天津市南开中学2015届高三数学(文)统练8(数列)

合集下载

2015天津高考数学(文)试题及答案

2015天津高考数学(文)试题及答案

2015天津高考数学(文)试题及答案满分:班级:_________ 姓名:_________ 考号:_________一、单选题(共8小题)1.复数()A.B.C.D.2.若,满足则的最大值为()A.0B.1C.D.23.执行如图所示的程序框图,输出的结果为()A.B.C.D.4.设,是两个不同的平面,是直线且.“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.B.C.D.56.设是等差数列. 下列结论中正确的是()A.若,则B.若,则C.若,则D.若,则7.如图,函数的图象为折线,则不等式的解集是()A.B.C.D.8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油二、填空题(共6小题)9.在的展开式中,的系数为.(用数字作答)10.已知双曲线的一条渐近线为,则.11.在极坐标系中,点到直线的距离为.12.在中,,,,则.13.在中,点,满足,.若,则;.14.设函数①若,则的最小值为;②若恰有2个零点,则实数的取值范围是.三、解答题(共6小题)15.已知函数.(Ⅰ) 求的最小正周期;(Ⅱ) 求在区间上的最小值.16.,两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:组:10,11,12,13,14,15,16组:12,13,15,16,17,14,假设所有病人的康复时间互相独立,从,两组随机各选1人,组选出的人记为甲,组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;(Ⅱ) 如果,求甲的康复时间比乙的康复时间长的概率;(Ⅲ) 当为何值时,,两组病人康复时间的方差相等?(结论不要求证明)17.如图,在四棱锥中,为等边三角形,平面平面,,,,,为的中点.(Ⅰ) 求证:;(Ⅱ) 求二面角的余弦值;(Ⅲ) 若平面,求的值.18.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求证:当时,;(Ⅲ)设实数使得对恒成立,求的最大值.19.已知椭圆:的离心率为,点和点都在椭圆上,直线交轴于点.(Ⅰ)求椭圆的方程,并求点的坐标(用,表示);(Ⅱ)设为原点,点与点关于轴对称,直线交轴于点.问:轴上是否存在点,使得?若存在,求点的坐标;若不存在,说明理由.20.已知数列满足:,,且.记集合.(Ⅰ)若,写出集合的所有元素;(Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数;(Ⅲ)求集合的元素个数的最大值.答案部分1.试题解析:原式=2i-i2=1+2i答案:A2.考点:线性规划试题解析:如图所表示的区域为不等式组表示的平面区域,易知点为目标函数取得最大值的最优解,即Z max=0+21=2答案:D3.试题解析:据框图可得:答案:B4.试题解析:显然由推不出,但能推出,故选B答案:B5.考点:空间几何体的三视图与直观图试题解析:直观图如图:在过点P作AB的垂线交AB于点D,连接DC,=,,所以,表面积S=2+.答案:6.考点:等差数列试题解析:可使用特值法。

天津市南开中学2015年高考数学统练试卷(理科)(7)

天津市南开中学2015年高考数学统练试卷(理科)(7)

