实验七 异方差
异方差定义及检验

4、帕克(Park)检验和戈里瑟(Glejser)检验
2 e x e i • Park检验的辅助模型为: i 2 • 求对数后为: ln(ei ) ln( ) ln xi
(4.1.2)
2 e • Glejser检验以 i 为被解释变量,以原模型的某一解释 变量 x j为解释变量,建立如下方程 :
ei f x ji i (4.1.3) • • f x j 可有多种函数形式。(利用试回归法,选择关于 变量的不同的函数形式,对方程进行估计并进行显著 性检验,如果存在某一种函数形式,使得方程显著成 立,则说明原模型存在异方差性。) • 可利用Eviews软件实现。
2
第二节 异方差的修正
方式2:在方程窗口中点击Estimate\Options\Weighted, 并在权数变量栏输入权数变量;
3)利用White检验判断是否消除了异方差性 权数变量的确定:依据Pack检验和Gleiser检验的结 果,或直接取成1/ei
精品课件!
作业四:
• 第五章3/4/6/8。
步骤:1)将解释变量的样本值按从小到大排序,再利用
ห้องสมุดไป่ตู้ • 检验统计量:
• F服从分布
2 1
n c k 1 2 RSS 2 2 F (4.1.1) 2 2 RSS1 RSS1 n c k 1 2
nc nc F (k 1), (k 1) 2 2
2.戈德菲尔德—匡特(Goldfeld—Quant)检验
原理:适合递增型的异方差,利用方差与解释变量同步增
长的原理,通过检验小方差与大方差是否有明显差异,达 到检验异方差的目的。 OLS求出估计值和残差序列 ei 2)在所有样本点中删去中间的c个点,将余下的点分为两组, 每组样本为 n c 2 个。 3)将两组样本分别作OLS,求得各自的残差平方和,再设计 统计量检验两组残差平方和是否有显著差异,若有,异方 差存在。
异方差性的检验及处理方法

异方差性的检验及处理方法异方差性是指随着自变量变化,因变量的方差不保持恒定,即方差存在不均匀的变化趋势。
在统计分析中,如果忽视了异方差性,可能会导致误差的不准确估计,从而影响对因变量的显著性检验和参数估计结果的准确性。
为了避免异方差性给统计分析带来的影响,需要进行异方差性的检验和处理。
下面将介绍几种常用的异方差性检验及处理方法。
一、异方差性的检验方法:1.绘制残差图:绘制因变量的残差(观测值与拟合值之差)与自变量的散点图,观察残差是否随着自变量的变化而存在明显的模式。
如果残差图呈现出锥形或漏斗形状,则表明存在异方差性。
2.帕金森检验:帕金森检验是一种常用的检验异方差性的方法。
该方法的原理是通过对残差进行变换,判断变换后的残差是否与自变量相关。
3. 布罗斯-佩根检验(Breusch-Pagan test):布罗斯-佩根检验是一种常用的检验异方差性的方法。
该方法的原理是通过计算残差与自变量的相关系数,进而判断是否存在异方差性。
4. 品尼曼检验(Leve ne’s test):品尼曼检验是一种非参数的检验方法,可以用于检验不同组别的方差是否存在显著差异。
二、异方差性的处理方法:1.变量转换:通过对因变量和自变量进行变换,可以使数据满足异方差性的假设。
比如可以对因变量进行对数转换或平方根转换,对自变量进行标准化处理等。
2.使用加权最小二乘法(WLS):加权最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差与自变量无关。
3.使用广义最小二乘法(GLS):广义最小二乘法是一种可以处理异方差性的回归分析方法。
