高中数学综合复习题每日一练

合集下载

高中数学一元二次函数方程和不等式考点专题训练

高中数学一元二次函数方程和不等式考点专题训练

(每日一练)高中数学一元二次函数方程和不等式考点专题训练单选题1、已知a >0,b >0且ab =1,不等式12a +12b +ma+b ≥4恒成立,则正实数m 的取值范围是( ) A .m ≥2B .m ≥4C .m ≥6D .m ≥8 答案:D分析:由条件结合基本不等式可求a +b 的范围,化简不等式可得m ≥4(a +b )−(a+b )22,利用二次函数性质求4(a +b )−(a+b )22的最大值,由此可求m 的取值范围.不等式12a+12b+ma+b≥4可化为a+b 2ab+m a+b≥4,又a >0,b >0,ab =1,所以m ≥4(a +b )−(a+b )22,令a +b =t ,则m ≥4t −t 22,因为a >0,b >0,ab =1,所以t =a +b ≥2√ab =2,当且仅当a =b =1时等号成立,又已知m ≥4t −t 22在[2,+∞)上恒成立,所以m ≥(4t −t 22)max因为4t −t 22=12(8t −t 2)=−12(t −4)2+8≤8,当且仅当t =4时等号成立,所以m ≥8,当且仅当a =2−√3,b =2+√3或a =2−√3,b =2+√3时等号成立, 所以m 的取值范围是[8,+∞), 故选:D.2、在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm )应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100 答案:C分析:为了安全,则人跑开的路程应大于100米,路程=速度×时间,其中时间即导火索燃烧的时间. 导火索燃烧的时间x0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x 0.5>100.故选:C.3、若关于x 的不等式x 2−6x +11−a <0在区间(2,5)内有解,则实数a 的取值范围是( ) A .(−2,+∞)B .(3,+∞)C .(6,+∞)D .(2,+∞) 答案:D分析:设f(x)=x 2−6x +11,由题意可得a >f(x)min ,从而可求出实数a 的取值范围 设f(x)=x 2−6x +11,开口向上,对称轴为直线x =3,所以要使不等式x 2−6x +11−a <0在区间(2,5)内有解,只要a >f(x)min 即可, 即a >f(3)=2,得a >2, 所以实数a 的取值范围为(2,+∞), 故选:D4、不等式−x 2+3x +18<0的解集为( ) A .{x |x >6或x <−3}B .{x |−3<x <6} C .{x |x >3或x <−6}D .{x |−6<x <3} 答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A5、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.6、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a <b ⇒ac <bc ,C 选项错误;对于D 选项,因为a <b ⇒b −a >0,c >0,所以无法判断b −a 与c 大小,D 选项错误. 7、已知实数a,b,c 满足a >b >0>c ,则下列不等式中成立的是( )A .a +1b <b +1a B .2a+ba+2b <ab C .ba−c >ab−c D .√ca 3<√cb 3答案:B分析:对于A ,利用不等式的性质判断;对于CD ,举例判断;对于B ,作差法判断 解:对于A ,因为a >b >0,所以1a<1b,所以a +1b>b +1a,所以A 错误,对于B ,因为a >b >0,所以2a+b a+2b−a b=(2a+b)b−a(a+2b)(a+2b)b=b 2−a 2(a+2b)b<0,所以2a+ba+2b <ab ,所以B 正确,对于C ,当a =2,b =1,c =−1时,b a−c =13<ab−c =1,所以C 错误,对于D ,当a =8,b =1,c =−1时,√c a 3=−12>√cb 3=−1,所以D 错误, 故选:B8、设实数x 满足x >0,函数y =2+3x +4x+1的最小值为( ) A .4√3−1B .4√3+2C .4√2+1D .6 答案:A解析:将函数变形为y =3(x +1)+4x+1−1,再根据基本不等式求解即可得答案.解:由题意x >0,所以x +1>0,所以y =2+3x +4x+1=2+3(x +1)−3+4x+1=3(x +1)+4x+1−1≥2√3(x +1)⋅4x+1−1=4√3−1,当且仅当3(x +1)=4x+1,即x =2√33−1>0时等号成立,所以函数y =2+3x +4x+1的最小值为4√3−1. 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 9、不等式1+x1−x ≥0的解集为( )A .{x|x ≥1或x ≤−1}B .{x ∣−1≤x ≤1}C .{x|x ≥1或x <−1}D .{x|−1≤x <1} 答案:D分析:不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,解得−1≤x <1,故不等式的解集为{x|−1≤x <1}, 故选:D .10、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论.解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b>0,所以a −b +1a−b≥2√(a −b )×1a−b=2,故C 正确;对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 填空题11、已知正数a ,b 满足1a+1b=2,则3b+1−a 的最大值为______.答案:5−2√33分析:由条件得b =a2a−1,进而得3b+1−a =53−[13a−1+(a −13)],由基本不等式可得解.由1a+1b=2,得b =a2a−1,由a >0,b >0,得a >12, 所以3b+1−a =3a2a−1+1−a =3(2a−1)3a−1−a=53−[13a−1+(a −13)]≤53−2√13a−1⋅(a −13)=5−2√33, 当且仅当13a−1=a −13,即a =1+√33时等号成立,、所以3b+1−a 的最大值为5−2√33. 所以答案是:5−2√33.