2015年天津市南开中学高考数学统练试卷(理科)(7)一、选择题(共12个小题.每小题5分,共60分)1.已知y=log3(3x+1)+ax是偶函数,y=b+为奇函数,则a+b=()A.﹣1 B. 0 C. D. 12.设a=(),b=(),c=log,则a,b,c的大小关系是()A. a>c>b B. a>b>c C. c>b>a D. b>c>a3.若方程()x+(x﹣1+a=0)有正数解,则实数a的取值范围是()A. 0<a<1 B.﹣3<a<0 C.﹣2<a<0 D.﹣1<a<04.设M=a+(2<a<3),N=(x2+)(x∈R),那么M、N的大小关系是() A. M>N B. M=N C. M<N D.不能确定5.若函数f(x)=x2+(a∈R),则下列结论正确的是()A.∀a∈R,f(x)在(0,+∞)上是增函数 21B.∃a∈R,f(x)是偶函数育C.∀a∈R,f(x)在(0,+∞)上是减函数D.∃a∈R,f(x)是奇函数6.已知x,y∈(﹣∞,0),且x+y=﹣1,则xy+有()A.最大值 B.最小值 C.最小值﹣ D.最大值﹣7.(5分)(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞) B.(﹣1,0)∪(2,+∞) C.(2,+∞) D.(﹣1,0)8.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A. [1,+∞) B. [1,) C. [1,2) D. [,2)9.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,) B.(1,) C.(,) D.(0,)10.已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x >0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()A. {x|x<﹣1或x>1} B. {x|x<﹣1或0<x<1}C. {x|﹣1<x<0或0<x<1} D. {x|﹣1<x<1,且x≠0}11.已知函数f(x)的图象与函数的图象关于点A(0,1)对称,若,且g(x)在区间(0,2]上为减函数,则实数a的取值范围是() A. [3,+∞) B. [2,+∞) C.(0,3] D.(0,2]12.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k的取值范围是()A.﹣1<k≤ B.≤k<1 C. k>﹣1 D. k<1二、填空题(共6个小题.每小题5分,共30分)13.不等式|x+1|+|2x﹣1|<3的解集为.14.若方程2log2x﹣log2(x﹣1)=m有两个解,则实数m的取值范围是.15.已知a∈R,若关于x的方程x2+x+|a﹣|+|a|=0有实根,则a的取值范围是.16.由抛物线y2=,y2=x﹣1所围成封闭图形的面积为.17.已知函数(m∈R)在区间[1,e]上取得最小值4,则m= .18.若函数f(x)=x3﹣3x在区间(a,6﹣a2)上有最小值,则实数a的取值范围是.三、解答题(共有4个题,每题15分)19.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.20.已知函数f(x)=﹣ax(x>0且x≠1).(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;(2)若∃x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的取值范围.21.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.22.设函数f(x)=(x﹣a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.2015年天津市南开中学高考数学统练试卷(理科)(7)参考答案与试题解析一、选择题(共12个小题.每小题5分,共60分)1.已知y=log3(3x+1)+ax是偶函数,y=b+为奇函数,则a+b=()A.﹣1 B. 0 C. D. 1考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据函数奇偶性的性质分别取x=1或﹣1,代入函数解析式列出方程组,求出a、b 的值,即可求出a+b的值.解答:解:∵y=log3(3x+1)+ax是偶函数,y=b+为奇函数,∴,解得,∴a+b=,故选:C.点评:本题考查函数奇偶性的性质,以及方程思想,属于基础题.2.设a=(),b=(),c=log,则a,b,c的大小关系是()A. a>c>b B. a>b>c C. c>b>a D. b>c>a考点:对数值大小的比较.专题:函数的性质及应用.分析:根据指数幂和对数的性质分别进行判断即可.解答:解:a=()>()>()>0,即a>b,c=log<0,即a>b>c,故选:B点评:本题主要考查函数值的大小比较,根据指数幂和对数的性质是解决本题的关键.3.若方程()x+(x﹣1+a=0)有正数解,则实数a的取值范围是()A. 0<a<1 B.﹣3<a<0 C.﹣2<a<0 D.﹣1<a<0考点:根的存在性及根的个数判断.专题:计算题;换元法.分析:为便于处理,不妨设t=()x,于是可转化为求关于t的方程t2+2t+a=0的根的问题,明显地,原方程有正实数解,即可转化为关于t的方程在(0,1)上有解的问题,即可得解.解答:解:设t=()x,则有:a=﹣[()2x+2()x]=﹣t2﹣2t=﹣(t+1)2+1.原方程有正数解x>0,则0<t=()x<()0=1,即关于t的方程t2+2t+a=0在(0,1)上有实根.又因为a=﹣(t+1)2+1.所以当0<t<1时有1<t+1<2,即1<(t+1)2<4,即﹣4<﹣(t+1)2<﹣1,即﹣3<﹣(t+1)2+1<0,即得﹣3<a<0.故选:B.点评:本题考查函数最值的求法,二次方程根的分布问题,以及对含参数的函数、方程的问题的考查,亦对转化思想,换元法在解题中的应用进行了考查,属于中档题.4.设M=a+(2<a<3),N=(x2+)(x∈R),那么M、N的大小关系是() A. M>N B. M=N C. M<N D.不能确定考点:不等式比较大小.专题:计算题.分析:由2<a<3,知M=a+=(a﹣2)++2>2+2=4,N=≤=4<M.解答:解:∵2<a<3,∴M=a+=(a﹣2)++2>2+2=4,N=≤=4<M.故选A.点评:本题考查比较不等式的大小,解题时要注意均值不等式的合理运用.5.若函数f(x)=x2+(a∈R),则下列结论正确的是()A.∀a∈R,f(x)在(0,+∞)上是增函数 21B.∃a∈R,f(x)是偶函数育C.∀a∈R,f(x)在(0,+∞)上是减函数D.∃a∈R,f(x)是奇函数考点:全称命题.专题:函数的性质及应用;导数的综合应用.分析:考查函数f(x)的单调性,排除选项A、C;a=0时,f(x)是偶函数,无论a取何值,f(x)都不是奇函数,由此得出正确选项.解答:解:∵f(x)=x2+,∴f′(x)=2x﹣=,令2x3﹣a=0,解得x=,∴当x>时,f′(x)>0,f(x)是增函数,当x<时,f′(x)<0,f(x)是减函数,∴选项A、C错误;又a=0时,f(x)=x2是偶函数,∴B正确;无论a取何值,f(x)都不是奇函数,∴D错误.故选:B.点评:本题考查了函数的性质与应用问题,也考查了利用导数判断函数的单调性问题,是综合性题目.6.已知x,y∈(﹣∞,0),且x+y=﹣1,则xy+有()A.最大值 B.最小值 C.最小值﹣ D.最大值﹣考点:基本不等式.专题:不等式的解法及应用.分析:由基本不等式易得xy∈(0,],换元可得z=t+,t∈(0,],由“对勾函数”的单调性可得.解答:解:∵x,y∈(﹣∞,0),且x+y=﹣1,∴﹣x,﹣y∈(0,+∞),且(﹣x)+(﹣y)=1,∴由基本不等式可得xy=(﹣x)(﹣y)≤=当且仅当﹣x=﹣y即x=y=﹣时,上式取最大值,即xy∈(0,],令xy=t,则t∈(0,],已知式子化为z=t+,由函数的单调性易得函数z=t+在t∈(0,]上单调递减,∴当t=时,xy+有最小值+4=,故选:B.点评:本题考查基本不等式求最值,涉及“对勾函数”的单调性,属基础题.7.(5分)(2011•江西)若f(x)=x2﹣2x﹣4lnx,则f′(x)>0的解集为()A.(0,+∞) B.(﹣1,0)∪(2,+∞) C.(2,+∞) D.(﹣1,0)考点:导数的加法与减法法则;一元二次不等式的解法.专题:计算题.分析:由题意,可先求出函数的定义域及函数的导数,再解出不等式f′(x)>0的解集与函数的定义域取交集,即可选出正确选项.解答:解:由题,f(x)的定义域为(0,+∞),f′(x)=2x﹣2﹣,令2x﹣2﹣>0,整理得x2﹣x﹣2>0,解得x>2或x<﹣1,结合函数的定义域知,f′(x)>0的解集为(2,+∞).故选:C.点评:本题考查导数的加法与减法法则,一元二次不等式的解法,计算题,基本题型,属于基础题.8.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A. [1,+∞) B. [1,) C. [1,2) D. [,2)考点:利用导数研究函数的单调性.专题:常规题型.分析:先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解方程fˊ(x)=0,使方程的解在定义域内的一个子区间(k﹣1,k+1)内,建立不等关系,解之即可.解答:解:因为f(x)定义域为(0,+∞),又,由f'(x)=0,得.当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0据题意,,解得.故选B.点评:本题主要考查了对数函数的导数,以及利用导数研究函数的单调性等基础知识,考查计算能力,属于基础题.9.有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,) B.(1,) C.(,) D.(0,)考点:棱锥的结构特征.专题:计算题;压轴题.分析:本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.我们可以通过分析确定当底面是边长为2的正三角形,三条侧棱长为2,a,a此时a取最大值,当构成三棱锥的两条对角线长为a,其他各边长为2,a有最小值,易得a的取值范围解答:解:根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况①底面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即,即有1<a<②构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时0<a<2;综上分析可知a∈(0,);故选A.点评:本题考查的知识点是空间想像能力,我们要结合分类讨论思想,数形结合思想,极限思想,求出a的最大值和最小值,进而得到a的取值范围10.已知f(x)是定义在R上的奇函数,且f(1)=0,f′(x)是f(x)的导函数,当x >0时总有xf′(x)<f(x)成立,则不等式f(x)>0的解集为()A. {x|x<﹣1或x>1} B. {x|x<﹣1或0<x<1}C. {x|﹣1<x<0或0<x<1} D. {x|﹣1<x<1,且x≠0}考点:函数的单调性与导数的关系;其他不等式的解法.专题:计算题;压轴题.分析:由已知当x>0时总有xf′(x)<f(x)成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可解答:解:设g(x)=,则g(x)的导数为g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x)∴函数g(x)为定义域上的偶函数又∵g(1)==0∴函数g(x)的图象性质类似如图:数形结合可得不等式f(x)>0⇔x•g(x)>0⇔或⇔0<x<1或x<﹣1故选B点评:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.11.已知函数f(x)的图象与函数的图象关于点A(0,1)对称,若,且g(x)在区间(0,2]上为减函数,则实数a的取值范围是()A. [3,+∞) B. [2,+∞) C.(0,3] D.(0,2]考点:函数的单调性与导数的关系.专题:计算题.分析:利用函数图象对称的公式,求得f(x)=2﹣h(﹣x)=,由此可得g(x)=x+.然后对函数g(x)求导数,并讨论导数g'(x)在区间(0,2]恒小于或等于0,即可得到实数a的取值范围.解答:解:∵函数f(x)的图象与函数的图象关于点A(0,1)对称,∴f(x)=2﹣h(﹣x)=2﹣()=由此可得=x+,对g(x)求导数,得g'(x)=1﹣∵g(x)在区间(0,2]上为减函数,∴g'(x)=1﹣≤0在区间(0,2]恒成立,即≥1,可得x2≤a+1∴x2的最大值小于或等于a+1,即a+1≥4,a≥3故选A点评:本题用导数为工具讨论函数的单调性,着重考查了函数的单调性、函数图象的对称性质和不等式恒成立的讨论等知识,属于基础题.12.设f(x)的定义域为D,若f(x)满足下面两个条件,则称f(x)为闭函数.①f(x)在D内是单调函数;②存在[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b].如果为闭函数,那么k的取值范围是()A.﹣1<k≤ B.≤k<1 C. k>﹣1 D. k<1考点:函数的最值及其几何意义;函数单调性的判断与证明.专题:综合题;压轴题.分析:首先应根据条件将问题转化成:在上有两个不等实根.然后,一方面:可以从数形结合的角度研究两函数和y=x﹣k在上的交点个数问题,进而获得问题的解答;另一方面:可以化简方程,得关于x的一元二次方程,从二次方程根的分布情况分析亦可获得问题的解答.