2014届高三数学每日一练7(含答案)

合集下载

2014年高三数学高考模拟卷(附详细答案)

2014年高三数学高考模拟卷(附详细答案)

2014届高三数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合11,2xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭3{|log 0}B x x =>,则()U A C B ⋂=A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥- 3. 下列函数中,满足22()[()]f x f x =的是A .()ln f x x =B .()|1|f x x =+C .3()f x x = D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“sin 2A >”的充要条件。

④命题 “00,0xx R e ∃∈≤”是真命题. 其中正确的命题的个数是A. 3B. 2C. 1D. 06. 定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3;将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6B.π3C.5π6D.2π37. 函数x x e x y e x+=-的一段图象是8. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩ 其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线y=)0(>+k k kx 与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 A .]31,41( B .]41,0( C .]31,41[ D .)31,41[二、填空题:本大题共6小题,每小题5分,满分30分.9. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .10. 已知1sin()33πα-=,则5cos()6πα-=_____________. 11. 曲线0,,2y y x y x ===-所围成的封闭图形的面积为 .12. 已知函数2()1,f x x mx =++若命题“000,()0x f x ∃><”为真,则m 的取值范围是___. 13. 设25a b m ==,且112a b+=,则m = _________. 14. 若关于x 的方程24xkx x =+有四个不同的实数解,则实数k 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分) 已知函数R x x x x f ∈--=,21cos 2sin 23)(2(I )求函数)(x f 的最小正周期;(II )确定函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的单调性并求在此区间上)(x f 的最小值.16.(本小题满分12分)已知函数f (x )=A sin ⎝⎛⎭⎫π3x +φ,x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.17. (本小题满分14分)已知等比数列{}n a 中,232a =,812a =,1n n a a +<. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n T a a a =++⋅⋅⋅+,求n T 的最大值及相应的n 值.18. (本小题满分14分)设二次函数2()(0)f x ax bx c a =++≠满足条件:(1)(1)(1)f x f x -+=--;(2)函数在y 轴上的截距为1,且3(1)()2f x f x x +-=+. (1)求()f x 的解析式;(2)若[,1],()x t t f x ∈+的最小值为()h t ,请写出()h t 的表达式; (3)若不等式()11()f x tx ππ->在[2,2]t ∈-时恒成立,求实数x 的取值范围.19.(本题满分14分)已知函数32()f x x ax bx c =+++的图象如图,直线0y =在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274.(1)求()f x 的解析式(2)若常数0m >,求函数()f x 在区间[],m m -上的最大值.20.(本小题满分14分)已知函数()ln f x x x a x =--,a ∈R .(Ⅰ)若2a =,求函数()f x 在区间[]1e ,上的最值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围. 注:e 是自然对数的底数2014届高三数学(理)试题数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合112xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,3{|log 0}B x x =>则()U A C B ⋂=( C )A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( A ) A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3. 下列函数中,满足22()[()]f x f x =的是 ( C ) A .()ln f x x =B .()|1|f x x =+C .3()f x x =D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 ( C ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。

2014届高三数学每日一练16(含答案)

2014届高三数学每日一练16(含答案)