该方法的原理是通过对残差进行加权,使得残差的方差可以通过自变量的一个线性组合来估计。
4.进行异方差性的鲁棒估计:鲁棒估计是一种对异常值和异方差性具有较好鲁棒性的估计方法。
通过使用鲁棒估计,可以减少异方差性对参数估计的影响。
综上所述,异方差性是统计分析中需要重视的问题。
异方差的检验与修正

西安财经学院本科实验报告学院(部)统计学院实验室 313 课程名称计量经济学学生姓名学号 1204100213 专业统计学教务处制2014年12 月 15 日《异方差》实验报告开课实验室:313 2014年12月22第六部分异方差与自相关4. 在本例中,参数估计的结果为:2709030.01402097.01402.728X X Y ++=Λ(2.218) (2.438) (16.999)922173.02=R D.W.=1.4289 F=165.8853 SE=395.2538三.检查模型是否存在异方差 1.图形分析检验 (1)散点相关图分析分别做出X1和Y 、X2和Y 的散点相关图,观察相关图可以看出,随着X1、X2的增加,Y 也增加,但离散程度逐步扩大,尤其表现在X1和Y.这说明变量之间可能存在递增的异方差性。
在Graph/scatter 输入log(x2) e^2,结果如下:(2)残差相关图分析建立残差关于X1、X2的散点图,可以发现随着X 的增加,残差呈现明显的扩大趋势,表明模型很可能存在递增的异方差性。
但是否确实存在异方差还应通过更进一步的检验。
2.GQ 检验首先在主窗口Procs菜单里选Sort current page命令,输入排序变量x2,以递增型排序对解释变量X2进行排序,然后构造子样本区间,分别为1-12和20-31,再分别建立回归模型。
(1)在Sample菜单里,将区间定义为1—12,然后用OLS方法求得如下结果(2)在Sample菜单里,将区间定义为20—31,然后用OLS方法求得如下结果则F的统计量值为:6699.834542929948192122===∑∑iieeF在05.0=α下,式中分子、分母的自由度均为9,查F分布表得临界值为:18.3)9,9(05.0=F,因为F=8.6699>18.3)9,9(05.0=F,所以拒绝原假设,表明模型确实存在异方差。
异方差与自相关

七、 异方差与自相关一、背景我们讨论如果古典假定中的同方差和无自相关假定不能得到满足,会引起什么样的估计问题呢?另一方面,如何发现问题,也就是发现和检验异方差以及自相关的存在性也是一个重要的方面,这个部分就是就这个问题进行讨论。
二、知识要点1、引起异方差的原因及其对参数估计的影响2、异方差的检验(发现异方差)3、异方差问题的解决办法4、引起自相关的原因及其对参数估计的影响5、自相关的检验(发现自相关)6、自相关问题的解决办法 (时间序列部分讲解) 三、要点细纲1、引起异方差的原因及其对参数估计的影响原因:引起异方差的众多原因中,我们讨论两个主要的原因,一是模型的设定偏误,主要指的是遗漏变量的影响。
这样,遗漏的变量就进入了模型的残差项中。
当省略的变量与回归方程中的变量有相关关系的时候,不仅会引起内生性问题,还会引起异方差。
二是截面数据中总体各单位的差异。
后果:异方差对参数估计的影响主要是对参数估计有效性的影响。
在存在异方差的情况下,OLS 方法得到的参数估计仍然是无偏的,但是已经不具备最小方差性质。
一般而言,异方差会引起真实方差的低估,从而夸大参数估计的显著性,即是参数估计的t 统计量偏大,使得本应该被接受的原假设被错误的拒绝。
2、异方差的检验 (1)图示检验法由于异方差通常被认为是由于残差的大小随自变量的大小而变化,因此,可以通过散点图的方式来简单的判断是否存在异方差。