解答:解:方法一:因为:为上的增函数,又f(x)在[a,b]上的值域为[a,b],∴,即f(x)=x在上有两个不等实根,即在上有两个不等实根.∴问题可化为和y=x﹣k在上有两个不同交点.对于临界直线m,应有﹣k≥,即k≤.对于临界直线n,,令=1,得切点P横坐标为0,∴P(0,1),∴n:y=x+1,令x=0,得y=1,∴﹣k<1,即k>﹣1.综上,﹣1<k≤.方法二:因为:为上的增函数,又f(x)在[a,b]上的值域为[a,b],∴,即f(x)=x在上有两个不等实根,即在上有两个不等实根.化简方程,得x2﹣(2k+2)x+k2﹣1=0.令g(x)=x2﹣(2k+2)x+k2﹣1,则由根的分布可得,即,解得k>﹣1.又,∴x≥k,∴k≤.综上,﹣1<k≤,故选A.点评:本题考查的是函数的最值及其几何意义.在解答的过程当中充分体现了问题转化的思想、数形结合的思想以及函数与方程的思想.同时二次函数根的分布情况对本体的解答也有相当大的作用.值得同学们体会和反思.二、填空题(共6个小题.每小题5分,共30分)13.不等式|x+1|+|2x﹣1|<3的解集为(﹣1,1).考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.解答:解:不等式|x+1|+|2x﹣1|<3等价于①,或②,或③.解①求得x∈∅,解②求得﹣1<x<,解③求得≤x<1,综合可得,原不等式的解集为(﹣1,1),故答案为:(﹣1,1).点评:本题主要考查绝对值的意义,绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,属于基础题.14.若方程2log2x﹣log2(x﹣1)=m有两个解,则实数m的取值范围是(2,+∞).考点:根的存在性及根的个数判断.专题:计算题;函数的性质及应用.分析:据对数的真数大于0求出定义域,利用对数的运算法则转化成x2﹣2m x+2m=0.方程在x>1时有两个解,解方程即可.解答:解:由题得得x>1.又∵2log2x﹣log2(x﹣1)=log2()=m,∴可得=2m,即x2﹣2m x+2m=0.方程在x>1时有两个解,可得:,解得所以实数m的取值范围是:(2,+∞)故答案为:(2,+∞).点评:本题考查对数的真数大于0、对数的运算法则、二次方程的解法,解题过程中要注意对数的定义域,属于中档题.15.已知a∈R,若关于x的方程x2+x+|a﹣|+|a|=0有实根,则a的取值范围是.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:将方程进行移项,然后再根据利用绝对值的几何意义进行求解.解答:解:x2+x+|a﹣|+|a|=0即|a﹣|+|a|=﹣(x2+x),令y=﹣(x2+x),分析可得,y≤,若方程x2+x+|a﹣|+|a|=0有实根,则必有|a﹣|+|a|≤,而|a﹣|+|a|≥,当且仅当0≤a≤时,有|a﹣|+|a|=,故且仅当0≤a≤时,有|a﹣|+|a|=﹣(x2+x)成立,即x2+x+|a﹣|+|a|=0有实根,可得实数a的取值范围为,故答案为:.点评:此题考查绝对值不等式的解法及其几何意义,解题的关键是利用零点分段法进行求解,此类题目是高考常见的题型.16.由抛物线y2=,y2=x﹣1所围成封闭图形的面积为.考点:定积分在求面积中的应用.专题:导数的综合应用.分析:联立方程,先求出其交点坐标,再利用微积分基本定理定理即可得出解答:解:如图两个曲线的交点为(1.25,±0.5),所以由抛物线y2=,y2=x﹣1所围成封闭图形的面积为:2=2=2(y﹣)|=;故答案为:.点评:本题考查了定积分的应用,正确求导积分变量以及变量范围,熟练掌握微积分基本定理定理是解题的关键.17.已知函数(m∈R)在区间[1,e]上取得最小值4,则m= ﹣3e .考点:利用导数求闭区间上函数的最值.专题:导数的概念及应用.分析:求出函数的导函数,然后分m的范围讨论函数的单调性,根据函数的单调性求出函数的最小值,利用最小值等于4求m的值.解答:解:函数的定义域为(0,+∞),.当f′(x)=0时,,此时x=﹣m,如果m≥0,则无解.所以,当m≥0时,f′(x)>0,f(x)为增函数,所以f(x)min=f(1)=﹣m=4,m=﹣4,矛盾舍去;当m<0时,若x∈(0,﹣m),f′(x)<0,f(x)为减函数,若x∈(﹣m,+∞),f′(x)>0,f (x)为增函数,所以f(﹣m)=ln(﹣m)+1为极小值,也是最小值;①当﹣m<1,即﹣1<m<0时,f(x)在[1,e]上单调递增,所以f(x)min=f(1)=﹣m=4,所以m=﹣4(矛盾);②当﹣m>e,即m<﹣e时,f(x)在[1,e]上单调递减,f(x)min=f(e)=1﹣=4.所以m=﹣3e.③当﹣1≤﹣m≤e,即﹣e≤m≤﹣1时,f(x)在[1,e]上的最小值为f(﹣m)=ln(﹣m)+1=4.此时m=﹣e3<﹣e(矛盾).综上m=﹣3e.点评:本题考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,解答的关键是正确分类,是中档题.18.若函数f(x)=x3﹣3x在区间(a,6﹣a2)上有最小值,则实数a的取值范围是[﹣2,1).考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:根据题意求出函数的导数,因为函数 f(x)在区间(a,6﹣a2)上有最小值,所以f′(x)先小于0然后再大于0,所以结合二次函数的性质可得:a<1<5﹣a2,进而求出正确的答案.解答:解:由题意可得:函数 f(x)=x3﹣3x,所以f′(x)=3x2﹣3.令f′(x)=3x2﹣3=0可得,x=±1;因为函数 f(x)在区间(a,6﹣a2)上有最小值,其最小值为f(1),所以函数f(x)在区间(a,6﹣a2)内先减再增,即f′(x)先小于0然后再大于0,所以结合二次函数的性质可得:a<1<6﹣a2,且f(a)=a3﹣3a≥f(1)=﹣2,且6﹣a2﹣a>0,联立解得:﹣2≤a<1.故答案为:[﹣2,1).点评:解决此类问题的关键是熟练掌握导数的作用,即求函数的单调区间与函数的最值,并且进行正确的运算.三、解答题(共有4个题,每题15分)19.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选.(Ⅰ)求乙得分的分布列和数学期望;(Ⅱ)求甲、乙两人中至少有一人入选的概率.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;离散型随机变量及其分布列.专题:计算题.分析:(Ⅰ)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望;(Ⅱ)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立事件,即可求得结论.解答:解:(Ⅰ)设乙答题所得分数为X,则X的可能取值为﹣15,0,15,30.;;;.…(4分)乙得分的分布列如下:X ﹣15 0 15 30P.…(6分)(Ⅱ)由已知甲、乙至少答对2题才能入选,记甲入选为事件A,乙入选为事件B.则,…(8分).…(10分)故甲乙两人至少有一人入选的概率.…(12分)点评:本题考查概率的计算,考查互斥事件的概率,考查离散型随机变量的分布列与期望,确定变量的取值,计算其概率是关键.20.已知函数f(x)=﹣ax(x>0且x≠1).(1)若函数f(x)在(1,+∞)上为减函数,求实数a的最小值;(2)若∃x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的取值范围.考点:利用导数求闭区间上函数的最值;函数的单调性与导数的关系.专题:分类讨论;导数的综合应用.分析:(1)f(x)在(1,+∞)上为减函数,等价于f′(x)≤0在(1,+∞)上恒成立,进而转化为f′(x)max≤0,根据二次函数的性质可得f′(x)max;(2)命题“若∃x1,x2∈[e,e2],使f(x1)≤f'(x2)+a成立”等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(1)易求f′(x)max+a,从而问题等价于“当x∈[e,e2]时,有f(x)min”,分①a,②a<两种情况讨论:当a时易求f(x)min,当a<时可求得f′(x)的值域为[﹣a,],再按(i)﹣a≥0,(ii)﹣a<0两种情况讨论即可;解答:解:(1)因f(x)在(1,+∞)上为减函数,故f′(x)=﹣a≤0在(1,+∞)上恒成立,又f′(x)=﹣a=﹣+﹣a=﹣,故当,即x=e2时,,所以0,于是a,故a的最小值为.(2)命题“若∃x1,x2∈[e,e2],使f(x1)≤f'(x2)+a成立”等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由(1),当x∈[e,e2]时,f′(x)max=,所以f′(x)max+a=,问题等价于:“当x ∈[e,e2]时,有f(x)min”,①当a时,由(1),f(x)在[e,e2]上为减函数,则f(x)min=f(e2)=,故a,;②当a<时,由于在[e,e2]上为增函数,故f′(x)的值域为[f′(e),f′(e2)],即[﹣a,].(i)若﹣a≥0,即a≤0,f′(x)≥0在[e,e2]上恒成立,故f(x)在[e,e2]上为增函数,于是,f(x)min=f(e)=e﹣ae≥e>,不合题意;(ii)若﹣a<0,即0<a<,由f′(x)的单调性和值域知,∃唯一,使f′(x0)=0,且满足:当x∈(e,x0)时,f′(x)<0,f(x)为减函数;当x时,f′(x)>0,f(x)为增函数;所以,,,所以a﹣>,与0<a<矛盾,不合题意;综上,得a.点评:本题考查利用导数研究函数的单调性、闭区间上函数的最值,考查恒成立问题,考查分类讨论思想、转化思想,考查学生分析解决问题的能力.21.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.考点:利用导数研究曲线上某点切线方程;函数零点的判定定理;利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:计算题;压轴题.分析:(Ⅰ)求出函数的定义域,在定义域内,求出导数大于0的区间,即为函数的增区间,求出导数小于0的区间即为函数的减区间.(Ⅱ)根据函数的单调区间求出函数的最小值,要使f(x)>2(a﹣1)恒成立,需使函数的最小值大于2(a﹣1),从而求得a的取值范围.(Ⅲ)利用导数的符号求出单调区间,再根据函数g(x)在区间[e﹣1,e]上有两个零点,得到,解出实数b的取值范围.解答:解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得 0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.所以,f(x)在区间上单调递增,在区间上单调递减.所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,所以,即可.则.由解得.所以,a的取值范围是.(Ⅲ)依题得,则.由g'(x)>0解得 x>1;由g'(x)<0解得 0<x<1.所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,解得.所以,b的取值范围是.点评:本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.22.设函数f(x)=(x﹣a)2lnx,a∈R(Ⅰ)若x=e为y=f(x)的极值点,求实数a;(Ⅱ)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.考点:函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(Ⅰ)利用极值点处的导数值为0,求出导函数,将x=e代入等于0,求出a,再将a的值代入检验.(Ⅱ)对x∈(0,3e]进行分区间讨论,求出f(x)的最大值,令最大值小于4e2,解不等式求出a的范围.解答:解:(Ⅰ)求导得f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),因为x=e是f(x)的极值点,所以f′(e)=0解得a=e或a=3e.经检验,a=e或a=3e符合题意,所以a=e,或a=3e.(Ⅱ)①当0<x≤1时,对于任意的实数a,恒有f(x)≤0<4e2成立②当1<x≤3e时,由题意,首先有f(3e)=(3e﹣a)2ln3e≤4e2,解得由(Ⅰ)知f′(x)=2(x﹣a)lnx+=(x﹣a)(2lnx+1﹣),令h(x)=2lnx+1﹣,则h(1)=1﹣a<0,h(a)=2lna>0且h(3e)=2ln3e+1﹣≥2ln3e+1﹣=2(ln3e﹣)>又h(x)在(0,+∞)内单调递增,所以函数h(x)在在(0,+∞)内有唯一零点,记此零点为x0则1<x0<3e,1<x0<a,从而,当x∈(0,x0)时,f′(x)>0,当x∈(x0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0,即f(x)在(0,x0)内是增函数,在(x0,a)内是减函数,在(a,+∞)内是增函数.所以要使得对任意的x∈(0,3e],恒有f(x)≤4e2成立只要有有h(x0)=2lnx0+1﹣=0得a=2x0lnx0+x0,将它代入得4x02ln3x0≤4e2又x0>1,注意到函数4x2ln3x在(1,+∞)上是增函数故1<x0≤e,再由a=2x0lnx0+x0,及函数2xlnx+x在(1,+∞)上是增函数,可得1<a≤3e,由f(3e)=(3e﹣a)2ln3e≤4e2解得,所以得.综上,a的取值范围为.点评:本题考查函数的极值的概念,导数运算法则,导数应用,不等式等基础知识,同时考查推理论证能力,分类讨论等分析问题和解决问题的能力,解题的关键是准确求出导数,利用二次求导和函数零点分区间计论导函数的符号,得到原函数的单调性,本题属于难题.。