1、已知全集{}{}2,03,2>=<-==x x B x x x A R U ,则_____=B C A U (]2,02、方程08329=-⋅-x x 的解为___________2log 3=x3、已知全集R U =,集合⎭⎬⎫⎩⎨⎧≤-+=021x x x A ,则集合__________=A C U {}21≥-<x x x 或 4、已知函数()x xx f 212+=,则________311=⎪⎭⎫ ⎝⎛-f -1 5、函数()()2log 1220+++-=x x x y x 的定义域为____________________()∞+,22,11,0 6、若函数()174c o s 2-⎪⎭⎫ ⎝⎛+=πx x f 与函数()()21t a n 5+-=ax x g 的最小正周期相同,则实数_______=a 2±7、已知定义在R 上的奇函数()x f 满足()()x f x f -=+2,则()______8=f 08、(文)已知变量y x ,满足条件⎪⎩⎪⎨⎧≤-+≤-≥0401y x y x x ,则y x z 2+=的最大值是__________7(理)在ABC ∆中,若552sin ,5,1===A BC AB ,则________sin =C 254 9、设+∈R y x ,,且满足404=+y x ,则y x lg lg +的最大值是________210、已知集合⎭⎬⎫⎩⎨⎧<--=01a x ax x A ,且A A ∉∈3,2,则实数a 的取值范围是__________(]3,221,31 ⎪⎭⎫⎢⎣⎡ 11、不等式3502≤++≤mx x 恰好有一个实数解,则实数m 的取值范围是____{}22±∈m 12、已知0,0>>b a ,则不等式a xb <<-1的解集是______⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,11,a b 13、(理)在实数R 中定义一种运算”“*,具有下列性质:(1)对任意a b b a R b a *=*∈,, (2)对任意a a R b a =*∈0,,(3)对任意()()c c b c a ab c c b a R c b a 2)()(,,-*+*+*=**∈,则函数()()R x x x x f ∈*=2的单调递减区间是_________________⎥⎦⎤ ⎝⎛∞23--,14、已知函数()R x x x x f ∈--=,21cos 2sin 232 (1)求函数()x f 的最小值和最小正周期;(2)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,且()0,3==c f c ,若A B sin 2sin =,求b a ,的值. 解答:(1)T=()2m in -=x f ,π (2)3π=C ,a=1,b=215、已知函数()()021>+-=x xa x f (1)判断()x f 在()+∞,0的增减性,并证明你的结论;(2)解关于x 的不等式()0>x f ;(3)若()02≥+x x f 在()+∞,0上恒成立,求a 的取值范围.解:(1)f(x)在(0,+∞)上为减函数,设0<x1<x2,f(x1)-f(x2)=⎝ ⎛⎭⎪⎫-1a +2x1-⎝ ⎛⎭⎪⎫-1a +2x2 =2x1-2x2=2(x2-x1)x1x2>0, ∴f(x1)>f(x2),∴f(x)在(0,+∞)上为减函数.(2)不等式f(x)>0,即-1a +2x>0, 即-x +2a ax>0.整理成(x -2a)·ax<0. ①当a>0时,不等式x(x -2a)<0,不等式的解为0<x<2a.②当a<0时,不等式x(x -2a)>0,不等式的解为x>0或x<2a(舍去).综上,a>0时,不等式解集为{x|0<x<2a},a<0时,解集为{x|x>0}.(3)若f(x)+2x ≥0在(0,+∞)上恒成立,即-1a +2x +2x ≥0,∴1a ≤2⎝ ⎛⎭⎪⎫x +1x . ∵2⎝⎛⎭⎪⎫x +1x 的最小值为4, 故1a ≤4,解得a<0或a ≥14.。