小提示:关键点点睛:本题的解题关键是利用等量代换实现二元换一元3b+1−a=53−[13a−1+(a−13)],进而可利于基本不等式求最值.12、若不等式ax2+ax+a+3≥0在R上恒成立,则实数a的取值范围是______. 答案:{a|a≥0}分析:分a=0和a≠0两种情况,结合二次函数的图像与性质,求解即可.当a=0时,不等式为3>0,满足题意;当a≠0,需满足{a>0Δ=a2−4a(a+3)≤0,解得a>0,综上可得,a的取值范围为{a|a≥0},所以答案是:{a|a≥0}.13、若实数a,b满足a2+b2=1,则1a2+4b2+1的最小值为_________.答案:92##4.5分析:根据实数a,b满足a2+b2=1,利用“1”的代换得到1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=1 2(5+b2+1a2+4a2b2+1),再利用基本不等式求解.因为实数a,b满足a2+b2=1,所以1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=12(5+b2+1a2+4a2b2+1),≥12(5+2√(b2+1a2)⋅(4a2b2+1))=92,当且仅当{b2+1a2=4a2b2+1a2+b2+1=2,即a=√63,b=√33时,等号成立,所以1a2+4b2+1的最小值为92,所以答案是:9214、设x∈R,使不等式3x2+x−2<0成立的x的取值范围为__________.)答案:(−1,23分析:通过因式分解,解不等式.3x2+x−2<0,即(x+1)(3x−2)<0,即−1<x<2,3).故x的取值范围是(−1,23小提示:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.15、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}16、已知a∈Z关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,则a的值可以是________(写出任何一个满足条件的值即可).答案:13,14,15(写出任何一个值即可)分析:根据题意,先表示出关于x的一元二次不等式x2−8x+a≤0的解集,再结合数轴分析即可得到a的值.因为关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以Δ=64−4a>0,即a<16,由x2−8x+a=0,解得x=4±√16−a,故关于x的一元二次不等式x2−8x+a≤0的解集为[4−√16−a,4+√16−a],因关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以1≤√16−a<2,即12<x≤15,又因a∈Z,所以a=13,14或15都满足.所以答案是:13,14,15(写出任何一个值即可).17、已知a,b,c均为正实数,且aba+2b ⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c均为正实数,所以由题可得:0<a+2bab ≤3,0<b+2cbc≤4,0<c+2aac≤5,即0<1b+2a≤3,0<1c+2b≤4,0<1a +2c≤5,三式相加得:0<3(1a+1b+1c)≤12,所以0<1a+1b+1c≤4所以1a +1b+1c的最大值为4所以答案是:418、已知正数a,b,c,则ab+bc2a2+b2+c2的最大值为_________.答案:√64分析:将分母变为(2a2+13b2)+(23b2+c2),分别利用基本不等式即可求得最大值.∵ab+bc2a2+b2+c2=ab+bc(2a2+13b2)+(23b2+c2)≤2√23ab+2√23bc=2√23=√64(当且仅当√2a=√33b,√63b=c时取等号),∴ab+bc2a2+b2+c2的最大值为√64.所以答案是:√64.19、函数y =√kx 2−2kx +4的定义域为R ,则实数k 的取值范围为______. 答案:[0,4]分析:函数y =√kx 2−2kx +4的定义域为R ,等价于kx 2−2kx +4≥0恒成立,然后分k =0和k ≠0两种情况讨论求解即可得答案函数y =√kx 2−2kx +4的定义域为R ,等价于kx 2−2kx +4≥0恒成立, 当k =0时,显然成立;当k ≠0时,由Δ=(−2k)2−4k ×4≤0,得0<k ≤4. 综上,实数k 的取值范围为[0,4]. 所以答案是:[0,4]20、已知正数m ,n 满足m +8n =mn ,则m +2n 的最小值为______. 答案:18分析:由m +8n =mn 可得1n +8m =1,m +2n =(m +2n )(1n +8m )展开利用基本不等式即可求解. 由m +8n =mn 可得1n +8m=1,所以m +2n =(m +2n )(1n +8m)=10+m n+16n m≥10+2√m n×16n m=18,当且仅当{mn=16nm mn=16n m即{n =3m =12时等号成立, 所以m +2n 的最小值为18, 所以答案是:18 解答题21、已知二次函数f (x )=x 2+mx −6(m >0)的两个零点为x 1和x 2,且x 1−x 2=5.(1)求函数f (x )的解析式;(2)解关于x 的不等式f (x )<4−2x .答案:(1)f (x )=x 2+x −6;(2){x |−5<x <2}.分析:(1)利用根与系数的关系,由x 1−x 2=5求出m =1,即可得到函数f (x )的解析式;(2)把原不等式转化为x 2+3x −10<0,即可解得.(1)由题意得:关于x 的方程x 2+mx −6=0(m >0)的两个根为x 1和x 2,由根与系数的关系得{x 1+x 2=−m,x 1x 2=−6,故(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=m 2+24=25,故m 2=1.∵m >0,∴m =1,故f (x )=x 2+x −6.(2)由f (x )<4−2x 得x 2+x −6<4−2x ,即x 2+3x −10<0,即(x +5)(x −2)<0,解得−5<x <2,故原不等式的解集是{x |−5<x <2}.22、设2<a <7,1<b <2,求a +3b ,2a −b ,a b 的范围.答案:5<a +3b <13,2<2a −b <13,1<a b <7分析:根据不等式的基本性质,先求出a +3b 与2a −b 的范围,再由可乘性得出a b 的范围即可.∵2<a <7,1<b <2,∴4<2a <14,3<3b <6,−2<−b <−1,12<1b <1,∴5<a+3b<13,2<2a−b<13,∴1<a<7.b<7.故5<a+3b<13,2<2a−b<13,1<ab。