天津市南开中学高三数学统练1 理

天津市南开中学高三数学统练1 理

天津市南开中学2015届高三数学统练1 理一、选择题(共12个小题,每题5分)1. 已知集合(){}(){}2,9,,M x y y x N x y y x b ==-==+,且M N ⋂=Φ,则实数b 的取值范围是( ) A.32b ≥ B.02b <<C.332b -≤≤D.32,3b b ><-或2.已知函数()34x f x x +=-及()229712x g x x x -=-+的值域分别为,M N ,则( ) A.M N ⊇ B.M N = C.M N ⊆ D. 以上都不对3. 3.设映射()2:2f x x x x→-+是实数集R 到实数集R 的映射,若对于实数p R ∈,在R 中不存在原象,则p 的取值范围是( ) .A()1,+∞ .B [)1,+∞ .C (),1-∞ .D (],1-∞4.如果奇函数()f x 在区间[]3,7上是增函数且最小值为5,那么()f x 在区间[]7,3--上是( )A.增函数且最小值为 5 B .增函数且最大值为 5 C.减函数且最小值为 5 D .减函数且最大值为55. 函数248136(1)x x y x ++=+()1x >-的最小值是( ) .A 1 .B 32 .C 2 .D 36.已知函数13y x x =-+的最大值为M ,最小值为m ,则mM 的值为( ). A.14B .12C .2D .37.已知条件:15p a -<<,条件22:210q x ax a -+-=的两根均大于2-小于4,则p 是q 的( )条件.A .充分不必要B .必要不充分 C.充分且必要 D .既不.充分也不必要8.若定义在R 上的函数()f x 满足:对任意1x ,2x ∈R 有()()()12121f x x f x f x +=++,则下列说法一定正确的是( ).A .()f x 为奇函数 B .()f x 为偶函数 C .()1f x +为奇函数 D .()1f x +为偶函数9.若函数()x f y =在(0,2)上是增函数,()2+=x f y 是偶函数,则有( ).A .()⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<27251f f fB .()12527f f f <⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛ C .()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛25127f f f D .()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛27125f f f10.函数2()2f x x ax a =-+在(,1)-∞上有最小值,则函数()()f x g x x =在(1,)+∞上一定( )A .有最小值B .有最大值C .是减函数D .是增函数11. 设函数⎪⎪⎩⎪⎪⎨⎧≥-<<-+-≤+=)1(11)11(22)1()1()(2x x x x x x x f ,已知1)(>a f ,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21)C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)12.设2,||1(),||1x x f x x x ⎧≥=⎨<⎩,()g x 是二次函数,若(())f g x 的值域是[0,)+∞,则()g x 的值域是( )A.(,1][1,)-∞-+∞UB.(,1][0,)-∞-+∞UC.[0,)+∞D.[1,)+∞二、填空题(共6个小题,每题5分)13. 若不等式022>-+ax x 在区间上有解,则a 的取值范围是 .14.定义在区间[]0,a 上的函数()223f x x x =-+有最大值为3,最小值为 2,正数a 的取值范围是 .15.已知函数()12axf xx+=+在区间()2,-+∞上是增函数, 则a的取值范围是 .16. 已知定义在()(),00,-∞⋃+∞上的函数)(xf是奇函数,,当0x>时,()241f x x x=-++,则)(xf的单调递增区间是 .17.函数y=的值域是 .18.已知()()()()23,22xf x m x m x mg x=-++=-.若同时满足条件:①对()(),00;x R f x g x∀∈<<或②()()(),4,0x f x g x∃∈-∞-⋅<.则实数m的取值范围是 .三、解答题(共有4个题,每题15分)19. 函数()f x对任意的实数m、n,有()()()f m n f m f n+=+,当0x>时,有()0f x>.(1)求证:()f x是奇函数,;(2)求证:()f x在(,)-∞+∞上为增函数.20. 已知函数)0(21)(>+-=xxaxf.(1)判断)(xf在),0(+∞上的增减性,并加以证明;(2)解关于x的不等式)(>xf;(3)若2)(≥+xxf在),0(+∞上恒成立,求a的范围.21.设()f x是定义在R上的函数,对k N*∈,当(]21,21kx I k k∈=-+时,()()22.f x x k=-求集合(){}k kM a f x ax I==方程在上有两个不相等的实根.22.已知113a≤≤, 若()221f x ax x=-+在区间[]1,3上的最大值为()M a, 最小值为()N a, 令()()()g a M a N a=-. (1)求()g a的函数解析式;(2)判断()g a的单调性, 并求出()g a的最小值.2015届高三数学统练1答案一、选择题 DAABCC BCCDCC二、填空题13.23,5⎛⎫-+∞⎪⎝⎭ 14.[]1,215.1,2⎛⎫+∞⎪⎝⎭16. ()()2,0,0,2-17.12⎡⎤⎢⎥⎣⎦,18.()42--,20. 已知函数)0(21)(>+-=x x a x f .(1)判断)(x f 在),0(+∞上的增减性,并加以证明;(2)解关于x 的不等式0)(>x f ;(3)若02)(≥+x x f 在),0(+∞上恒成立,求a 的范围. 20.解:(1))(x f 在),0(+∞上为减函数证明:设210x x <<,)21()21()()(2121x a x a x f x f +--+-=-0)(222211221>-=-=x x x x x x ,∴ )()(21x f x f > .∴ )(x f 在),0(+∞上为减函数(2)不等式0)(>x f ,即021>+-x a ,即02>+-ax a x ,也即0)2(<⋅-ax a x① 当0>a 时,不等式0)2(<-a x x ,不等式解为a x 20<<② 当0<a 时,不等式0)2(>-a x x ,不等式解为0>x 或a x 2<(舍去)(3)若02)(≥+x x f 在),0(+∞上恒成立,即0221≥++-x x a∴ )1(21x x a +≤,∵ )1(2x x +的最小值为4 ∴ 41≤a .解得0<a 或41≥a 21.设()f x 是定义在R 上的函数,对k N *∈,当(]21,21k x I k k ∈=-+时,()()22.f x x k =-求集合(){}k k M a f x ax I ==方程在上有两个不相等的实根.21.解:问题等价于方程()22440x k a x k -++=在区间(]21,21k k -+有两个不等实根.记()()2244g x x k a x k =-++ ,利用根的分布,有()()()2221021041212124160g k g k k k k k a k ⎧->⎪+≥⎪⎪+⎨-<<+⎪⎪∆=+->⎪⎩解得1211212208a k a k a a a k ⎧<⎪-⎪⎪≤⎨+⎪-<<⎪⎪><-⎩或即1021a k <≤+. 所以10,21k M k ⎛⎤= ⎥+⎝⎦. 22.已知113a ≤≤, 若()221f x ax x =-+在区间[]1,3上的最大值为()M a , 最小值为()N a , 令()()()g a M a N a =-. (1)求()g a 的函数解析式;(2)判断()g a 的单调性, 并求出()g a 的最小值.。

天津市南开中学届高三校模拟考试.docx

天津市南开中学届高三校模拟考试.docx

高中数学学习材料唐玲出品天津市南开中学2015届高三校模拟考试数学试卷(文)说明:1.本试卷分第І卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.2.请将选择题的答案填涂在答题卡上,填空题、解答题答在答题纸上.第І卷(选择题共40分)一、 选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填涂在答题卡上...........!) 1. 复数22 ()1i i-(其中i 为虚数单位)的虚部等于( ). A .i -B .1-C .1 D .02. 设集合{|2}A x x =>,若ee m ln =(e 为自然对数底),则( ).A.A ∅∈B.A m ∉C .A m ∈ D.{}m x x A >⊆3. 某程序框图如图所示,该程序运行后输出的结果为( ). A . 7 B. 6 C . 5 D .4 4. 在等差数列{a n }中,若a 2+a 3=4,a 4+a 5=6,则a 9+a 10等于( ).A .9B .10C .11D .125.“a >3”是“函数f (x )=ax +3在(-1,2)上存在零点”的 ( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6. 已知向量a =(3,-2),b =(x ,y -1)且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是( ). A.53 B.83C .8 D .24 7.在如图所示的空间直角坐标系O -xyz 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①②③④的四个图,则该四面体的正视图和俯视图分别为 ( ).A .①和②B .③和①C .④和③D .④和②8. 已知21,F F 分别为双曲线12222=-by a x ()0,0>>b a 的左右焦点,如果双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ).A . 332>e B. 3321<<e C. 3>e D. 31<<e第Ⅱ卷(非选择题共110分)二.填空题:(本大题共6小题,每小题5分,共30分.请将答案填在答题纸上..........!) 9. 公共汽车在8:00到8:20内随机地到达某站,某人8:15到达该站,则他能等到公共汽车的概率为____________.10. 已知变量x ,y 满足约束条件错误!则z =2x ·4y 的最大值为________.11. 如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高是60 m ,则河流的宽度BC =________m.12. 如图,P 为圆O 外一点,由P 引圆O 的切线PA 与圆O 切于A 点,引圆O 的割线PB 与圆O 交于C 点.已知AC AB ⊥,1,2==PC PA .则圆O 的面积为.第11题第12题13. 已知1OA =,2OB =,0OA OB ⋅=,点C 在AOB ∠内,且45AOC ∠=︒,设() O C m O A n O B m n =+∈R ,,则mn的值为________. 14.已知函数243,0()22,0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.) 15. (本小题满分13分)随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm ),获得身高数据的茎叶图如图,其中甲班有一个数据被污损.(Ⅰ)若已知甲班同学身高平均数为170cm ,求污损处的数据;(Ⅱ)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高176cm 的同学被抽中的概率. 16. (本小题满分13分)已知函数f (x )=2sin ωx ·cos ωx +23cos 2ωx -3(其中ω>0),且函数f (x )的周期为π.(1)求ω的值;CAP B(2)将函数y =f (x )的图象向右平移π4个单位长度,再将所得图象各点的横坐标缩小到原来的12倍(纵坐标不变)得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤-π6,π24上的单调区间.17. (本小题满分13分)如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,P A =PD =5,E ,F 分别是棱AD ,PC 的中点. (1)证明:EF ∥平面P AB ; (2)若二面角P -AD -B 为60°, ①证明:平面PBC ⊥平面ABCD ;②求直线EF 与平面PBC 所成角的正弦值.18. (本小题满分13分)已知各项均为正数的数列{}n a 满足22124n n n n n a a a a a ++++=-(n *∈N ),且11a =,24a =.()I 证明:数列{}n a 是等差数列;()II 设121n n n n b a a ++=,{}n b 的前n 项和为n S ,求证:1n S <. 19. (本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>的离心率为22,过椭圆右焦点F 作两条互相垂直的弦AB 和CD ,当直线AB 斜率为0时,32AB CD +=,(1)求椭圆的方程;(2)求由,,,A B C D 四点构成的四边形的面积的取值范围. 20. (本小题满分14分)已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828=为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证:101ea b c <<<<<.21.南开中学2015届高三文科数学校模拟参考答案一、 选择题: 1 2 3 4 5 6 7 8 B C D C A C D A 二、填空题:(9)41(10)32(11)120(3-1)(12)π49(13)2(14)(423-,2)三、解答题:(本答题共6小题,15至18小题每题13分,19至20小题每题14分,共80分.解答应写出文字说明、证明过程或演算步骤.)15.解析:(Ⅰ)15816216316816817017117918210a x +++++++++=170=解得a =179 所以污损处是9(Ⅱ)设“身高为176 cm 的同学被抽中”的事件为A ,从乙班10名同学中抽取两名身高不低于173 cm 的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173}共10个基本事件,而事件A 含有4个基本事件,∴P(A)=410=2516.解 (1)因为f (x )=2sin ωx ·cos ωx +23cos 2ωx -3=sin 2ωx +3cos 2ωx =2sin ⎝ ⎛⎭⎪⎫2ωx +π3,又因为函数f (x )的周期为π,且ω>0, 所以T =2π2ω=πω=π,所以ω=1. (2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.将函数y =f (x )的图象向右平移π4个单位后得到函数y =2sin2⎝ ⎛⎭⎪⎫x -π4+π3=2sin ⎝ ⎛⎭⎪⎫2x -π6的图象,再将所得图象各点的横坐标缩小为原来的12倍(纵坐标不变),得到函数g (x )=2sin(4x -π6)的图象. 由-π2+2k π≤4x -π6≤π2+2k π(k ∈Z ), 得k π2-π12≤x ≤k π2+π6(k ∈Z ); 由π2+2k π≤4x -π6≤3π2+2k π(k ∈Z ), 得k π2+π6≤x ≤k π2+5π12(k ∈Z ).故函数g (x )在⎣⎢⎡⎦⎥⎤-π6,π24上的单调递增区间为⎣⎢⎡⎦⎥⎤-π12,π24,单调递减区间为⎣⎢⎡⎦⎥⎤-π6,-π12. 17.(1)证明 如图,取PB 中点M ,连接MF ,AM .因为F 为PC 中点,故MF ∥BC 且MF =12BC .由已知有BC ∥AD ,BC =AD .又由于E 为AD 中点,因而MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,所以EF ∥AM .又AM ⊂平面P AB ,而EF ⊄平面P AB ,所以EF ∥平面P AB .(2)①证明 连接PE ,BE .因为P A =PD ,BA =BD ,而E 为AD 中点,故PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P -AD -B 的平面角.在△P AD 中,由P A =PD =5,AD =2,可解得PE =2.在△ABD 中,由BA =BD =2,AD =2,可解得BE =1.在△PEB 中,PE =2,BE =1,∠PEB =60°,由余弦定理,可解得PB =3,从而∠PBE =90°,即BE ⊥PB .又BC ∥AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ⊂平面ABCD ,所以,平面PBC ⊥平面ABCD . ②解 连接BF .由①知,BE ⊥平面PBC ,所以∠EFB 为直线EF 与平面PBC 所成的角.由PB =3及已知,得∠ABP 为直角.而MB =12PB =32, 可得AM =112.故EF =112.又BE =1,故在直角三角形EBF 中,sin ∠EFB =BE EF =21111. 所以,直线EF 与平面PBC 所成角的正弦值为21111. 18.(Ⅰ)22124n n n n n a a a a a +++++=且0n a >2221)(2)n n n a a a ++∴+=(212n n n a a a ++∴+={}na ∴是首项为1=1a ,公差为211a a -=的等差数列(Ⅱ)由(Ⅰ)得21(1)1,n n a n n a n =+-⨯==()()2222211111n n b n n n n +∴==-++ 2221111223n S ∴=-+-+…()22111n n +-+ ()21111n =-<+19.(Ⅰ)由题意知,22c e a==,则c b c a ==,2,2322222||||2=+=+=+∴c c ab a CD AB ,所以1c =.所以椭圆的方程为2212x y +=. (Ⅱ)①当两条弦中一条斜率为0时,另一条弦的斜率不存在, 由题意知22222121=⨯⨯=⋅=CD AB S 四边形;②当两弦斜率均存在且不为0时,设11(,)A x y ,22(,)B x y ,且设直线AB 的方程为(1)y k x =-,则直线CD 的方程为1(1)y x k=--.将直线AB 的方程代入椭圆方程中,并整理得2222(12)4220k x k x k +-+-=,所以2222221221)1(22211221||1||kk k k k x x k AB ++=++⋅+=-+=. 同理,2)1(2221)11(22||2222++=++=k k kk CD . 所以24222222522)1(42)1(2221)1(222121kk k k k k k CD AB S +++=++⋅++⋅=⋅⋅=四边形()()()2221422112121k k k k k k+==-++++,9112211222=+⎪⎪⎭⎫ ⎝⎛⋅≥+⎪⎭⎫ ⎝⎛+k k k k 当且仅当1±=k 时取等号 ∴)2,916[∈四边形S 综合①与②可知,⎥⎦⎤⎢⎣⎡∈2,916四边形S20.解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ;∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增.∴=极小值)(x f 11()ln 11ln 222f =+=-.(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m ,∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减.∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点,∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c ,下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x mf x x x x -'=-=.易知函数()f x 在(0,)2m 上单调递减,在(,)2m+∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m m f ,解得20<<m e,∴122<<m e ,即(,2)2∈eme . ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.。