具体的做法是,以回归的残差的平方2i e 为纵坐标,回归式中的某个解释变量i x 为横坐标,画散点图。
如果散点图表现出一定的趋势,则可以判断存在异方差。
(2)Goldfeld-Quandt 检验Goldfeld-Quandt 检验又称为样本分段法、集团法,由Goldfeld 和Quandt 1965年提出。
这种检验的思想是以引起异方差的解释变量的大小为顺序,去掉中间若干个值,从而把整个样本分为两个子样本。
用两个子样本分别进行回归,并计算残差平方和。
异方差的例子

异方差的例子异方差指的是在统计分析中,不同观测值的方差不相等。
这种情况下,使用传统的线性回归模型可能会导致结果的偏差和误差。
因此,为了得到更准确的结果,需要采取一些方法来处理异方差性。
下面将列举一些常见的异方差的例子,并介绍相应的处理方法。
1. 股票价格波动:股票价格的波动通常呈现出非常明显的异方差性。
在股票市场中,有些股票的价格非常波动,而有些股票的价格相对稳定。
这种情况下,可以使用加权最小二乘法来处理异方差。
2. 学生考试成绩:学生考试成绩的方差通常也会存在异方差性。
一些学生的考试成绩波动较大,而一些学生的考试成绩相对稳定。
在分析学生的考试成绩时,可以考虑使用方差齐性检验来确定是否存在异方差,并选择相应的处理方法。
3. 经济增长率:经济增长率在不同的时间段和地区通常也会呈现出异方差性。
一些地区的经济增长率波动较大,而一些地区的经济增长率相对稳定。
在分析经济增长率时,可以使用异方差稳健标准误来处理异方差。
4. 气温变化:气温在不同的季节和地区通常也会呈现出异方差性。
一些地区的气温波动较大,而一些地区的气温相对稳定。
在分析气温变化时,可以使用加权最小二乘法或者异方差稳健标准误来处理异方差。
5. 金融市场波动:金融市场的波动性也会导致异方差的问题。
一些金融资产的价格波动较大,而一些金融资产的价格相对稳定。
在分析金融市场波动时,可以使用加权最小二乘法或者异方差稳健标准误来处理异方差。
6. 人口增长率:人口增长率在不同的国家和地区也会呈现出异方差性。
一些国家的人口增长率波动较大,而一些国家的人口增长率相对稳定。
在分析人口增长率时,可以使用加权最小二乘法或者异方差稳健标准误来处理异方差。
7. 网络流量:网络流量在不同的时间段和地区也会呈现出异方差性。
一些地区的网络流量波动较大,而一些地区的网络流量相对稳定。
在分析网络流量时,可以使用加权最小二乘法或者异方差稳健标准误来处理异方差。
8. 土地价格:土地价格在不同的地区和时间段也会呈现出异方差性。
异方差进行检验和补救

实验报告课程名称:实验项目名称:单方程线性回归模型中异方差的检验与补救院(系):专业班级:姓名:学号:实验地点:实验日期:年月日实验目的:掌握利用EViews软件对模型中存在的异方差进行检验和补救。
实验内容:根据我国2000年部分地区城镇居民每个家庭平均全年可支配收入X与消费支出Y 的统计数据,通过建立双变量线性回归模型分析人均可支配收入对人均消费支出的线性影响,并讨论异方差的检验与修正过程。