高中数学练习题基础

高中数学练习题基础

高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。

(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。

2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。

(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。

(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。

高中数学每日试题及答案

高中数学每日试题及答案

高中数学每日试题及答案一、选择题(每题3分,共15分)1. 下列函数中,哪一个不是一次函数?A. y = 2x + 3B. y = 3x^2 - 1C. y = 4x - 5D. y = -x2. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,根据勾股定理,这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}4. 函数f(x) = x^2 - 4x + 4的最小值是:A. 0B. -4C. 4D. 无法确定5. 若sinθ = 1/√2,且θ在第一象限,那么cosθ的值是:A. 1/√2B. √3/2C. -1/√2D. -√3/2二、填空题(每题2分,共10分)6. 已知等差数列的首项a1=3,公差d=2,求第5项a5的值是_________。

7. 函数y = log2(x)的定义域是_________。

8. 已知圆的半径为5,圆心到直线x + y - 7 = 0的距离是4,求圆与直线的位置关系是_________。

9. 已知正方体的棱长为a,求正方体的表面积S的公式是_________。

10. 若cosα = 1/3,且α在第一象限,求sinα的值是_________。

三、解答题(每题5分,共20分)11. 解不等式:2x^2 - 5x + 3 > 0。

12. 已知点A(-1, 2),B(2, -1),求直线AB的斜率k。

13. 证明:若a、b、c是正数,且a + b + c = 1,求证:1/a + 1/b + 1/c ≥ 9。

14. 已知函数f(x) = 3x - 2,求f(x)的反函数。

四、综合题(每题10分,共10分)15. 某工厂生产一种产品,每件产品的成本为20元,售价为40元。

高中数学一元二次函数方程和不等式经典大题例题

高中数学一元二次函数方程和不等式经典大题例题

(每日一练)高中数学一元二次函数方程和不等式经典大题例题单选题1、某次全程马拉松比赛中,选手甲前半程以速度a匀速跑,后半程以速度b匀速跑;选手乙前一半时间以速度a匀速跑,后一半时间以速度b匀速跑(注:速度单位m s⁄),若a≠b,则()A.甲先到达终点B.乙先到达终点C.甲乙同时到达终点D.无法确定谁先到达终点答案:B解析:设马拉松全程为x,得到甲用的时间为12(xa+xb),乙用的时间为xa+b2=2xa+b,做差比较大小可得答案.设马拉松全程为x,所以甲用的时间为12(xa+xb),乙用的时间为xa+b2=2xa+b,因为a≠b,所以12(xa+xb)−2xa+b=bx(a+b)+ax(a+b)−4abx2ab(a+b)=(a−b)2xab(a+b)>0,所以12(xa+xb)>2xa+b,则乙先到达终点.故选:B.小提示:比较大小的方法有:(1)根据单调性比较大小;(2)作差法比较大小;(3)作商法比较大小;(4)中间量法比较大小.2、已知a,b 为正实数且a +b =2,则b a +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba+2b =2−a a+2b=2a+2b−1≥3,当且仅当a =b =1时等号成立;故选:D3、下列命题中,是真命题的是( )A .如果a >b ,那么ac >bcB .如果a >b ,那么ac 2>bc 2C .如果a >b ,那么ac >bc D .如果a >b ,c <d ,那么a −c >b −d 答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案. 对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、当0<x <2时,x(2−x)的最大值为( ) A .0B .1C .2D .4 答案:B分析:利用基本不等式直接求解.∵0<x <2,∴2−x >0,又x +(2−x)=2 ∴x(2−x)≤[x+(2−x)]24=1,当且仅当x =2−x ,即x =1时等号成立,所以x(2−x)的最大值为1 故选:B5、若不等式ax 2+bx −2<0的解集为{x|−2<x <1},则a +b =( ) A .−2B .0C .1D .2 答案:D分析:根据一元二次不等式与一元二次方程的关系以及韦达定理列方程组,可解出答案. 不等式ax 2+bx −2<0的解集为{x|−2<x <1},则方程ax 2+bx −2=0根为−2、1, 则{−ba =−2+1−2a =−2×1 ,解得a =1,b =1,∴a +b =2, 故选:D6、对∀x ∈R ,不等式(a −2)x 2+2(a −2)x −4<0恒成立,则a 的取值范围是( ) A .−2<a ≤2B .−2≤a ≤2C .a <−2或a ≥2D .a ≤−2或a ≥2 答案:A分析:对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围. 不等式(a −2)x 2+2(a −2)x −4<0对一切x ∈R 恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意; 当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0 ,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2]. 故选:A.7、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x +600x−30)元(试剂的总产量为x 单位,50≤x ≤200),则要使生产每单位试剂的成本最低,试剂总产量应为( ) A .60单位B .70单位C .80单位D .90单位 答案:D分析:设生产每单位试剂的成本为y ,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y ,然后利用基本不等式求解最值即可. 解:设每生产单位试剂的成本为y ,因为试剂总产量为x 单位,则由题意可知,原料总费用为50x 元,职工的工资总额为7500+20x 元,后续保养总费用为x (x +600x−30)元,则y =50x+7500+20x+x 2−30x+600x=x +8100x+40≥2√x ⋅8100x+40=220,当且仅当x =8100x,即x =90时取等号,满足50≤x ≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.8、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A9、已知正实数a,b 满足4a+b+1b+1=1,则a +2b 的最小值为( )A .6B .8C .10D .12 答案:B分析:令a +2b =a +b +b +1−1,用a +b +b +1分别乘4a+b +1b+1=1两边再用均值不等式求解即可. 因为4a+b+1b+1=1,且a,b 为正实数所以a +b +b +1=(a +b +b +1)(4a+b +1b+1)=4+a+bb+1+4(b+1)a+b+1≥5+2√a+b b+1×4(b+1)a+b=9,当且仅当a+b b+1=4(b+1)a+b即a =b +2时等号成立.