天津市南开中学2015届高三数学(文)统练10(立体几何)

天津市南开中学2015届高三数学(文)统练10(立体几何)

一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知a 、b 是异面直线,直线//c 直线a ,则c 与b ( ).A 一定是异面直线.B 一定是相交直线 .C 不可能是平行直线.D 不可能是相交直线2. 若m 、n 是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中真命题是( ).A 若m ⊥β,m ∥α,则α⊥β .B 若α∩γ=m ,β∩γ=n ,m ∥n ,则α∥β .C 若m ⊂β,α⊥β,则m ⊥α .D 若α⊥γ,α⊥β,则β⊥γ3. 已知1,6,()2==⋅-=a b a b a ,则向量a 与向量b 的夹角是( ).A 6π.B 4π.C 3π.D 2π4. 已知2lg 8lg 2lg ,0,0=+>>y x y x ,则yx 311+的最小值是( ).A 4 .B 22 .C 2 .D 325. 如图,已知六棱锥P -ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ).A PB ⊥AD .B 平面P AB ⊥平面PBC .C .直线BC ∥平面P AE.D 直线PD 与平面ABC 所成的角为45°6. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF =12,则下列结论中错误的是( ).A AC ⊥BE .B EF ∥平面ABCD.C 三棱锥A -BEF 的体积为定值.D △AEF 的面积与△BEF 的面积相等7. 如图,在等腰梯形ABCD 中,AB =2DC =2,∠DAB =60°,E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,使A 、B 重合于点P,则三棱锥P —DCE 的外接球的体积为( )A B D C8. 把等腰直角△ABC 沿斜边上的高AD 折成直二面角B —AD —C ,则BD 与平面ABC 所成角的正切值为 ( ) .A 2 .B 22 .C 1 .D 33二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上. 9. 如图所示,在长方体ABCD -A ′B ′C ′D ′中,用截面截下一个棱锥C -A ′DD ′,求棱锥C -A ′DD ′的体积与剩余部分的体积之比________.10. 在三棱锥A BCD -中,AC ⊥底面,,,BCD BD DC BD DC AC a⊥==, 030ABC ∠=,则点C 到平面ABD 的距离是________. 11. 给出下面四个命题:①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”; ②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;③“直线a 、b 为异面直线”的充分而不必要条件是“直线a 、b 不相交”;④“平面α∥平面β”的必要而不充分条件是“α内存在不共线三点到β的距离相等”. 其中真命题的序号是________.(写出所有真命题的序号) 12. 如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则当M 满足条件_____________时,有MN ∥平面B 1BDD 1.13. 已知AB 为平面α的一条斜线,B 为斜足,AO α⊥,O 为垂足,BC 为α内的一条直线,60ABC ∠=︒,45OBC ∠=︒,则斜线AB 和平面α所成的角大小为__________.14. 正四棱锥S —ABCD 的底面边长为2,高为2,E 是边BC 的中点,动点P 在表面上运动,并且总保持PE ⊥AC ,则动点P 的轨迹的周长为________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15. (本小题满分13分)已知在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,,且tan B =(Ⅰ)求B ∠;(Ⅱ)求函数()sin 2sin cos f x x B x =+,0,2x π⎡⎤∈⎢⎥⎣⎦的值域及单调递减区间.16. (本小题满分13分)已知向量(,cos2)a m x =,(sin 2,)b x n =,设函数()f x a b =⋅,且()y f x =的图象过点(12π和点2(,2)3π-, (Ⅰ)求,m n 的值;(Ⅱ)将()y f x =的图象向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图象,若()y g x =的图象上各最高点到点(0,3)的距离的最小值为1,求()y g x =的单调增区间.17. (本小题满分13分)如图:在三棱锥P ABC -中,PB ⊥面ABC , ABC ∆是直角三角形,90ABC ∠=,2AB BC ==,45PAB ∠=,点D E F 、、分别为AC AB BC 、、的中点, ⑴求证:EF PD ⊥; ⑵求直线PF 与平面PBD 所成的角的正弦值; 18. (本小题满分13分) 已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.19. (本小题满分14分)如图,PA 垂直于矩形ABCD 所在的平面,2AD PA ==,FE DC B APCD =E F ,分别是AB ,PD 的中点. (Ⅰ)求证://AF 平面PCE ;(Ⅱ)求证:平面PCE ⊥平面PCD ; (Ⅲ)求四面体PEFC 的体积.20. (本小题满分14分)设数列{}n b 的前n 项和为n S ,且22n n b S =-;数列{}n a 为等差数列,且514a =,720a =.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)若n n n c a b =⋅,12 3 n =,,,,n T 为数列{}n c 的前n 项和.求证:72n T <. 2015届高三数学文科统练10 一、选择题 CACA DCCB 二、填空题9. 1∶511. ②④ 12. M ∈线段FH 13. 45︒ 14. 2+6 三、解答题 15.代入tan B =sin B =而ABC ∆是锐角三角形,所以角3B π=, (Ⅱ)()sin 22sin cos2f x x Bx =+sin 2x x ==2sin 23x π⎛⎫+ ⎪⎝⎭,值域,因为3222232k x k πππ+π≤+≤+π,所以722266k x k k ππ+π≤≤+π∈Z ,, 当0k =时,71212x ππ≤≤,又02x π≤≤;所以,()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调减区间为,122ππ⎡⎤⎢⎥⎣⎦,16.(1)由题意知()sin 2cos2f x a b m x n x =∙=+.根据()y f x=的图象过点(12π和2(,2)3π-,得到sin cos 66442sin cos33m n m n ππππ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得1m n =.PMOFEDCBA17.⑴连结BD 。

天津市南开中学2015届高三数学(文)统练2(三角函数)

天津市南开中学2015届高三数学(文)统练2(三角函数)

