2011年山东省泰安市中考数学试卷详细解析版

合集下载

2011---2013年泰安市中考数学试卷解析(6)

2011---2013年泰安市中考数学试卷解析(6)

2011---2013泰安市中考数学考点解析(6)一、考点:1.一次函数的图像与几何变换。

2.一次函数的图像与系数的关系。

3.二次函数的图像和性质。

4.二次函数图像上点的坐标特征。

5.待定系数法求二次函数的解析式。

6.二次函数的应用。

7.反比例函数与一次函数的交点问题。

8.二次函数的综合题。

二、泰安中考题:1.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.42.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.3.把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<44.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.5.如图,抛物线y=x 2+bx+c 与y 轴交于点C (0,﹣4),与x 轴交于点A ,B ,且B 点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P 是AB 上的一动点,过点P 作PE ∥AC ,交BC 于E ,连接CP ,求△PCE 面积的最大值.(3)若点D 为OA 的中点,点M 是线段AC 上一点,且△OMD 为等腰三角形,求M 点的坐标.5.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为( )6.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--7.二次函数2()y a x m n =++的图象如图,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限8.设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>9.如图,一次函数y kx b =+的图象与坐标轴分别交于A ,B 两点,与反比例函数n y x =的图象在第二象限的交点为C ,CD ⊥x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1.(1)求一次函数与反比例的解析式;(2)直接写出当0x <时,0k kx b x+->的解集.10.如图,半径为2的⊙C 与x 轴的正半轴交于点A ,与y 轴的正半轴交于点B ,点C 的坐标为(1,0).若抛物线2y x bx c =++过A 、B 两点. (1)求抛物线的解析式;(2)在抛物线上是否存在点P ,使得∠PBO=∠POB ?若存在,求出点P 的坐标;若不存在说明理由;(3)若点M 是抛物线(在第一象限内的部分)上一点,△MAB 的面积为S ,求S 的最大(小)值.11..若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当1=x 时,y 的值为( )(A )5 (B )—3 (C )—13 (D )—2712.如图,一次函数b x k y +=1的图像经过)0,1(),2,0(B A -两点,与反比例函数xk y 2=的图像在第一象限内的交点为M ,若△OBM 的面积为2.(1)求一次函数和反比例函数的表达式; (2)在x 轴上是否存在点P ,使AM ⊥MP ?若存在,求出点P 的坐标;若不存在,说明理由。

t泰安市历届中考数学试题及答案

t泰安市历届中考数学试题及答案

t泰安市历届中考数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 4答案:C4. 以下哪个表达式的结果不是整数?A. 3 × 4B. 5 ÷ 2C. 6 - 2D. 8 + 1答案:B5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,这个数是______或______。

答案:正数;07. 如果一个数的立方等于它本身,那么这个数是______、______或______。

答案:1;-1;08. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是______立方厘米。

答案:249. 一个数的倒数是1/2,那么这个数是______。

答案:210. 一个三角形的内角和是______度。

答案:180三、解答题(共30分)11. 已知一个等腰三角形的两个腰边长为5cm,底边长为6cm,求这个三角形的面积。

解答:首先,我们可以将等腰三角形分成两个直角三角形,每个直角三角形的两直角边分别为3cm和2.5cm(6cm的一半)。

根据勾股定理,我们可以求出高h:h² = 5² - 2.5² = 25 - 6.25 = 18.75h = √18.75 ≈ 4.33cm然后,根据三角形面积公式 S = (底× 高) / 2,我们可以求出面积:S = (6 × 4.33) / 2 ≈ 12.99平方厘米。

12. 一个圆的周长是18.84cm,求这个圆的半径。

解答:根据圆的周长公式C = 2πr,我们可以求出半径r:18.84 = 2πrr = 18.84 / (2π) ≈ 3cm。

2011年山东省泰安市中考数学试卷―解析版

2011年山东省泰安市中考数学试卷―解析版

2011年山东省泰安市中考数学试卷―解析版2011年山东省泰安市中考数学试卷―解析版一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分) 1、(2011•泰安)的倒数是() A、 B、 C、D、考点:倒数。