2014年高三数学选择题专题训练(12套)有答案

2014年高三数学选择题专题训练(12套)有答案

高三数学选择题专题训练(一)1.已知集合{}1),(≤+=y x y x P ,{}1),(22≤+=y x y x Q ,则有 ( )A .Q P ⊂≠ B .Q P = C .P Q P = D .Q Q P =2.函数11)(+-=x x e e x f 的反函数是( )A .)11( 11)(1<<-+-=-x x xLn x f B .)11(11)(1-<>+-=-x x x x Ln x f 或 C .)11( 11)(1<<--+=-x x x Lnx fD .)11(11)(1-<>-+=-x x xxLn x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =,则6b 的值 ( ) A .24 B .24- C .24± D .无法确定4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要条件是 ( ) A . αα⊂⊂m 且 ∥β m ∥β B .βα⊂⊂m 且 ∥m C .βα⊥⊥m 且 ∥m D . ∥α m ∥β 且 ∥m 5.已知n n n x a x a a x x x +++=++++++ 102)1()1()1(,若n a a a n -=+++-509121,则n 的值 ( ) A .7 B .8 C .9 D .106.已知O ,A ,M ,B 为平面上四点,则)1(λλ-+=,)2,1(∈λ,则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线 7.若A 为抛物线241x y =的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则AC AB ⋅等于 ( ) A .31-B .3-C .3D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色,则共有涂色方法 ( ) A .24种 B .72种 C .96种 D .48种9.若函数x x a y 2cos 2sin -=的图象关于直线π87=x 对称,那么a 的值 ( )A .2B .2-C .1D .1-10.设1F ,2F 是双曲线12222=-by a x ,)00(>>b a ,的两个焦点,P 在双曲线上,若021=⋅PF PF,ac 2=,(c 为半焦距),则双曲线的离心率为 ( ) A .231+ B .251+ C .2 D .221+高三数学选择题专题训练(二)1.已知集合S={}{}01,211x x T x x <<=-≤,则S T 等于 A S B T C {}1x x ≤ D Φ 2.已知抛物线y =34x 2,则它的焦点坐标是A (0,316 )B ( 316 ,0)C (13 ,0)D (0, 13)3.设等差数列{a n }的前n 项和为S n ,且S 1=1,点(n , S n )在曲线C 上,C 和直线x -y +1=0交于A,B 两点,|AB|= 6 ,那么这个数列的通项公式是A 21n a n =-B 32n a n =-C 43n a n =-D 54n a n =- 4.已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),(a -c )∥b ,则锐角x 等于 A 15° B 30° C 45° D 60°5.函数y =f (x )的图像与函数y =lg(x -1)+9的图像关于直线y =x 对称,则f (9)的值为 A 10 B 9 C 3 D 2 6.若tan 2α=,则sin cos αα的值为 A .12B .23C .25D .17..坐平面内区域M=()()⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≤≤≤-+≥+-01100101y kx k y x y x y ,x 的面积可用函数f(x)表示,若f(k)=8,则k 等于( ) A.21B.31 C.22 D.23 8.函数11)(2-+-=x x a x f 为奇函数的充要条件是\A 、10<<a B 、10≤<a C 、1>a D 、1≥a9.若61()x展开式中的第5项是152,设12nn S x x x ---=+++ ,则lim n n S →∞=A .1B .12C .14D .16(文)点P 在曲线y =x 3-x +7上移动,过P 点的切线的倾斜角取值范围是 A.[0,π) B.(0,2π)∪[4π3,π)C.[0, 2π)∪(2π,4π3] D.[0, 2π)∪[4π3,π) 10.如图正方体ABCD -A 1B 1C 1D 1,在它的12条棱及12条面对角线所在直线中,选取若干条直线确定平面。

2014届高三高考模拟题数学试卷(文科)(含答案)

2014届高三高考模拟题数学试卷(文科)(含答案)

2014届高三高考模拟题数学试卷(文科)(含答案)一、选择题(每题5分,共8题)1.已知复数12z i =-,那么1z =( )A.55i +B.55-C.1255i +D.1255i - 2. “1x >”是“1x >” 的A .充分不必要条件 B.必要不充分条件 C. 充分必要条件 D.既不充分又不必要条件3.设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为( )A . 1,-1 B. 2,-2 C. 1,-2 D.2,-14. 方程03log 4=-x x 的根所在区间为( )A .)25,2( B. )3,25( C.)4,3( D.)5,4(5.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2013(f 的值为( ) A .-2 B. 2 C.4 D.-46. 若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A . [3,1]-- B. [1,3]- C. [3,1]- D. (,3][1,)-∞-+∞ 7. 在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A . 3B .2 3C .3 3 D. 4 38.则使方程()x f x m +=有解的实数m 的取值范围是( ) A .(1,2)B. (,1][2,)-∞⋃+∞C.(,1)(2,)-∞⋃+∞D. (,2]-∞-二、填空题(每小题5分,共6小题)9.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = 。

10.已知(2,0),(2,2),(2,1)OB OC CA ===,则OA 与OB 夹角的正弦值为_____.11.如图,PT 切圆O 于点T ,PA 交圆O 于A 、B 两点,且与直径CT 交于点D ,6,3,2===BD AD CD ,则=PB 。