1、异方差的检验1)图示法2)Park检验3)Glejser检验4)Goldfeld-Quandt检验5)White检验2、异方差的补救1)加权最小二乘法(WLS)2)对数变换实验方法、步骤和结果:一、建立工作文件并完成数据输入1、File---new---workfile2、Quick---Empty Group ----paste3、将ser01重命名为x,ser01重命名为y二、写模型的估计方程Quick---Estimate Equation---y c x,得到在不考虑异方差且其他假定都成立的情况下的估计结果,如下图所示:三、异方差的检验找y的估计值在估计结果中点击forcast 将其重命名为yf生成残差序列:在估计窗口中点击proc---make residual series将resid01重命名为res,并保存(一)图示法(对异方差粗略的判定)1.用x-y的散点图进行判断,看是否存在明显的散点扩大、缩小或是复杂性的变动趋势X y ----open----as GroupView---graph ----scatter-----simple scatter2、用y的估计值与残差平方的散点图进行判断,看是否存在一条斜率为零的直线Quick---graph----scatter—写入方程yf res^2图形显示斜率不为零,所以可知模型存在异方差3、任一解释变量x与残差平方的散点图进行判断,看是否存在一条斜率为零的直线Quick—graph—scatter写入方程x res^2图形显示斜率不为零,所以可知模型存在异方差由以上三种图示法可知,模型存在异方差(二)帕克(Park)检验(将图示法公式化)Quick—Estimate Equation---log(res^2) c log(x)由估计结果可知:log(x)=3.703235 P=0.020622<0.05,所以拒绝原假设,模型具有统计显著性,即模型具有异方差。
异方差名词解释

异方差名词解释
异方差(heteroscedasticity )是为了保证回归参数,估计量具有良好的统计性质。
经典线性回归模型的一个重要假定是:总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。
如果这一假定不满足,则称线性回归模型存在异方差性。
若线性回归模型存在异方差性,则用传统的最小二乘法估计模型,得到的参数估计量不是有效估计量,甚至也不是渐近有效的估计量;此时也无法对模型参数的进行有关显著性检验。
对存在异方差性的模型可以采用加权最小二乘法进行估计。
异方差产生的原因:
1.常来源于截面数据;
2.来源于测量误差和模型中被省略的一些因素对被解释变量的影响;
3.有时产生于计量经济模型所研究问题的本身;
4.用分组数据估计经济计量模型也是异方差性的重要来源。
异方差——怀特的一般异方差检验-PPT课件

X X X X X X 7 1 i 2 i 8 1 i 3 i 9 2 i 3 i i
检验原模型是否存在异方差就相当于检验此辅助 回归模型的回归参数,除常数项以外是否显著为0。
themegallery
3
Company Logo
Logo 原假设 H : 0 , i 1 , 2 , 9 0 i , , 备择假设 H 0: 1 9 至少有一个不等于0. 如果原假设H0成立,相当于ei2是一个常数,则由 ei2表示的随机误差项的方差是一个常数,那么就认 为原模型不存在异方差性。反之,认为原模型存在 异方差性。 在构造辅助回归模型以后,使用普通最小二乘法 (OLS)对这个辅助回归模型进行参数估计,从而 得到该辅助模型的可决系数R2。
( k 1 )( k 2 ) ( 1 1 )( 1 2 ) 1 1 2 给定α=0.05, g 2 2
查卡方分布表,得α=0.05,自由度为2的临界值
(2 ) 6
2 0 .05
2 2 比较: nR 9 . 1 ( 2 ) 6 0 . 05
所以拒绝H0,认为回归模型当中存在异方差性。
themegallery
12
Company Logo
Logo
怀特异方 差检验表
这部分实际 上就是我们 前面构造的 辅助回归!