所以a +2b +1≥9,a +2b ≥8.10、权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当a x=b y时等号成立.根据权方和不等式,函数f(x)=2x+91−2x(0<x <12)的最小值为( ) A .16B .25C .36D .49 答案:B分析:将给定函数式表示成已知不等式的左边形式,再利用该不等式求解作答.因a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当ax =by 时等号成立,又0<x <12,即1−2x >0, 于是得f(x)=222x+321−2x≥(2+3)22x+(1−2x)=25,当且仅当22x=31−2x,即x =15时取“=”,所以函数f(x)=2x +91−2x (0<x <12)的最小值为25. 故选:B 填空题11、正实数x,y 满足:2x +y =1,则2x +1y 的最小值为_____. 答案:9解析:根据题意,可得2x +1y =(2x +1y )(2x +y )=5+2y x+2x y,然后再利用基本不等式,即可求解.2x+1y =(2x +1y )(2x +y )=5+2y x+2x y≥5+2√2yx ⋅2x y≥5+2√4=9,当且仅当x =y =13 时取等号.所以答案是:9.小提示:本题主要考查利用基本不等式求最值,属于基础题.12、已知三个不等式:①ab >0,②ca >db ,③bc >ad ,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab>0ca>db⇒{ab>0bc−adab>0⇒bc>ad;{ab>0bc>ad⇒ca>db;{ca>dbbc>ad⇒{bc−adab>0bc>ad⇒ab>0.故可组成3个真命题.所以答案是:3.13、已知关于x的不等式ax2+bx+c>0(a,b,c∈R)的解集为{x|3<x<4},则c2+5a+b的取值范围为________________.答案:[4√5,+∞)分析:由一元二次不等式的解集与一元二次方程根的关系,应用韦达定理把b,c用a表示,化待求式为一元函数,再利用基本不等式得结论.由不等式解集知a<0,由根与系数的关系知{−ba=3+4=7, ca=3×4=12,∴b=−7a,c=12a,则c2+5a+b =144a2+5−6a=−24a+5−6a≥2√(−24a)×5−6a=4√5,当且仅当−24a=5−6a ,即a=−√512时取等号.所以答案是:[4√5,+∞).小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.15、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______.答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x +y 的最小值为2. 所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 16、设a >0,b >0,给出下列不等式:①a 2+1>a ; ②(a +1a )(b +1b )≥4; ③(a +b )(1a +1b )≥4; ④a 2+9>6a .其中恒成立的是________(填序号). 答案:①②③分析:利用做差法判断①,利用基本不等式判断②③,特殊值代入判断④即可得出结论.由于a 2+1-a =(a −12)2+34>0,故①恒成立;由于(a +1a )(b +1b )=ab +1ab +ba +ab ≥2√ab ⋅1ab +2√ba ⋅ab=4,当且仅当{ab =1ab b a=a b即a =b =1时等号成立,故②恒成立; 由于(a +b )(1a +1b )=2+b a +a b ≥2+2√b a ×a b =4.当且仅当a b =ba , 那么a =b =1时等号成立,故③恒成立; 当a =3时,a 2+9=6a ,故④不恒成立. 综上,恒成立的是①②③.所以答案是:①②③.小提示:本题主要考查了利用做差法和基本不等式以及特殊值代入的方法,判断不等式是否成立的问题.属于较易题.17、 设x ∈R ,使不等式3x 2+x −2<0成立的x 的取值范围为__________. 答案:(−1,23)分析:通过因式分解,解不等式. 3x 2+x −2<0, 即(x +1)(3x −2)<0,即−1<x <23,故x 的取值范围是(−1,23).小提示:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合. 18、不等式2x−7x−1≤1的解集是________. 答案:(1,6]分析:把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集. 不等式2x−7x−1≤1得x−6x−1≤0 ,故{(x −1)(x −6)≤0x −1≠0⇒1<x ≤6 ,所以答案是:(1,6].19、已知a ∈Z 关于x 的一元二次不等式x 2−8x +a ≤0的解集中有且仅有3个整数,则a 的值可以是________(写出任何一个满足条件的值即可).答案:13,14,15(写出任何一个值即可)分析:根据题意,先表示出关于x的一元二次不等式x2−8x+a≤0的解集,再结合数轴分析即可得到a的值. 因为关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以Δ=64−4a>0,即a<16,由x2−8x+a=0,解得x=4±√16−a,故关于x的一元二次不等式x2−8x+a≤0的解集为[4−√16−a,4+√16−a],因关于x的一元二次不等式x2−8x+a≤0的解集中有且仅有3个整数,所以1≤√16−a<2,即12<x≤15,又因a∈Z,所以a=13,14或15都满足.所以答案是:13,14,15(写出任何一个值即可).>0的解集为______________.20、不等式x+3x−1答案:{x|x<−3或x>1}分析:由题可得(x−1)(x+3)>0,进而即得.>0,得(x−1)(x+3)>0,由x+3x−1所以x<−3或x>1,故不等式得解集为{x|x<−3或x>1}.所以答案是:{x|x<−3或x>1}.解答题<0,k≠021、已知关于x的不等式2kx2+kx−38(1)若k =18,求不等式的解集; (2)若不等式的解集为R ,求k 的取值范围.答案:(1)(−32,1);(2)(−3,0) 分析:(1)将k =18代入不等式,根据一元二次不等式的解法即可求解.(2)根据关于x 的不等式2kx 2+kx −38<0的解集为R .又因为k ≠0 ,利用判别式法求解. (1)将k =18代入不等式,可得14x 2+18x −38<0,即2x 2+x −3<0 所以−32和1是方程2x 2+x −3=0的两个实数根, 所以不等式的解集为{x |−32 <x <1}即不等式的解集为(−32,1). (2)因为关于x 的不等式2kx 2+kx −38<0的解集为R .因为k ≠0所以{2k <0,Δ=k 2+3k <0,解得−3<k <0, 故k 的取值范围为(−3,0).22、(1)已知a >b,c <d ,求证:a −c >b −d ;(2)已知a >b,ab >0,求证:1a <1b ;(3)已知a >b >0,0<c <d ,求证:a c >b d . 答案:(1)证明见解析;(2)证明见解析;(3)证明见解析.分析:(1)根据c <d 不等号左右两边同时乘以一个负数,不等号方向改变得到 −c >−d , 再用同向可加性法则即可得出结果.(2)根据正数的倒数大于0可得1ab>0,再用同向同正可乘性得出结果.(3)因为0<c<d,根据(2)的结论,得1c >1d>0,再用同向同正可乘性得出结果.证明:(1)因为a>b,c<d,所以a>b,−c>−d. 则a−c>b−d.(2)因为ab>0,所以1ab>0.又因为a>b,所以a⋅1ab >b⋅1ab,即1b >1a,因此1a<1b.(3)因为0<c<d,根据(2)的结论,得1 c >1d>0.又因为a>b>0,则a⋅1c >b⋅1d,即ac >bd.小提示:本题考查不等式的基本性质与不等关系,是基础题.。