2014年高考数学真题汇编(含答案):数列

2014年高考数学真题汇编(含答案):数列

2014年全国高考理科数学试题分类汇编(纯word 解析版) 十一、数列(逐题详解)第I 部分1.【2014年重庆卷(理02)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D【解析】设{}n a 公比为q ,因为336936,a aq q a a ==,所以369,,a a a 成等比数列,选择D2.【2014年福建卷(理03)】等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14【答案】C【解析】由题意可得S 3=a 1+a 2+a 3=3a 2=12,解得a 2=4,∴公差d=a 2﹣a 1=4﹣2=2,∴a 6=a 1+5d=2+5×2=12,故选:C .3.【2014年辽宁卷(理08)】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d <B .0d >C .10a d <D .10a d >【答案】C【解析】∵等差数列{a n }的公差为d ,∴a n+1﹣a n =d ,又数列{2}为递减数列,∴=<1,∴a 1d <0.故选:C4.【2014年全国大纲卷(10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于( )A .6B .5C .4D .3【答案】C【解析】∵等比数列{a n }中a 4=2,a 5=5,∴a 4•a 5=2×5=10,∴数列{lga n }的前8项和S=lga 1+lga 2+…+lga 8=lg (a 1•a 2…a 8)=lg (a 4•a 5)4=4lg (a 4•a 5)=4lg10=4故选:C第II 部分5.【2014年上海卷(理08)】设无穷等比数列{}n a 的公比为q ,若()134lim n n a a a a →∞=+++,则q = .【答案】q =【解析】:22311110112a a q a q q q q q -±==⇒+-=⇒=--,∵01q <<,∴q =6.【2014年广东卷(理13)】若等比数列{}n a 的各项均为正数,且512911102e a a a a =+,则1220ln ln ln a a a +++= 。

2014年高考理科数学总复习试卷第7卷

2014年高考理科数学总复习试卷第7卷

2014年高考理科数学总复习试卷第7卷一、选择题1、(2009韶关一模)复数i215+的共轭复数为 ( ) A.-31035-i B.-i 31035+ C.1-2iD.1+2i2.已知()()2,1,1,3-=-=b a ,若()()b k a b a ++-∥2,则实数k 的值是 ( ) A. -17 B. 21-C. 1819 D.353、下列函数中既是奇函数,又是区间[]1,1-上单调递减的是 ( )A ()sin f x x =; B ()1f x x =-+; C 1()()2x x f x a a -=+; D 2()2x f x ln x-=+.4.在(1-x)n =a 0+a 1x+a 2x 2+a 3x 3+…+a n x n 中,若2a 2+a n-5=0, 则自然数n 的值是A.7B.8C.9D.105.⊙O 1与⊙O 2的半径分别为1和2,|O 1O 2|=4,动圆与⊙O 1内切而与⊙O 2外切, 则动圆圆心轨迹是( ) A .椭圆 B .抛物线 C .双曲线 D .双曲线的一支 6、若x 2sin 、x sin 分别是θθcos sin 与的等差中项和等比中项,则x 2cos 的值为:( )A 、8331+ B 、8331- C 、8331± D 、421-7.双曲线tx 2-y 2-1=0的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率为( )A .25B .5C .23 D .38.设a ,b ∈R ,ab ≠0,则直线ax -y +b =0和曲线bx 2+ay 2=ab 的大致图形是 ( )9.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A .5216B .25216C .31216D .9121610、在正四面体P-ABC ,已知M 为AB 的中点,则PA 与CM 所成角的余弦值为( )x y O A x y x O C x y x O B x y x O D(A )32 (B)36 (C) 34 (D)3311、如图,在平行六面体ABCD -A 1B 1C 1D 1中,若AA 1=AB =AD =1∠A 1AD =∠A 1AB =60°, ∠BAD =90°,则直线A 1D 1到平面ABCD 的距离为 A 、1 B 、33 C 、22 D 、6312.已知函数),2[)(+∞-的定义域为x f ,且1)2()4(=-=f f ,)()(x f x f 为'的导函数,函数)(x f y '=的图象如图所示.则平面区域⎪⎩⎪⎨⎧<+≥≥1)2(00b a f b a 所围成的面积是A .2B .4C .5D .8二.填空题13、已知函数22x1x )x (f +=,那么)31(f )3(f )21(f )2(f )1(f +++++=+)41(f )4(f 。

高三数学一轮复习每日一练7(解析版)

高三数学一轮复习每日一练7(解析版)

每日一练7 1.若函数()1222-=--a ax x x f 的定义域为R ,则实数a 的取值范围 。

[]0,1-2.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( A ) A .1 B .2 C .3 D .43.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( A ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位 D .向左平移π6个单位 4.已知数列{n a }的前n 项和29n S n n =-,第k 项满足58k a <<,则k =( )A .9B .8 C. 7 D .65.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .56.已知函数c bx x ax x f -+=44ln )((x>0)在x = 1处取得极值c --3,其中a,b,c 为常数。

(1)试确定a,b 的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式22)(c x f -≥恒成立,求c 的取值范围。

