把圆锥的展开,得到一个,这个扇形的弧长等于,而扇形的半径等于。

3、圆锥的母线,底面圆的半径,圆锥的高,存在关系式:;圆锥的侧面积S= ,圆锥的全面积。

自学反馈1、已知圆锥的底面直径为4,母线长为6,则它的侧面积为。

2、如果圆锥的高为 3cm,母线长为5cm,则圆锥的侧面积是,全面积是。

教师点拨: 本堂课的关键是沿圆锥的一条母线将圆锥侧面剪开、展平,得到圆锥的侧面展开图是一个扇形这样将曲面转化为平面的一个过程,设圆锥的母线长为L,•底面圆的半径为r,•如图所示,那么这个扇形的半径等于圆锥的母线长L,扇形的弧长为等于圆锥底面圆的周长2 r.进而得到圆锥的侧面积公式。

rhl(二)小组讨论、合作探究【例1】圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是。

教师点拨:始终牢记圆锥的侧面的弧长即为底面圆的周长,进而得到结论:。

进一步思考探究:圆锥的侧面展开图会是一个圆吗?设计意图: 通过学生的实践活动,掌握圆锥的特征,弄清圆锥侧面展开图中各元素与圆锥中各元素之间的对应关系,渗透了立体图形平面化的数学思维方法,进一步培养了学生的空间观念和转化思想。

《圆锥的侧面积和全面积》教学设计

《圆锥的侧面积和全面积》教学设计

《圆锥的侧面积和全面积》教学设计教学内容:1. 圆锥的侧面积计算公式的推导;2. 圆锥的全面积计算公式的推导;3. 利用给定的半径和高度计算圆锥的侧面积和全面积;4. 解决实际问题中与圆锥的侧面积和全面积相关的计算问题。

教学目标:1. 理解圆锥的侧面积是指圆锥的侧面展开后的平面积;2. 掌握圆锥的侧面积计算公式的推导方法;3. 掌握圆锥的全面积计算公式的推导方法;4. 能够运用所学知识解决与圆锥侧面积和全面积相关的实际问题。

教学步骤:1. 引入问题:通过展示一个圆锥模型,引导学生思考圆锥的侧面积和全面积的含义和计算方法。

2. 讲解推导圆锥的侧面积计算公式:a. 展示一个圆锥的侧面展开图,说明展开后的形状为一个扇形。

b. 设圆锥的半径为r,斜高为l,展开后的扇形弧长为L,角度为θ。

c. 通过几何关系,推导得到侧面积公式:S = πrl。

3. 讲解推导圆锥的全面积计算公式:a. 圆锥的全面积由顶面积、底面积和侧面积组成。

b. 顶面积和底面积都是圆的面积,可以直接计算。

c. 通过圆锥的侧面展开图,可以看出圆锥的全面积可以等于底面积和侧面积之和。

d. 推导得到全面积公式:S = πr(r + l)。

4. 给定一个圆锥的半径和高度,让学生尝试计算其侧面积和全面积。

5. 给学生提供一些实际问题,让他们运用所学知识解决与圆锥侧面积和全面积相关的计算问题,如给定一桶圆锥形的果汁桶,问需要多少张标签才能完全覆盖该桶的侧面等。

6. 总结本节课的内容,强调圆锥的侧面积是指展开后的扇形的面积,全面积是顶面积、底面积和侧面积之和,应用场景广泛,比如建筑、工程等。

教学评估:1. 通过课堂练习,检查学生对圆锥侧面积和全面积计算的掌握情况;2. 观察学生在解决实际问题时的思考和解决方法,评估他们对所学知识的应用能力。

拓展延伸:1. 引导学生进一步探究其他立体图形的侧面积和全面积的计算方法,如圆柱、圆台等;2. 给学生更多的实践机会,让他们通过测量、计算、绘制等方式加深对侧面积和全面积的理解和应用能力。

初中九年级数学教案-计算圆锥的侧面积和全面积【全国一等奖】

初中九年级数学教案-计算圆锥的侧面积和全面积【全国一等奖】

圆锥的侧面积和全面积
一、教学目标
(一)知识与技能:
1探索圆锥的形成过程,了解圆锥的相关概念。

2理解圆锥的侧面积计算方法的推导。

3能够熟练运用公式进行计算、把立体图形的问题转化为平面图形问题
(二)过程与方法:
1 经历探索圆锥的形成过程,进而认识圆锥的相关概念,再用直角三角形这一几何模型来解决圆锥的母线、高、和底面圆半径三者之间的关系,能运用勾股定理,扇形面积公式,圆的周长公式来完成相关的计算,培养学生的实践与综合探究能力。