(三角恒等变换)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 600=( )A .12-B. C .12D2. 若集合}4,2{},,3{2==B a A ,则“2=a ”是“{}4A B ⋂=”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.如果奇函数()f x 在区间[]3,7上是增函数且最小值为5,那么()f x 在区间[]7,3--上是 ( ) A.增函数且最小值为-5 B .增函数且最大值为-5 C.减函数且最小值为-5 D .减函数且最大值为-5 4. 已知α为第三象限角,则2α所在的象限是( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限 5.︒=( ).A .sin 40︒B .sin 40︒- C .cos 40︒ D .cos 40︒- 6.已知)sin cos 0,cos 2αααπα+=<<则的值是( ). A .0 B .35±C . 35D . 35- 7. 若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-( )A 、12-B 、12C 、2D 、2- 8.若02πα<<,02πβ<<-,1cos 43πα⎛⎫+= ⎪⎝⎭,cos 42πβ⎛⎫-= ⎪⎝⎭,则cos 2βα⎛⎫+= ⎪⎝⎭( ).A. B. C. D.9. 设函数2(1)(1)()22(11)11(1)x x f x x x x x⎧+≤-⎪⎪=+-<<⎨⎪⎪-≥⎩,已知1)(>a f ,则a 的取值范围是( )A.(-∞,-2)∪(-21,+∞) B.(-21,21) C.(-∞,-2)∪(-21,1)D.(-2,-21)∪(1,+∞)10. 设2,||1(),||1x x f x x x ⎧≥=⎨<⎩,()g x 是二次函数,若(())f g x 的值域是[0,)+∞,则()g x 的值域是( )A.(,1][1,)-∞-+∞B.(,1][0,)-∞-+∞C.[0,)+∞D.[1,)+∞二、填空题:本大题共6小题,每小题6分,共36分,把答案填在题中横线上. 11. 不等式411x x ≥--的解集为_____________. 12. 已知tan 24x π⎛⎫+= ⎪⎝⎭, 则tan tan 2x x 的值为__________.13. 已知角α的终边上一点的坐标为(32cos ,32sinππ),则角α的最小正值为________. 14.已知cos()sin 6παα+-=,则7sin()6πα-=_____________. 15. 若变量x 、y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M m -= .16. 若),0(,+∞∈y x ,且满足124++=y x xy ,求xy 的最小值是 .三、解答题:本大题共5小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.18.(本小题满分12分)已知sin()cos(2)tan()()tan()sin()f παπααπααππα---+=-----(1)化简()f α(2)若α是第三象限角,且31cos()25πα-=,求()f α的值19. (本小题满分12分)已知关于x 的不等式2251x x m m+->+.(1)求该不等式的解集;(2)当此不等式的解集为(5,)+∞时,求实数m 的值.20. (本小题满分14分)解关于x 的不等式)1(12)1(≠>--a x x a21.(本小题满分14分)已知m R ∈,命题:p 对任意[0,8]x ∈,不等式213log (1)3x m m +≥-恒成立,命题:q 对任意x R ∈,不等式|1sin 2cos 2|2|cos()|4x x m x π+-≤-恒成立(1)、若p 为真命题,求m 的取值范围; (2)、若p 且q 为假,p 或q 为真,求m 的取值范围.2015届高三数学文科统练218.(1)、s i n c o s (t a n )()c o s t a n s i n f ααααααα-==-(2)、31cos()25πα-=1sin ,,cos 5ααα∴=-∴=在第三象限()cos f αα∴=-=19.(1)当1m >时,不等式的解集为225{|}1m m x x m -->- 当1m =时,不等式的解集为R当001m m <<<或时,不等式的解集为225{|}1m m x x m --<-(2)7m =20. 解:原不等式可化为:02)2()1(>--+-x a x a① 当1>a 时,原不等式与0)2)(12(>----x a a x 同解 由于2111112<<--=--a a a ∴ 原不等式的解为),2()12,(+∞⋃---∞a a ② 当1<a 时,原不等式与0)2)(12(<----x a a x 同解 由于11112--=--a a a 若0<a ,211112<--=--a a a ,解集为)2,12(--a a ; 若0=a 时,211112=--=--a a a ,解集为φ; 若10<<a ,211112>--=--a a a ,解集为)12,2(--a a 综上所述:当1>a 时解集为),2()12,(+∞⋃---∞a a ;当10<<a 时,解集为)12,2(--a a ;当0=a 时,解集为φ;当0<a 时,解集为)2,12(--a a。

天津市南开中学2015届高三数学(理)统练

天津市南开中学2015届高三数学(理)统练

天津市南开中学2015届高三数学统练6一、选择题(共12个小题. 每小题5分,共60分)1. 0a <,0b <,则22b a p a b=+与q a b =+的大小关系为 ( ) A.p q > B. p q ≥ C. p q < D. p q ≤ 2. 已知a b c >>,则114a b b c c a++---的值是 ( ) A .非负数 B .非正数 C .正数 D . 不确定 3. 关于函数()ln 2f x x =-下列描述正确的有( )个①函数()f x 在区间()12,上单调递增; ②函数()y f x =的图象关于直线2x =对称; ③若12x x ≠,但()()12f x f x =,则124x x +=; ④函数()f x 有且仅有两个零点.A. 1B. 2C. 3D. 4 4. 已知函数()()11x xx a f x a -=+(0,1a a >≠),则A. 函数()f x 在()0,+∞上是增函数B. 函数()f x 在()0,+∞上是减函数C. 函数()f x 是奇函数D.函数()f x 是偶函数5. 设0a >,()2f x ax bx c =++,曲线()y f x =在点()()00,P x f x 处的切线的倾斜角的范围是0,4π⎡⎤⎢⎥⎣⎦,则点P 到曲线()y f x =对称轴距离的取值范围是( ) A .10,a⎡⎤⎢⎥⎣⎦B .10,2a ⎡⎤⎢⎥⎣⎦C. 0,2ba⎡⎤⎢⎥⎣⎦D. 10,2b a ⎡-⎤⎢⎥⎣⎦6. 若(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则a 的取值范围是( )A.(0,1) B .(1,2) C. (1,2] D. [1,2]7. 221log 1log x x +>-的解集为( )A .[2,)+∞B .(1,8)C .(2,)+∞D .(1,)+∞8. 若1927x ≤≤,则33()log log (3)27xf x x =⋅( ) A .有最小值329-,最大值3- B. 有最小值4-,最大值12C. 有最小值329-,无最大值 D. 无最小值,有最大值129. 已知:a ,b ,c ,d 满足:12log 3a a =,12log 2b b =,21log 3c c =,21log 2d d =. 则a ,b ,c ,d 的大小关系是( )A. a b c d >>>B. a b c d <<<C. a b d c >>>D. b a c d >>>10. 设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )()A 1ln2- ()Bln 2)- ()C 1ln2+ ()D ln 2)+11. 对实数a 和b ,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩设函数()()()222f x x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .()3,21,2⎛⎫-∞-- ⎪⎝⎭U B .(]3,21,4⎛⎫-∞--- ⎪⎝⎭UC .111,,44⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭U D .311,,44⎛⎫⎡⎫--+∞ ⎪⎪⎢⎝⎭⎣⎭U 12. 设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时,( ) (A )有极大值,无极小值 (B )有极小值,无极大值 (C )既有极大值又有极小值 (D )既无极大值也无极小值二、填空题(共6个小题. 每小题5分,共30分)13. 函数()2ln 6y x x =+-的单调递增区间是 .14. 计算定积分(sin cos )x x dx π+⎰_______________=15. 已知函数()()2ln f x ax x x x =+-在区间[)1,+∞上单调递增,则实数a 的取值范围是____________.16. 设函数32()2ln f x x ex mx x =-+-,记()()f x g x x=,若函数()g x 至少存在一个零点,则实数m 的取值范围是______.17. 已知函数()133+-=x x x f ,()m x g x-=)21(,若对1[1,3]x ∀∈-,2[0,2]x ∃∈,12()()f x g x ≥,则实数m 的取值范围是______.18. 若不等式3ln 1mx x -≥对(]0,1x ∀∈恒成立,则实数m 的取值范围是_______.三、解答题(共有4个题,每题15分)19. 某学校举行知识竞赛,第一轮选拔共设有,,,A B C D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题,,,A B C D 分别加1分,2分,3分,6分,答错任意题减2分;②每答一题,计分器显示累计分数,当累积分数小于8分时,答题结束,淘汰出局;当累积分数大于或等于14分时,答题结束,进入下一轮;答完四题累计分数不足14分时,答题结束淘汰出局;③每位参加者按,,,A B C D 顺序作答,直至答题结束. 假设甲同学对问题,,,A B C D 回答正确的概率依次为3111,,,4234,且各题回答正确与否相互之间没有影响.(Ⅰ)求甲同学能进入下一轮的概率;(Ⅱ)用ξ表示甲同学本轮答题的个数,求ξ的分布列和数学期望E ξ.20. 设函数2()1x f x e x ax =---.若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥,求a 的取值范围.21. 已知函数()e xf x kx x =-∈R ,(Ⅰ)若e k =,试确定函数()f x 的单调区间;(Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; (Ⅲ)设函数()()()F x f x f x =+-,求证:12(1)(2)()(e 2)()n n F F F n n +*>+∈N L .22. 已知a b ,是实数,1和1-是函数32()f x x ax bx =++的两个极值点. (1)求a 和b 的值;(2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点;(3)设()(())h x f f x c =-,其中[22]c ∈-,,求函数()y h x =的零点个数.班级 姓名 学号 成绩天津南开中学2015届高三数学统练6(理科) 答题纸一、选择题二、填空题13._____________ 14.______________ 15._____________16.______________ 17.__ ___________ 18.______________ 三、解答题 19.20.21.22.天津南开中学2015届高三数学统练6(理科)答案二、填空题13.12,2⎛⎫- ⎪⎝⎭14. 215.1,2e⎡⎫+∞⎪⎢⎣⎭16. 21(,]ee-∞+17.45≥m18.2[,)3e+∞(Ⅱ)由题意可知随机变量ξ可能的取值为2,3,4,.由于每题的答题结构都是相对独立的,所以121(2)()8P P N N ξ===, 1231233113123(3)()()4234238P P M M M P M N N ξ==+=⋅⋅+⋅⋅=131(3)1(1)(2)1882P P P ξξξ==-=-==--=因此随机变量ξ的分布列为ξ1 2 3P18 38 12所以2348828E ξ=⨯+⨯+⨯=.20. 解:(1)0a =时,()1xf x e x =--,'()1xf x e =-.当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >.故()f x 在(,0)-∞单调减少,在(0,)+∞单调增加(II )'()12xf x e ax =--由(I )知1xe x ≥+,当且仅当0x =时等号成立.故'()2(12)f x x ax a x ≥-=-,从而当120a -≥,即12a ≤时,'()0 (0)f x x ≥≥,而(0)0f =, 于是当0x ≥时,()0f x ≥. 由1(0)xe x x >+≠可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x x f x e a e e e e a --<-+-=--,故当(0,ln 2)x a ∈时,'()0f x <,而(0)0f =,于是当(0,ln 2)x a ∈时,()0f x <. 综合得a 的取值范围为1(,]2-∞.21.解: (Ⅰ)由e k =得()e e x f x x =-,所以()e e xf x '=-.由()0f x '>得1x >,故()f x 的单调递增区间是(1)+∞,, 由()0f x '<得1x <,故()f x 的单调递减区间是(1)-∞,. (Ⅱ)由()()f x f x -=可知()f x 是偶函数.于是()0f x >对任意x ∈R 成立等价于()0f x >对任意0x ≥成立.由()e 0xf x k '=-=得ln x k =.①当(01]k ∈,时,()e 10(0)xf x k k x '=->->≥. 此时()f x 在[0)+∞,上单调递增. 故()(0)10f x f =>≥,符合题意. ②当(1)k ∈+∞,时,ln 0k >.'依题意,ln 0k k k ->,又11e k k >∴<<,. 综合①,②得,实数k 的取值范围是0e k <<.(Ⅲ)()()()e e x xF x f x f x -=+-=+Q ,12()()F x F x ∴=12121212121212()()e e e e e e 2e 2x x x x x x x x x x x x x x +-+--++-+++++>++>+, 1(1)()e 2n F F n +∴>+,1(2)(1)e 2n F F n +->+1()(1)e 2.n F n F +>+L L由此得,21[(1)(2)()][(1)()][(2)(1)][()(1)](e 2)n n F F F n F F n F F n F n F +=->+L L故12(1)(2)()(e 2)n n F F F n n +*>+∈N L ,.22. 解:(1)由32()f x x ax bx =++,得2()32f'x x ax b =++。