解:(I )由题意知(1)3f c =--,因此3b c c -=--,从而3b =-.又对()f x 求导得()34341ln 4'bx xax x ax x f +⋅+=3(4ln 4)x a x a b =++. 由题意(1)0f '=,因此40a b +=,解得12a =.(II )由(I )知3()48ln f x x x '=(0x >),令()0f x '=,解得1x =.当01x <<时,()0f x '<,此时()f x 为减函数;当1x >时,()0f x '>,此时()f x 为增函数.因此()f x 的单调递减区间为(01),,而()f x 的单调递增区间为(1)+,∞. (III )由(II )知,()f x 在1x =处取得极小值(1)3f c =--,此极小值也是最小值,要使2()2f x c -≥(0x >)恒成立,只需232c c ---≥.即2230c c --≥,从而(23)(1)0c c -+≥, 解得32c ≥或1c -≤.所以c 的取值范围为3(1]2⎡⎫-∞-+∞⎪⎢⎣⎭,,.。

2014年高考数学试题及答案

2014年高考数学试题及答案

Read a ,b If a >b Then m ←a Else m ←b End If Print m ( 第4题图 )2014年高考数学试题及答案参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应位置上........。

1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 答案:{}1-,2 2、函数)12(log )(5+=x x f 的单调增区间是__________答案:+∞1(-,)23、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 答案:14、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ 答案:35、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 答案:136、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s解析:可以先把这组数都减去6再求方差,1657、已知,2)4tan(=+πx 则xx2tan tan 的值为__________解析:22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________ 解析:4,设交点为2(,)x x ,2(,)x x --,则224(2)()4PQ x x=+≥ 9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f解析:由图可知:72,,2,41234T A πππω==-==22,,33k k πϕπϕππ⨯+==-26(0)2sin()32f k ππ=-=±10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为解析:由0=⋅→→b a 得:k=2 11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=- 12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________ 解析:设00(,),x P x e则00000:(),(0,(1))x x x l y e e x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

富顺一中高2014届1班王和远 高三数学天天练7
1、不等式123<-x 的解集为____________⎪⎭
⎫ ⎝⎛131, 2、已知全集,R U =集合{}{},,22,,0322R x x x B R x x x x A ∈<-=∈≤--=则____=B A (]3,0
3、在ABC ∆中,ABC B AB ∆==,3,4π的面积为3,则______=AC 13
4、函数()()1log 2-=x x f 的反函数是________________12+=x y
5、设{}{},01,02<-=<-=x x N m x x M 若,N N M = 则实数m 的取值范围是_____________1≤m
6、函数()ax ax x f cos sin 3+=的最大值是____________2
7、函数()()R x x f y ∈=的图像恒过定点()1,0,若()x f y =存在反函数)(1x f y -=,则1)(1+=-x f y 的图像必过定点__________(1,1)
8、若⎪⎭
⎫ ⎝⎛∈20πα,,且426cos -=⎪⎭⎫ ⎝⎛+πα,则_______cos =α8146-+ 9、
条件”的”是““____________12x x x >> 充分非必要 10、若y x y x R y x 22,0,,+=+∈则且的最小值为______________2
11、在正方体1111D C B A ABCD -中,异面直线1AC 与1BB 所成角的正切值是___________2
12、{}{}1,03522===--=mx x N x x x M ,若M N ≠⊂,则实数m 取值所组成集合是______⎭
⎬⎫⎩⎨⎧2-310,, 13、设()1
12+-=x x f 的定义域为集合A ,函数()()a x x g --=1lg 的定义域为集合B , (1)求A C R (2)若R B A = ,求实数a 的取值范围 答案:(1)⎪⎭⎫⎢⎣⎡21-1-, (2)⎪⎭
⎫⎢⎣⎡023-, 14、如图,ABCD ABCD PA ,平面⊥为正方形,且F E AD PA ,,=分别是线段CD PA ,中点,求异面直线
BD EF 和所成角的大小 答案:63arccos
15、设幂函数()()()Q k R a x a x f k ∈∈-=,1的图像过点()22,
(1)求 k a ,的值(2)求函数()()x f x f y 1+=的最小值 答案:(1)2,2==k a (2)2
16、在C B A ABC ,,中,角∆的对应边分别为c b a ,,,若A B b a cos lg cos lg lg lg -=-,判断ABC ∆的形状 答案:等腰或直角 P
A B C D
E F。

相关文档
最新文档