高中数学一元二次函数方程和不等式专项训练

高中数学一元二次函数方程和不等式专项训练

(每日一练)高中数学一元二次函数方程和不等式专项训练单选题1、若“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,则实数m的取值范围是()A.m≥1B.m≥2C.m≥3D.m≥4答案:C分析:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.根据“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,可得﹣2m≤﹣2,3≤m,m>0.解出即可得出.解:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.∵“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,∴﹣2m≤﹣2,3≤m,(两个等号不同时取)m>0.解得m≥3.则实数m的取值范围是[3,+∞).故选:C.的最小值为()2、已知x>2,则x+4x−2A.6B.4C.3D.2答案:A分析:利用基本不等式可得答案.∵x>2,∴x−2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6, 当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6,故选:A .3、若实数x >32,y >13,不等式4x 2t (3y−1)+9y 2t (2x−3)≥2恒成立,则正实数t 的最大值为( ) A .4B .16C .72D .8答案:D分析:令3y −1=a,2x −3=b ,则(b+3)2a +(a+1)2b ≥2t ,由权方和不等式和基本不等式得(b+3)2a +(a+1)2b ≥16,即可求解t ≤8.由4x 2t (3y−1)+9y 2t (2x−3)≥2得4x 2(3y−1)+9y 2(2x−3)≥2t 因为x >32,y >13,则3y −1>0,2x −3>0令3y −1=a,2x −3=b则4x 2(3y−1)+9y 2(2x−3)≥2t 化为(b+3)2a +(a+1)2b ≥2t 恒成立, 由权方和不等式得(b+3)2a +(a+1)2b ≥(a+b+4)2a+b =(a +b )+16a+b +8≥2√16+8=16 当且仅当{b+3a =a+1b a +b =4 ,得a =53,b =73即x =73,y =109时等号成立. 所以16≥2t ⇒t ≤8故选:D4、若关于x 的不等式|x −1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,1)C .(3,+∞)D .[3,+∞)答案:D分析:根据充分条件列不等式,由此求得a 的取值范围.|x −1|<a 成立的充分条件是0<x <4,则a >0,|x −1|<a ⇒1−a <x <1+a ,所以{1−a ≤01+a ≥4⇒a ≥3. 故选:D5、已知0<x <2,则y =x√4−x 2的最大值为( )A .2B .4C .5D .6答案:A分析:由基本不等式求解即可因为0<x <2,所以可得4−x 2>0,则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号,y =x√4−x 2的最大值为2.故选:A .6、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可.若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c均为正实数,则ab+bca2+2b2+c2=a+ca2+c2b+2b≤2√a2+c2b×2b=2√2(a2+c2)=12√a2+2ac+c22(a2+c2)=12√12+aca2+c2≤12√12+2√a2×c2=12,当且仅当a 2+c2b=2b,且a=c取等,即a=b=c取等号,即则ab+bca2+2b2+c2的最大值为12,故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致.7、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.8、设a<b<0,则下列不等式中不一定正确的是()A.2a >2bB.ac<bc C.|a|>-b D.√−a>√−b答案:B分析:利用不等式的性质对四个选项一一验证:对于A,利用不等式的可乘性进行证明;对于B,利用不等式的可乘性进行判断;对于C,直接证明;对于D,由开方性质进行证明.对于A,因为a<b<0,所以2ab >0,对a<b同乘以2ab,则有2a>2b,故A成立;对于B,当c>0时选项B成立,其余情况不成立,则选项B不成立;对于C,|a|=-a>-b,则选项C成立;对于D,由-a>-b>0,可得√−a>√−b,则选项D成立.故选:B9、设实数x满足x>0,函数y=2+3x+4x+1的最小值为()A.4√3−1B.4√3+2C.4√2+1D.6答案:A解析:将函数变形为y=3(x+1)+4x+1−1,再根据基本不等式求解即可得答案. 解:由题意x>0,所以x+1>0,所以y=2+3x+4x+1=2+3(x+1)−3+4x+1=3(x +1)+4x+1−1≥2√3(x +1)⋅4x+1−1=4√3−1,当且仅当3(x +1)=4x+1,即x =2√33−1>0时等号成立, 所以函数y =2+3x +4x+1的最小值为4√3−1.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10、不等式1+x 1−x ≥0的解集为( )A .{x|x ≥1或x ≤−1}B .{x ∣−1≤x ≤1}C .{x|x ≥1或x <−1}D .{x|−1≤x <1}答案:D分析:不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,由此求得不等式的解集. 不等式等价于x+1x−1≤0,即(x +1)(x −1)≤0,且x −1≠0,解得−1≤x <1,故不等式的解集为{x|−1≤x <1},故选:D .填空题11、已知x,y ∈(0,+∞),a ∈R ,若(x −y +sin 2α+1)(x +3y −2sin 2α)=2,则3x +y 的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.12、设x1、x2、x3、y1、y2、y3是六个互不相等的实数,则在以下六个式子中:x1y1+x2y2+x3y3,x1y1+ x2y3+x3y2,x1y2+x2y3+x3y1,x1y2+x2y1+x3y3,x1y3+x2y2+x3y1,x1y3+x2y1+x3y2,能同时取到150的代数式最多有________个.答案:2分析:由作差法比较大小后判断不妨设x1<x2<x3,y1<y2<y3,记x1y1+x2y2+x3y3为①式,x1y1+x2y3+x3y2为②式,以此类推,由①−②=x2y2+x3y3−x2y3−x3y2=(x2−x3)(y2−y3)>0,故①>②,②−③=x1y1+x3y2−x1y2−x3y1=(x1−x3)(y1−y2)>0,故②>③,①−④=x1y1+x2y2−x1y2−x2y1=(x1−x2)(y1−y2)>0,故①>④,同理得,①>⑤,②>⑥,③>⑤,④>③,④>⑥,⑥>⑤,综上可知①>②>③>⑤,①>④>③>⑤,且②>⑥>⑤,④>⑥>⑤,最多有②④或③⑥两项可同时取150,令x1y1+x2y3+x3y2=x1y2+x2y1+x3y3=150,得其一组解为{x1=−1x2=0x3=1,{y1=2y2=152y3=302所以答案是:213、已知a,b∈R,若对任意x≤0,不等式(ax+2)(x2+2bx−1)≤0恒成立,则a+b的最小值为___________.