天津市南开中学届高三校模拟.docx

天津市南开中学届高三校模拟.docx

高中数学学习材料马鸣风萧萧*整理制作天津市南开中学2015届高三校模拟数学试卷(理科) I 卷一、选择题(每小题有且只有1个选项符合题意,将正确的选项涂在答题卡上,每小题5分,共40分.)1. 复数z 满足:()()i 2i 5z --=,则z =( ).A .22i --B .22i -+C .22i -D .22i +2. 已知全集U R =,{|21}x A y y ==+,{||1||2|2}B x x x =-+-<,则()U C A B =( ).A .∅B .1{|1}2x x <≤ C .{|1}x x < D .{|01}x x <<3. 设变量y x ,满足约束条件2024x y x y x y +≥⎧⎪-≤⎨⎪-≤⎩, 则目标函数y x z 32+=的最小值为( ).A .2B .3C .4D .5 4. 已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则 ( ).A .βα//,且α//lB .βα⊥,且β⊥l考试时间:120分钟C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5. 设x y ∈,R ,1a >,1b >,若3x y a b ==,23a b +=,则11xy+的最大值为( ). A .2B .32C .1D .126. 设()322()log 1f x x x x =+++,则对任意实数,a b ,0a b +≥是()()0f a f b +≥的( ).A. 充分必要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件7. 如图,12F F ,是椭圆221:14x C y +=与双曲线2C 的公共焦点,A B ,分别是12C C ,在第二、四象限的公共点.若四边形12AF BF 为矩形,则2C 的离心率是( ).A .2B .3C .32D .628. 在平面直角坐标系中,两点()111,P x y ,()222,P x y 间的“L ­距离”定义为121212||||||||PP x x y y =-+-,则平面内与x 轴上两个不同的定点12,F F 的“L ­距离”之和等于定值(大于12||||F F )的点的轨迹可以是( ).ABC Dx yB AF 1F 2OII 卷( 将答案写在答题纸上,在试卷上作答无效.)二、填空题:(每小题5分,共30分.)9. 下图是某算法的程序框图,则程序运行后输出的结果是 .10. 已知()0sin cos a x x dx π=+⎰,则二项式61a x x ⎛⎫- ⎪⎝⎭的展开式中含2x 项的系数是__________.11. 如图,在ABC 中,3AB =,4BC =,5CA =,点D 是BC 的中点,BE AC ⊥于点E ,BE 的延长线交DEC 的外接圆于点F ,则EF 的长为__________.12. 已知直线l 的参数方程为413x ty t=⎧⎨=+⎩(t 为参数),圆C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩(θ为参数) 则圆C 上的点到直线l 的距离的最大值为__________.13. 如图,在四边形ABCD 中,AB BC ⊥,3AB =,4BC =, ACD 是等边三角形,则AC BD ⋅的值为__________.14. 已知函数2()ln x f x a x x a =+-,对任意的12[01]x x ∈、,,不等式1)()(21-≤-a x f x f 恒成立,则a 的取值范围为__________.三、解答题:(15—18每小题13分,19—20每小题14分,共80分.)15. 甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是53,乙只DABCFCE DBA能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.(Ⅰ)求乙的得分X 的分布列和数学期望()E X ;(Ⅱ)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.16. 已知函数()223sin cos 2cos 1f x x x x =-+. (Ⅰ)求函数)(x f 的最小正周期及单调递增区间;(Ⅱ)在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若()22Af =,1b =,2c =,求a 的值.17. 如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =. (Ⅰ)求证: 1AA ⊥平面ABC ; (Ⅱ)求二面角111A BC B --的余弦值;(Ⅲ)证明:在线段1BC 存在点D ,使得AD ⊥1A B ,并求1BDBC 的值.18. 椭圆)0(1:2222>>=+b a b y a x E 的左焦点为1F ,右焦点为2F ,离心率21=e .过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8. (Ⅰ)求椭圆E 的方程.(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.19. 已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a =.(Ⅰ)证明:数列{}n a 是等差数列,并求出{}n a 的通项公式;(Ⅱ)设1n n nb a S =,数列{}n b 的前n 项和为n T ,证明:32n T <.20. 已知函数()2ln f x x x ax =+-()a R ∈. (Ⅰ)当3a =时,求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个极值点12,x x ,且(]10,1x ∈,证明:()()123ln 24f x f x -≥-+;(Ⅲ)设()()22ln6ax g x f x x +=+,对于任意()2,4a ∈时,总存在3,22x ⎡⎤∈⎢⎥⎣⎦,使()()24g x k a >-成立,求实数k 的取值范围.天津南开中学2015届高三理科数学校模拟试卷参考答案一、选择题:1 2 3 4 5 6 7 8 DBDDCADA二、填空题:9101112131410192-1415372[),e +∞三、解答题:21. 15. 甲、乙两人参加某种选拔测试.规定每人必须从备选的6道题中随机抽出3道题进行测试,在备选的6道题中,甲答对其中每道题的概率都是53,乙只能答对其中的3道题.答对一题加10分,答错一题(不答视为答错)得0分.(Ⅰ)求乙的得分X 的分布列和数学期望()E X ;(Ⅱ)规定:每个人至少得20分才能通过测试,求甲、乙两人中至少有一人通过测试的概率.22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.34. 35. 36. 37. 38. 39.40.16.已知函数()223sin cos 2cos 1f x x x x =-+.(Ⅰ)求函数)(x f 的最小正周期及单调递增区间;(Ⅱ)在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,若()22Af =,1b =,2c =,求a的值.(Ⅱ)22A f =(),则2sin()26A π-=⇒sin()16A π-= …………9分22,2,623A k A k k Z πππππ∴-=+=+∈ …………10分又20,3A A ππ<<∴=………………………11分 2222cos 7a b c bc A =+-=…………12分7a ∴=… ……………………13分17.如图,在三棱柱111ABC A B C -中,11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(Ⅰ)求证: 1AA ⊥平面ABC ; (Ⅱ)求二面角111A BC B --的余弦值;(Ⅲ)证明:在线段1BC 存在点D ,使得AD ⊥1A B , 并求1BDBC 的值. 解:(I )因为AA 1C 1C 为正方形,所以AA 1 ⊥AC.因为平面ABC ⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC. (II)由(I )知AA 1 ⊥AC ,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB ⊥AC. 如图,以A 为原点建立空间直角坐标系A -xyz , 则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则1110A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩,令3z =,则0x =,4y =,所以(0,4,3)n =. 同理可得,平面BB 1C 1的法向量为(3,4,0)m =, 所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角......A .1.-.BC ..1.-.B .1.为锐角...,所以二面角A 1-BC 1-B 1的余弦值为1625. (III)设D (,,)x y z 是直线BC1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=.所以(4,33,4)AD λλλ=-.由1·0AD A B =,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D , 使得AD ⊥A 1B. 此时,1925BD BC λ==. 41. 42.18.椭圆)0(1:2222>>=+b a b y a x E 的左焦点为1F ,右焦点为2F ,离心率21=e .过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8.(Ⅰ)求椭圆E 的方程.(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q .试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由.解:(Ⅰ)设22c a b =- 则2212342c e a c a b a ==⇔=⇔= 2ABF ∆的周长为22121288482,3,1AB AF BF AF AF BF BF a a b c ++=⇔+++=⇔=⇔===椭圆E 的方程为22143x y +=(Ⅱ)由对称性可知设000(,)(0)P x y y >与(,0)M x2220203331343443434x x y xy x y k y x '+=⇒=-⇒=-⇒=--直线00000033(1):()(4,)4x x l y y x x Q y y --=--⇒ 000003(1)0()(4)0(1)(1)(3)x M P M Qx x x y x x x x y -=⇔--+⨯=⇔-=--(*) (*)对0(2,2)x ∈-恒成立1x ⇔=, 得(1,0)M43. 44. 45. 46. 47. 48. 49. 50. 51.19.已知数列{}n a 的前n 项和为n S ,若()14211n n S n a +=-+,且11a =.(Ⅰ)证明:数列{}n a 是等差数列,并求出{}n a 的通项公式;(Ⅱ)设1n n nb a S =,数列{}n b 的前n 项和为n T ,证明:32n T <. (Ⅰ)证明:因为()14211n n S n a +=-+,所以当2n ≥时,()14231n n S n a -=-+, 两式相减,得()()()1421232n n n a n a n a n +=---≥, 所以()()12121n n n a n a ++=-,即()121221n n a n n a n ++=≥-,在()14211n n S n a +=-+中,令1n =,得23a =,所以123211232121232553=12123252731n n n n n n n a a a a a a a a a a a a n n n n n n n -----=⋅⋅⋅⋅⋅⋅---⋅⋅⋅⋅⋅⋅=---- ,所以()()()1212322n n a a n n n --=---=≥,故数列{}n a 是首项为1,公差为2的等差数列,且21n a n =-.(Ⅱ)解:由(Ⅰ)知,()2122n n n S n n -=+⨯=, 当1n =时,1111312T a S ==<; 当1n ≥时,()()()11221121221222222n n nb n n n n n n n na S ===<=-----,所以12311111131312446222222n n T b b b b n n n =++++<+-+-++-=-<-.20.已知函数()2ln f x x x ax =+-()a R ∈.52. (Ⅰ)当3a =时,求函数()f x 的单调区间;53. (Ⅱ)若函数()f x 有两个极值点12,x x ,且(]10,1x ∈,证明:()()123ln 24f x f x -≥-+;54. (Ⅲ)设()()22ln6ax g x f x x +=+,对于任意()2,4a ∈时,总存在3,22x ⎡⎤∈⎢⎥⎣⎦,使()()24g x k a >-成立,求实数k 的取值范围.55. 解:()()212120x ax f x x a x x x-+'=+-=>.56.(Ⅰ)当3a =时,()2231x x f x x -+'=,令()0f x '=,有12x =或1x =,57. 当102x <<或1x >时,()0f x '>;当112x <<时,()0f x '<.58. 所以()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭和()1,+∞,单调递减区间为1,12⎛⎫⎪⎝⎭.59. (Ⅱ)由于()f x 有两个极值点12,x x ,则2210x a x -+=有两个不相等的实根, 60. 所以12121,22a x x x x +=⋅=,即()122112,2x x a x x +==, 61. 所以()()()()()2212111222112121211121ln ln 1=ln ln221=2ln ln 2014f x f x x x ax x x ax ax x x a x x x x x x x -=+---+-+----++<≤ . 62. 设()()2212ln ln 2014F x x x x x =-++<≤, 63. 则()()223321212022x F x x x xx-'=--=-<,64. 所以()F x 在(]0,1上单调递减,所以()()31ln 24F x F ==-+,65. 即()()123ln 24f x f x -≥-+.66. (Ⅲ)()()()()2222lnln 2ln +2ln 2ln 662ln +22ln 6ax g x f x x x ax ax x x ax x ax +=+=+-+--=+-- ,67. 所以()24222222a ax x a a g x x a ax ax ⎛⎫-+ ⎪⎝⎭'=+-=++,68. 因为()2,4a ∈,所以2423222a a a a -=->-,且32x ≥,所以2402a x a -+>.69. 所以()0g x '>,()g x 在3,22x ⎡⎤∈⎢⎥⎣⎦时单调递增,70. 所以()()()max 22ln 22242ln6g x g a a ==+-+-,71. 所以()()22ln 22242ln 64a a k a +-+->-在()2,4a ∈上恒成立. 72. 令()()()22ln 22242ln 64h a a a k a =+-+---,则()20h =, 73. 则()0h a >在()2,4上恒成立. 74. 因为()()2122211a ka k h a ka a a +-'=-+=++, 75. 当0k ≤时,()0h a '<,()h a 在()2,4上单调递减,()()20h a h <=,不合题意;76. 当0k >时,令()0h a '=,有1ka k-=, 77. 若12k k ->,即103k <<时,()h a 在12,k k -⎛⎫⎪⎝⎭上单调递减,存在,()()20h a h <=,不合题意; 78. 若12k k -≤,即13k ≥时,()h a 在()2,4上单调递增,()()20h a h >=,满足题意.79. 综上,实数k 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭.80.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南开中学2015届高三数学文科统练8(数列)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
.A 向右平移
6π个单位 .B 向右平移3
π
个单位 .C 向左平移
3π个单位 .D 向左平移6
π
个单位 3. 已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )
9
.2A -
.0B .C 3 .D 152
4. 设等比数列{ n a }的前n 项和为n S ,若
63
3S S =,则96S
S = ( )
.A 2 .B
73 .C 8
3
.D 3 5.
}{n a 为正项等比数列,公比2=q ,又30303212=a a a a ,则=30963a a a a ( )
.A 10
2 .B 15
2 .C 16
2 .D 20
2
6. 设y a a x ,,,21成等差数列, y b b x ,,,21成等比数列,则2
12
21)(b b a a +的取值范围是( )
.A [)+∞,4 .B [)4,0 .C (][)+∞⋃∞-,40, .D ()[)+∞⋃-∞-,44,
7. 一个项数是偶数的等比数列,它的偶数项和是奇数项和的2倍,又它的首项为1,且中间
两项的和为24,则此等比数列的项数为( )
.A 6 .B 8 .C 10 .D 12 8. 在数列}{n a 中,321,,a a a 成等差数列, 432,,a a a 成等比数列, 543,,a a a 的倒数成等差
数列,则531,,a a a ( )
.A 成等差数列 .B 成等比数列 .C 倒数成等差数列 .D 平方根成等比数列
二、填空题:本大题共6小题,每小题6分,共36分,把答案填在题中横线上.
9. 已知{}n a 为等差数列,若9843=++a a a ,则9S = .
10. 在ABC ∆中,3BC BD =,AD AB ⊥,1AD =,则AC AD ⋅= . 11. 已知函数()sin f x x ω=(ω>0)在[)5,0π内恰有7个最值点,则ω的范围是______.
12. n S 是无穷等比数列}{n a 的前n 项和,且公比1≠q ,已知1是
221S 和33
1
S 的等差中项,6是22S 与33S 的等比中项,则此数列的通项公式为 .
13. 数列}{n a 中,11-=a ,且)(024*1N n n a a n n ∈=++++,则此数列奇数项组成的数列的
前n 项和等于 .
14. 已知数列{}n a 满足)(43*1N n a a n n ∈=++,且91=a ,其前n 项和为 n S ,则满足不等式
125
1
6<--n S n 的最小整数n 是 .
三、解答题:本大题共5小题,共64分.解答应写出文字说明,证明过程或演算步骤. 15. 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,设S 为ABC ∆的面积,满足
2224)S a b c +-,
(Ⅰ)求角C 的大小; (Ⅱ)若tan 21tan A c
B b
+=
,且8AB BC ⋅=-,求c 的值.
16. 已知向量2
12cos ,12x
a ω⎛⎫
=- ⎪⎝