themegallery
13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
实验七 异方差性
【实验目的】
掌握异方差性的检验及处理方法
【实验内容】
建立并检验我国制造业利润函数模型
【实验步骤】
【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件
Eviews建立我国制造业利润函数模型。
表1 我国制造工业1998年销售利润与销售收入情况
行业名称 销售利润 销售收入 行业名称 销售利润 销售收入
食品加工业 187.25 3180.44 医药制造业 238.71 1264.1
食品制造业 111.42 1119.88 化学纤维制品 81.57 779.46
饮料制造业 205.42 1489.89 橡胶制品业 77.84 692.08
烟草加工业 183.87 1328.59 塑料制品业 144.34 1345
纺织业 316.79 3862.9 非金属矿制品 339.26 2866.14
服装制品业 157.7 1779.1 黑色金属冶炼 367.47 3868.28
皮革羽绒制品 81.7 1081.77 有色金属冶炼 144.29 1535.16
木材加工业 35.67 443.74 金属制品业 201.42 1948.12
家具制造业 31.06 226.78 普通机械制造 354.69 2351.68
造纸及纸品业 134.4 1124.94 专用设备制造 238.16 1714.73
印刷业 90.12 499.83 交通运输设备 511.94 4011.53
文教体育用品 54.4 504.44 电子机械制造 409.83 3286.15
石油加工业 194.45 2363.8 电子通讯设备 508.15 4499.19
化学原料纸品 502.61 4195.22 仪器仪表设备 72.46 663.68
一、 检验异方差性
⒈图形分析检验
⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y
图1 我国制造工业销售利润与销售收入相关图
从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩
大。这说明变量之间可能存在递增的异方差性。
2
⑵残差分析
首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。在方程窗口中点击Resids
按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图2 我国制造业销售利润回归模型残差分布
图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
⒉布罗施-帕甘(Breusch-Pagan)检验
(1)对原模型做回归分析,LS Y C X,结果如下图
⑵在方程窗口上点击View\Residual Diagnostics
(3)选择Heteroskedasticity Tests/Breusch-Pagan-Godfrey/ok
3
(4)得到布罗施-帕甘(Breusch-Pagan)检验的结果如下图
其中F值为辅助回归模型的F统计量值。取显著水平05.0,由于
0.05
5.28(1,26)4.24FF
所以存在异方差性;也可以利用拉格朗日乘数进行判断,由于220.05(1)3.844.72nR,所以存
在异方差性。实际应用中可以直接观察相伴概率p值的大小,若p值较小,即小于显著性水平则认
为存在异方差性,反之,则认为不存在异方差性,本题中P=0.0299<0.05,所以存在异方差性。
⒊White检验
⑴建立回归模型:LS Y C X,回归结果如图5。
图5 我国制造业销售利润回归模型
4
⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。
图6 White检验结果
其中F值为辅助回归模型的F统计量值。取显著水平05.0,由于
2704.699.5)2(2205.0nR
,所以存在异方差性。实际应用中可以直接观察相伴概率p值的大
小,若p值较小,则认为存在异方差性。反之,则认为不存在异方差性,本题中P=0.043<0.05,所以
存在异方差性。
二、 调整异方差性
1、加权最小二乘法
(1)确定权数变量
先对原模型做回归分析: Ls y c x
得到残差resid: genr ei=resid
然后构造辅助回归模型201ln()iiieXv,对辅助模型做回归分析: Ls log(ei^2) c x
结果如下:
可以写出回归方程: 2ˆln()4.8939640.000925iieX,(4.8939640.000925)2ˆiXiee,
权数W1=1/ˆie:
genr w1=1/sqr(exp(4.893964+0.000925*x))
(2)利用加权最小二乘法估计模型
在Eviews命令窗口中键入命令:
LS(W=W1) Y C X
5
(3)对所估计的模型再进行White检验,观察异方差的调整情况
对所估计的模型再进行White检验,其结果P值较大,所以接收不存在异方差的原假设,即
认为已经消除了回归模型的异方差性。
2、异方差稳健标准误法(Heteroscedasticity-Consistent Variances and Standard Errors)
应用软件中推荐的一种选择。适合样本容量足够大的情况,仍然采用OLS,但对OLS估计量的
标准差进行修正,与不附加选择的OLS估计比较,参数估计量没有变化,但是参数估计量的方
差和标准差变化明显,即使存在异方差、仍然采用OLS估计时,变量的显著性检验有效,预测
有效
在Eviews 中的操作:把数组X Y打开,选择Proc/Make Equation/Option/White/确定,如下
6
和普通最小二乘法进行对比发现,参数估计量没有变化,但是参数估计量的方差和标准差变化
明显。
提交实验报告:完成教材149页的第11题,要求检验异方差
时采用三种方法,即图示法、BP检验、White检验法;调整时采
取两种方法,即加权最小二乘法和异方差稳健标准误法。