答案:√3分析:考虑两个函数g(x)=ax+2,f(x)=x2+2bx−1,由此确定a>0,x<0时,f(x),g(x)有相同的零点,得出a,b的关系,检验此时f(x)也满足题意,然后计算出a+b(用a表示),然后由基本不等式得最小值.设g(x)=ax+2,f(x)=x2+2bx−1,f(x)图象是开口向上的抛物线,因此由x≤0时,f(x)g(x)≤0恒成立得a>0,g(x)=0时,x=−2a ,x<−2a时,g(x)<0,−2a<x≤0时,g(x)>0,因此x<−2a 时,f(x)>0,−2a<x≤0时,f(x)<0,f(−2a)=0,所以4a2−4ba−1=0①,−b>−2a②,由①得b=1a −a4,代入②得a4−1a>−2a,因为a>0,此式显然成立.a +b =1a +3a 4≥2√1a ×3a 4=√3,当且仅当1a =3a 4,即a =2√33时等号成立, 所以a +b 的最小值是√3.所以答案是:√3.小提示:关键点点睛:本题考查不等式恒成立问题,考查基本不等式求最值.解题关键是引入两个函数f(x)和g(x),把三次函数转化为二次函数与一次函数,降低了难度.由两个函数的关系得出参数a,b 的关系,从而可求得a +b 的最小值.14、若函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1),则a +b 的值为____.答案:92分析:根据二次函数的性质,结合定义域和值域均为[1,b ](b >1),列出相应方程组,求出a ,b 的值即可. 解:由函数f (x )=12x 2−x +a ,可得对称轴为x =1,故函数在[1,b ]上是增函数.∵函数f (x )=12x 2−x +a 的定义域和值域均为[1,b ](b >1), ∴ {f (1)=1f (b )=b ,即{12−1+a =112b 2−b +a =b . 解得a =32,b =1或b =3.∵ b >1,∴ b =3.∴ a +b =32+3=92. 所以答案是:92. 15、已知M =x 2−3x ,N =−3x 2+x −3,则M ,N 的大小关系是________.答案:M >N分析:利用作差法直接比大小.M −N =(x 2−3x )−(−3x 2+x −3)=4x 2−4x +3=(2x −1)2+2>0∴M>N,所以答案是:M>N.16、若实数a>b,则下列说法正确的是__________.(1)a+c>b+c;(2)ac<bc;(3)1a <1b;(4)a2>b2答案:(1)分析:根据不等式的性质以及特殊值验证法,对四个说法逐一分析,由此确定正确的说法. 根据不等式的性质(1)正确;(2)中如果c≥0时不成立,故错误;(3)若a=1,b=−1时,1a <1b不成立,故错误;(4)若a=1,b=−1,a2>b2不成立,故错误.故答案为:(1)小提示:本小题主要考查不等式的性质,属于基础题.17、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m ,则宽为32xm ,依题意可得,试验区的总面积S =(x −0.5×4)(32x−0.5×2)=34−x −64x≤34−2√x ⋅64x=18,当且仅当x =64x即x =8时等号成立,所以每块试验区的面积的最大值为183=6m 2. 所以答案是:618、若不等式x 2−2>mx 对满足|m |≤1的一切实数m 都成立,则x 的取值范围是___________ 答案:x <−2或x >2分析:令f (m )=mx −x 2+2,依题意可得−1≤m ≤1时f (m )<0恒成立,则{f (1)<0f (−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x 2−2>mx ,所以mx −x 2+2<0令f (m )=mx −x 2+2,即f (m )<0在|m |≤1恒成立,即−1≤m ≤1时f (m )<0恒成立,所以{f (1)<0f (−1)<0,即{x −x 2+2<0−x −x 2+2<0,解x −x 2+2<0得x >2或x <−1;解−x −x 2+2<0得x >1或x <−2,所以原不等式组的解集为x ∈(−∞,−2)∪(2,+∞) 所以答案是:(−∞,−2)∪(2,+∞)19、已知x >54,则函数y =4x +14x−5的最小值为_______. 答案:7分析:由x >54,得4x −5>0,构造导数关系,利用基本不等式即可得到.法一:∵x >54,∴4x −5>0,y =4x +14x−5=(4x −5)+14x−5+5≥2+5=7,当且仅当4x −5=14x−5,即x =32时等号成立,所以答案是:7.法二:∵x >54,令y ′=4−4(4x−5)2=0得x =1或x =32,当54<x <32时y′<0函数单调递减,当x >32时y′>0函数单调递增,所以当x =32时函数取得最小值为:4×32+14×32−5=7,所以答案是:7.【点晴】此题考基本不等式,属于简单题.20、已知a,b,c 均为正实数,且aba+2b⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c 均为正实数,所以由题可得:0<a+2b ab ≤3,0<b+2c bc≤4,0<c+2a ac ≤5,即0<1b +2a ≤3,0<1c +2b ≤4,0<1a +2c ≤5,三式相加得:0<3(1a +1b +1c )≤12,所以0<1a +1b +1c ≤4 所以1a +1b +1c 的最大值为4 所以答案是:4 解答题21、设a ∈R ,关于x 的二次不等式ax 2−2x −2a >0的解集为A ,集合B ={x |1<x <2 },满足A ∩B ≠∅,求实数a 的取值范围. 答案:(−∞,−2)∪(2,+∞)分析:由题意a ≠0,求出方程ax 2−2x −2a =0的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案.解:由题意a≠0,令ax2−2x−2a=0,解得两根为x1=1a −√2+1a2,x2=1a+√2+1a2,由此可知x1<0,x2>0,当a>0时,解集A={x|x<x1}∪{x|x>x2},因为x1<0,x2>1,所以A∩B≠∅的充要条件是x2<2,即1a+√2+1a2<2,解得a>2;当a<0时,解集A={x|x1<x<x2},因为x1<0,x2<2,所以A∩B≠∅的充要条件是x2>1,即1a+√2+1a2>1,解得a<−2;综上,实数a的取值范围为(−∞,−2)∪(2,+∞).22、设p:实数x满足x2-4ax+3a2<0,a∈R;q:实数x满足x2-x-6≤0或x2+2x-8>0.若a<0且p是q的充分不必要条件,求实数a的取值范围.答案:(-∞,-4]∪[−23,0)分析:根据一元二次不等式的解法,求得p:A=(3a,a),q:B=(-∞,-4)∪[-2,+∞),又由p是q的充分不必要条件,得到A是B的真子集,列出关于a的不等式,即可求解.由题意,命题p,得x2-4ax+3a2 =(x-3a)(x-a)<0,当a<0时,3a<x<a.由题意,命题q:得x2-x-6≤0或x2+2x-8>0,则-2≤x≤3或x<-4或x>2,即x<-4或x≥-2.设p:A=(3a,a),q:B=(-∞,-4)∪[-2,+∞),又由p是q的充分不必要条件,可知A是B的真子集,∴a≤-4或3a≥-2,即a≤-4或a≥−23,又∵a<0,∴a≤-4或-2≤a<0,3,0).即实数a的取值范围为(-∞,-4]∪[−23小提示:本题主要考查了一元二次不等式的解法,以及利用充分不必要条件求解参数问题,其中解答中利用一元二次不等式的解法,求得集合命题p,q中实数a的取值范围是解答的关键,同时注意充分不必要条件的转化及应用,着重考查了推理与运算能力,属于基础题.。