2通过体验圆锥的形成过程,发展学生的空间观念,培养他们的空间的想象力。

2使学生经历自主探究的过程:即从观察、比较、分析、归纳中,体会类比、转化的思想方法。

(三)情感、态度与价值观:
1使学生通过探索,观察和操作,发现结论,获得探究经验,从而体验学习的乐趣。

2使感受数学与生活的密切联系,激发学生学习数学的兴趣。

3通过探究与交流,增进合作交流,增强学生学习的自信心,达到敢于探索发现和表述结论,培养创新意识的目的。

教学重点
1经历探索圆锥的形成过程,进而理解相关几何概念之间的关系,推导出圆锥侧面积的计算公式。

2理解圆锥侧面积的计算公式。

3运用公式进行计算。

二、教学难点
1圆锥与其侧面展开图各元素之间的关系。

2、利用圆锥的侧面积计算公式解决实际问题。

三、教学方法
观察——思考——探究——发现——运用。

四、教学准备
多媒体课件、圆锥模型、扇形纸板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题--24.4.2圆锥的侧面积和全面积
教学任务分析
教学目标知识技能 1.通过实验使学生知道圆锥各部分的名称。

2.理解圆锥的侧面积展开图是扇形,并能够计算
圆锥的侧面积和全面积
方法过程利用所学的弧长和扇形面积公式即可通过计算它的展开
图的面积求得。

情感态度教给学生立体图形与平面图形的思维转换。

讲清扇形各
元素与圆锥各元素之间的关系。

学法指导动手操做,准确计算
教学重点圆锥的侧面展开图,计算圆锥的侧面积和全面积。

教学难点圆锥的侧面展开图,计算圆锥的侧面积和全面积
教学流程
活动流程图活动内容和目的
活动1.情境探究
活动2.实践与探索活动3.应用与拓展:活动4.小结与作业
展开图形认识各部分定义
通过实例观察,认识理解
动手操做,承上知识,准确计算,拓展创新
回顾梳理,总结全课。

教学过程设计
问题情景师生活动设计目标
活动1.把一个课前准备好的圆锥模型沿着母线剪开,让学生观察圆锥的侧面展开图,学生容易看出,圆锥的侧面展开图是一个扇形。

如图 23.3.6,我们把圆锥
底面圆周上的任意一点与
圆锥顶点的连线叫做圆锥
的母线,连结顶点与底面圆
心的线段叫做圆锥的高,如
图中a,而h就是圆锥的高。

问题:圆锥的母线有几条?
由具体的模型
认识圆锥的侧
面展开图,认
识圆锥各个部
分的名称
活动2.
(1)沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?学生思考后加以阐述。

圆锥的底面周长就是
其侧面展开图扇形的弧长,
圆锥的母线就是其侧面展
开图扇形的半径。

圆锥的侧面
积和全面积
的计算方法
图23.3.6
图23.3.7
(2)圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?
圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和。

活动3.
例1、一个圆锥形零件的母线长为a,底面的半径为r,求这个圆锥形零件的侧面积和全面积.
(难)例2、已知:在Rt ABC中,
90
C
∠=︒,
13
AB cm
=,
5
BC cm
=,求以AB
为轴旋转一周所得到
的几何体的全面积。

分析:以AB为轴旋转一周所得到的几何体是由公共底面的两个圆锥所组成的几何体,因此求全面积就是求两个圆锥的侧面积解 1. 圆锥的侧面展开后
是一个扇形,该扇形的半径
为a,扇形的弧长为2πr,
所以
S

=2
1
×2πr×a=πra;
S

=πr2;
S=πra+πr2.
答:这个圆锥形零件的侧
面积为πra,全面积为π
ra+πr2
解:过C点作CD AB
⊥,垂
足为D点(下略)
答:这个几何体的全面积
为2
1020
()
13
cm
π
巩固公式
准确计算
活动4.
小结与作业布置我们认识了圆锥的侧面展
开图,学会计算圆锥的侧面
积和全面积,在认识圆锥的
侧面积展开图时,应知道圆
锥的底面周长就是其侧面
展开图扇形的弧长。

圆锥的
母线就是其侧面展开图扇
形的半径。

熟练、准确计
算圆锥的侧面
积和全面积
D C B
A。

相关文档
最新文档