,1,cos()3b x πω⎛⎫=-+ ⎪⎝⎭,0ω>,点A 、B 为函数
b a x f
⋅=)(的相邻两个零点,πAB =,
(1)求ω的值; (2)若33)(=
x f ,⎪⎭

⎝⎛∈2,0πx ,求x sin 的值; (3)求()(2)g x f x =的单调递减区间.
17. 已知数列{}n a 中,)2(1
2,111
1≥+=
=--n a a a a n n n 对一切正整数n ,21a n a -≥恒成立, (1)
求证:1n a ⎧⎫
⎨⎬⎩⎭
是等差数列;
(2)求实数a 的取值范围.
18. 设12a =,12
1
n n a a +=
+,21n n n a b a +=-,*n N ∈,
(1) 求证:{}n b 是等比数列;
(2) 求数列{}n b 的通项公式与前n 项和.
19. 设正数数列}{n a 的前n 项和n S 满足2)1(4
1
+=
n n a S , (1)求证:12-=n a n ; (2)设1
1
+⋅=
n n n a a b ,记数列}{n b 的前n 项和为n T ,求n T .
20. 已知数列}{n a 的前n 项和为n S ,且22(1
,2,3)n n S a n =-=,数列}{n b 中,11=b ,点
),(1+n n b b P 在直线02=+-y x 上,
(1)求数列}{},{n n b a 的通项n a 和n b ;
(2)设n n n b a c =求数列}{n c 的前n 项和n T ,并求满足167<n T 的最大正整数n .
天津南开中学2015届高三数学统练8答案
三.
解答题 15. π
,43
C c =
=
16. 2
1()2cos 1cos()cos cos 232x
f x x x x x ωπωωωω=-++=+
32
cos 23x x x πωωω⎛⎫
==+ ⎪⎝

.
(1)1ω=;(2)sin x = 17. 1
21
n a n =
-, [)1,a ∈+∞ 18. 11422n n n b -+=⋅=
19. (1)∵ 2)1(4
1
+=
n n a S ① ∴ 211)1(4
1
+=
--n n a S )2(≥n ② ①-②得1--=n n n S S a 2
12)1(4
1)1(41+-+=-n n a a
整理得0)2)((11=--+--n n n n a a a a ∵ 0>n a ∴ 01>+-n n a a
∴ 021=---n n a a ,即)2(21≥=--n a a n n ∴ }{n a 是等差数列 又2111)1(4
1
+=
=a S a ,11=a ∴ 12-=n a n (2)∵ )12)(12(1
11+-=
⋅=+n n a a b n n n )1
21121(21+--=n n ∴ )]1
21
121()4131()311[(21+--++-+-=
n n T n 12)1211(21+=+-=n n n
20. 解:(1)22-=n n a S ,2211-=--n n a S
又n n n a S S =--1),2(*
N n n ∈≥ ∴ 122--=n n n a a a 0≠n a ∴
21
=-n n
a a ),2(*N n n ∈≥,即数列}{n a 是等比数列 11S a = ∴ 2211-=a a ,即21=a
∴ n
n a 2=
点),(1+n n b b P 在直线02=+-y x 上 ∴ 021=+-+n n b b
∴ 21=-+n n b b ,即数列}{n b 是等差数列 又11=b ∴ 12-=n b n (2)n
n n c 2)12(-=
∴ n n n b a b a b a T +++= 2211
n n 2)12(25232132-++⨯+⨯+⨯=
∴ 1
3
2
2
)12(2)32(23212+-+-++⨯+⨯=n n
n n n T。

相关文档
最新文档