高中数学数列专题复习(综合训练篇含答案)

高中数学数列专题复习(综合训练篇含答案)

数列高考复习含答案———综合训练篇一、选择题:1. 在等差数列{}n a 中,12031581=++a a a ,则1092a a -的值为 ( D )A .18B .20C .22D .242.等差数列{}n a 满足:30,8531==+S a a ,若等比数列{}n b 满足,,4311a b a b ==则5b 为( B ) A .16B .32C .64D .273.等差数列{}n a 中,,27,39963741=++=++a a a a a a 则数列{}n a 的前9项之和S 9等于 ( C )A .66B .144C .99D .2974.各项都是正数的等比数列{}n a 的公比q ≠1,且2a ,321a ,1a 成等差数列,则5443a a a a ++为(A ) A .215- B .215+ C .251- D .215+或215-5.设等比数列{}n a 的前n 项和为n S ,若,336=S S 则=69S S( B ) A. 2 B.73 C. 83D.3 6.已知等差数列{}n a 的前n 项的和为n S ,且210S =,555S =,则过点(,)n P n a 和2(2,)()n Q n a n N *++∈的直线的一个方向向量的坐标是 ( B )A.1(2,)2B.1(,2)2-- C.1(,1)2-- D.(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且a 1、b 1、c 1成等差数列,则a c c a +的值为( C ) A .1594B .1594±C .1534 D .1534±8. 已知数列{}n a 的通项,1323211⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=--n n n a 则下列表述正确的是 ( A ) A .最大项为,1a 最小项为3a B .最大项为,1a 最小项不存在 C .最大项不存在,最小项为3a D .最大项为,1a 最小项为4a9.已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是(B )A .21B .20C .19D .189.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,且点M 到l 的距离为2,若这一系列椭圆的离心率组成以43为首项,31为公比的等比数列,而椭圆相应的长半轴长为a i =(i=1,2,…,n),设b n =2(2n+1)·3n -2·a n ,且C n =11+n n b b ,T n =C 1+C 2+…+C n ,若对任意n ∈N*,总有T n >90m 恒成立,则m 的最大正整数为( B )A .3B .5C .6D .9二、填空题:10.已知等差数列{}n a 前n 项和S n =-n 2+2tn ,当n 仅当n=7时S n 最大,则t 的取值范围是 (6.5,7.5) .11. 数列{}n a 的通项公式是⎪⎩⎪⎨⎧=)(2)(2为偶数为奇数n n na nn ,则数列的前2m (m 为正整数)项和是 2m+1+m 2-2 .12.已知数列{}n a 满足:434121,0,,N ,n n n n a a a a n *--===∈则2009a =________;2014a =_________.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依题意,得2009450331a a ⨯-==,2014210071007425210a a a a ⨯⨯-====.∴应填1,0.13.在数列{}n a 和{}n b 中,b n 是a n 与a n +1的等差中项,a 1 = 2且对任意*N n ∈都有3a n +1-a n = 0,则数列{b n }的通项公式 nn b 34= . 14. 设P 1,P 2,…P n …顺次为函数)0(1>=x xy 图像上的点(如图),Q 1,Q 2,…Q n …顺次为x 轴上的点,且n n n Q P Q Q P O Q OP 122111,,-∆∆∆ ,…,均为等腰直解三角形(其中P n 为直角顶点).设Q n 的坐标为(*)0)(0,N x n ∈,则数列{a n }的通项公式为n x n 2=*)N n ∈ .三、解答题:15.已知}{n a 是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列,求证:2S 3,S 6,S 12-S 6,成等比数列.15. [解法1]由已知.21,2,26361311741q q q a q a a a a a =+∴=+=+………………(2分)当66663124373124126361,2()2()2()2q S S S S a a a S a q a q a q S S q ≠-=+++=++= 时…………(4分).1)1(1)1()1()1(266616318633S S qq a S q q a q S S q =⋅--=⋅--⋅+=+=………………(8分)当,)(2,6,6,3,126612316121613S S S S a S S a S a S q =-=-===同样有时……(10分)所以,61263,,2S S S S -成等比数列.………………………………………………(12分) [解法2]由已知636131174121,2,2q q q a q a a a a a =+∴=+=+,……………(2分)当,36)12(32)(2,1231314122a a a a S S S q =-⨯=-=时∴==.36)6(232126a a S ∴=-.)(2266122S S S S 61263,,2S S S S -成等比数列.…(6分)当,221)1(2111212,1633636q q q q S S q ⋅=+=--⋅=≠时…………………………(8分) ∴61263,,2S S S S -成等比数列.……………………………………………………(11分)综上,61263,,2S S S S -成等比数列.………………………………………………(12分)16.已知数列{a n }的前n 项和为S n ,且对任意自然数n 总有p a p S n n (),1(-=为常数,且q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。

人教版高中数学必修一集合知识总结例题

人教版高中数学必修一集合知识总结例题

(每日一练)人教版高中数学必修一集合知识总结例题单选题1、已知集合M={(x,y)|x2+y2≤2,x∈Z,y∈Z},则集合M的真子集的个数为()A.29−1B.28−1C.25D.24+1答案:A解析:首先确定集合M的元素个数,接着根据公式求出集合M的所有子集个数,减掉集合M本身得出结果即可.因为集合M={(x,y)|x2+y2≤2,x∈Z,y∈Z},画出如下示意图:由图可知集合M有9个元素,集合M的所以子集的个数为29,所以集合M的真子集的个数为29−1,故选:A.小提示:集合M有n个元素,则集合M的所有子集个数为2n,集合M的所有非空子集个数为2n−1,集合M的所有真子集个数为2n−1,集合M的所有非空真子集个数为2n−2;2、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B解析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值. 求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.3、已知集合A={x|x2−2x−3<0},集合B={x|x−1≥0},则∁R(A∩B)=().A.(−∞,1)∪[3,+∞)B.(−∞,1]∪[3,+∞)C.(−∞,1)∪(3,+∞)D.(1,3)答案:A解析:算出集合A、B及A∩B,再求补集即可.由x2−2x−3<0,得−1<x<3,所以A={x|−1<x<3},又B={x|x≥1},所以A∩B={x|1≤x<3},故∁R(A∩B)={x|x<1或x≥3}.故选:A.小提示:本题考查集合的交集、补集运算,考查学生的基本运算能力,是一道基础题.填空题4、已知集合A={12,a2+4a,a−2},且−3∈A,则a=_________.答案:-3解析:由集合A={12,a2+4a,a−2},且−3∈A,得a2+4a=−3或a−2=−3,由此能求出结果.解:∵集合A={12,a2+4a,a−2},且−3∈A,∴a2+4a=−3或a−2=−3,解得a=−1,或a=−3,当a=−1时,A={12,−3,−3},不合题意,当a=−3时,A={12,−3,−5},符合题意.综上,a=−3.所以答案是:−3.5、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:若在两个项目中都“合格”的学生最多有10人,则在两个项目中都“优秀”的人数最多为_________答案:15解析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x= y+5,因为y max=10,所以x max=10+5=15.所以答案是:15.。

人教版高中数学必修一集合基本知识过关训练

人教版高中数学必修一集合基本知识过关训练

(每日一练)人教版高中数学必修一集合基本知识过关训练单选题1、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C解析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A解析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.3、已知集合A={1,2,3,4},B={x|3﹣x>0},则A∩B=()A.{1,2}B.{1,2,3)C.{1,2,3,4}D.{1}答案:A解析:根据集合交集定义直接求解,即得结果.因为A={1,2,3,4},B={x|x<3},所以A∩B={1,2}故选:A.小提示:本题考查交集定义,考查基本分析求解能力,属基础题.填空题4、定义集合A和B的运算为A∗B={x|x∈A,x∉B},试写出含有集合运算符号“*”“∪”“∩”,并对任意集合A和B 都成立的一个式子:_____________________.答案:A∗(A∩B)=(A∪B)∗B(答案不唯一).解析:根据运算A∗B={x|x∈A,x∉B}的定义可得出结论.如下图所示,由题中的定义可得A∗(A∩B)={x|x∈A,x∉(A∩B)}={x|x∈(A∪B),x∉B}=(A∪B)∗B.所以答案是:A ∗(A ∩B )=(A ∪B )∗B (答案不唯一).小提示:本题考查集合运算的新定义,利用韦恩图法表示较为直观,考查数形结合思想的应用,属于中等题.5、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______.答案:(−∞,−2]∪[2,+∞)解析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解. “对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2,综上得:m ≤−2或m ≥2,所以实数m的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周一练习1.1、如图,在棱长为a 的正方体ABCD A B C D -1111中, P 、Q 是对角线A C 1的点,若aPQ =2,则三棱锥P BDQ -的体积为( )。

A 3 B 3 C 3 D .不确定 1.2、在正方体ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别为棱BC 、CC 1、C 1D 1、AA 1 的中点,O 为AC 与BD 的交点(如图),求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H ; (3)A 1O ⊥平面BDF ; (4)平面BDF ⊥平面AA 1C .1.3.(福建理5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 A.16625B.96625 C.192625D.2566251.4.(安徽文18)在某次普通话测试中,为测试汉字发音水平,设置了10张卡片,每张卡片印有一个汉字的拼音,其中恰有3张卡片上的拼音带有后鼻音“g ”.(Ⅰ)现对三位被测试者先后进行测试,第一位被测试者从这10张卡片总随机抽取1张,测试后放回,余下2位的测试,也按同样的方法进行。

求这三位被测试者抽取的卡片上,拼音都带有后鼻音“g ”的概率。

(Ⅱ)若某位被测试者从10张卡片中一次随机抽取3张,求这三张卡片上,拼音带有后鼻音“g ”的卡片不少于2张的概率。

1.5.已知 为第三象限角,则 2α所在的象限是( ). A .第一或第二象限 B .第二或第三象限 C .第一或第三象限 D .第二或第四象限 1.6.已知函数22π()cos ()sin 6f x x x =--.(Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围. 1.7、等差数列-6,-1,4,9,……中的第20项为( ) A 、89 B 、 -101 C 、101 D 、-89DA D 1B 12.1、如图,在正四棱柱ABCD-A1B1C1D1中,AB=a ,AA 1=2a , M 、N 分别是BB 1、DD 1的中点.求证:平面A 1MC 1⊥平面B 1NC 1。

2.2、直三棱柱ABC-A 1B 1C 1中,BC AB ⊥,E 是A 1C 的中点,E D A C ⊥1且交AC 于D ,AA A B B C 122== (如图) . (1)证明:BC 11//平面A B C 1; (2)证明:A C 1⊥平面E D B. 2.3.(北京理17)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率; (Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.2.4.(福建文5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是A.12125 B.16125 C.48125 D.961252.5. 已知函数()2cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M .(Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围.2.6. 等差数列{an}中,a15=33, a45=153,则217是这个数列的 ( ) A 、第60项 B 、第61项 C 、第62项 D 、不在这个数列中DE A 1C BAC 1 B 1 A NBCD A 1B 1C 1D 1M3.1、(2010湖南文数)如图所示,在长方体1111ABCD A BC D -中,AB =AD =1,AA 1=2,M是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .(1、几何解法;2、空间向量解法)3.2、(2010湖北文数)如图,在四面体ABOC 中,OC ⊥OA .OC ⊥OB ,∠AOB =120°,且OA =OB =OC =1.设P 为AC 的中点,Q 在AB 上且AB =3AQ ,证明:PQ ⊥OA .(1、几何解法;2、空间向量解法)3.3.(广东理3)某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18C .16D .13.4.(北京文18)(本小题共13分) 甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率.3.5.关于函数f(x)=4sin⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f(x)的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ; ②函数 y = f(x)是以2π为最小正周期的周期函数;③函数y =f(x)的图象关于点(-6π,0)对称;④函数y =f(x)的图象关于直线x =-6π对称.其中正确的是______________.ABC DA 1B 1C 1D 1O周四练习4.1、(2010年高考全国卷)正方体ABCD-A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为()。

(1、几何解法;2、空间向量解法)A 3B 3C 23D 34.2、如图,已知正三棱柱A B C -111A B C 的底面边长为2,侧棱长为3E 在侧棱1A A 上,点F 在侧棱1B B上,且A E =BF =.(I )求证:1C F C E ⊥;(II )求二面角1E C F C --的大小。

(空间向量法)4.3.(福建理20)(本小题满分12分)某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。

已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。

现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12.假设各次考试成绩合格与否均互不影响。

(Ⅰ)求他不需要补考就可获得证书的概率;(Ⅱ)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的数学期望E ξ. 4.4.(江西理11文11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为 A .1180 B .1288 C .1360 D .14804.5.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程4.6、等差数列{an}中,a1+a7=42, a10-a3=21, 则前10项的S10等于( )A 、 720B 、257C 、255D 、不确定4.7、等差数列中连续四项为a ,x ,b,2x ,那么 a : b 等于 ( )A 、B 、C 、或 1D 、周五练习5.1、已知1111ABCD A B C D -是底面边长为1的正四棱柱,高12AA =异面直线BD 与1AB 所成的角的大小(结果用反三角函数表示)。

(空间向量法)5.2、如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D . (1)求证:PB 1∥平面BDA 1;(2)求二面角A -A 1D -B 的平面角的余弦值; (空间向量法)5.3.(辽宁理7文7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12C.23D.345.4.(福建文(18)(本小题满分12分)三人独立破译同一份密码,已知三人各自破译出密码的概率分别为111,,,543且他们是否破译出密码互不影响。

(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.5.5、 已知数列{an}的前n 项和Sn=2n2-3n ,而a1,a3,a5,a7,……组成一新数 列{Cn},其通项公式为 ( )A 、 Cn=4n-3B 、 Cn=8n-1C 、Cn=4n-5D 、Cn=8n-95.6、 在等差数列{an}中,a4+a7+a10+a13=20,则S16= ______ 。

5.7.已知22()(sin cos )2cos f x x x x =++-2(1)求()f x 的最大值及相应的x 值;(2)当(0,)2πα∈时,已知()285f απ-=,求()f α的值.DBD 1B6.1、四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =, PD ⊥底面ABCD . (I )证明:PA BD ⊥;(II )设PD=AD=1,求棱锥D-PBC 的高.5.2、如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂O 落在线段AD 上.(1)证明:AP ⊥BC ;(2)已知8BC =,4PO =,3AO =,2OD =.求二面角B A PC --的大小. (空间向量法)6.3.(广东理17.(本小题满分13分)随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为ξ.(1)求ξ的分布列;(2)求1件产品的平均利润(即ξ的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?6.4.下列函数中,最小正周期为π的偶函数是 ( ) A.y =sin2x B.y =cosx2 C.y =sin2x +cos2x7.1、如图,在四面体ABCD中,平面ABC⊥平面ACD,,2,1AB BC AC AD BC CD⊥====(1)求四面体ABCD的体积;(2)求二面角C-AB-D的平面角的正切值。

(1、传统发法;2、空间坐标法)、7.2(山东理7)在某地的奥运火炬传递活动中,有编号为12318,,,,的18名火炬手.若从中任选3 人,则选出的火炬手的编号能组成以3为公差的等差数列的概率为()A.151B.168C.1306D.14087.3.(陕西文3)某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C )A.30 B.25 C.20 D.157.4.(重庆文5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(A)简单随机抽样法 (B)抽签法 (C)随机数表法 (D)分层抽样法7.5.(广东文19)(本小题满分13分)某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?已知y≥245,z≥245,求初三年级中女生比男生多的概率。

相关文档
最新文档