专题:计算题。

分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a• =1 (a≠0),就说a(a≠0)的倒数是.解答:解:的倒数是�,故选D.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2、(2011•泰安)下列运算正确的是() A、3a2+4a2=7a4 B、3a2�4a2=�a2 C、3a•4a2=12a2 D、考点:整式的除法;合并同类项;单项式乘单项式。

专题:计算题。

分析:根据单项式除单项式的法则、合并同类项以及整式的除法法则计算即可.解答:解:A、3a2+4a2=7a2,故本选项错误; B、3a2�4a2=�a2,故本选项正确; C、3a•4a2=12a3,故本选项错误; D、(3a2)2÷4a2= a2,故本选项错误;故选B.点评:本题主要考查多项式除以单项式运算、合并同类项以及整式的除法法则,牢记法则是关键. 3、(2011•泰安)下列图形:其中是中心对称图形的个数为() A、1 B、2 C、3 D、4 考点:中心对称图形。

专题:图表型。

分析:根据轴对称图形与中心对称图形的概念求解.解答:解:一图是轴对称图形,二图是中心对称图形,三图是轴对称图形,四图即是中心对称图形,也是周对称图形;所以,中心对称图形的个数为2.故选B.点评:本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 4、(2011•泰安)第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人.这个数据用科学记数法表示为()A、134×107人 B、13.4×108人 C、1.34×109人 D、1.34×1010人考点:科学记数法―表示较大的数。

泰安市2011年初中学生学业考试数学样题有答案

泰安市2011年初中学生学业考试数学样题有答案

2011年泰安市初中学业考试 数学试题(样题)考生须知:1.本试卷分第Ⅰ卷和第 Ⅱ 卷两部分,其中第Ⅰ卷 4 页,60分;第Ⅱ卷6页,60分。

满分120分,考试时间120分钟。

2.答题时,必须在答题卷密封区内写明校名、姓名和准考证号。

3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应。

4.考试结束后,上交试题卷和答题卷。

第Ⅰ卷(选择题 共60分)一、 选择题:本大题共20题,每小题3分,共60分.在每小题给出的代号为ABCD 四个选项中,只有一项是符合题目要求的. 1、-5的相反数是 A.5B.-5C.51D.51-2、由四舍五入法得到的近似数8.8×103,下列说法中正确的是A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字3、如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于A.30° B. 40°C. 60° D. 70°4、4的平方根是 A .2 B .2C .±2D .2±5、计算(-2a ²)·3a 的结果是A -6a ² B-6a ³ C12a ³ D6a ³6、下列几何体中,俯视图是三角形的几何体是AC BD E7、把代数式 322363x x y xy -+分解因式,结果正确的是A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -8、若分式221-2b-3b b -的值为0,则b 的值为A. 1B. -1C.±1D. 29、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是A .2+10B .2+210C .12D .18 10、二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩11、不等式42-x ≤0的解集在数轴上表示为12、某县为发展教育事业,加强了对教育经费的投入,2008年投入3 000万元,预计2010年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=13、如图,在等腰梯形ABCD 中,AB ∥CD , 对角线AC ⊥BC ,∠B =60º,BC =2cm ,则梯形① ② 3 410CDB DM NC AOA BCD 的面积为 A .33cm 2B .6 cm 2C .36cm 2D .12 cm 214、已知反比例函数y =1x ,下列结论不正确...的是 A .图象经过点(1,1) B .图象在第一、三象限C .当x >1时,0<y <1D .当x <0时,y 随着x 的增大而增大15、如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos ∠OMN 的值为A .12B .22C .32D .116、某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大17、如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E , 则下列结论中不成立...的是 A.A D ∠=∠ B.CE DE = C.90ACB ∠=D.CE BD =21世纪教育网 18、有A ,B 两只不透明口袋,每只品袋里装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、“心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是A .31 B .41 C .32 D .43 19、如图, 在平面直角坐标系中, 若△ABC 与△A 1B 1C 1关于E 点成中心对称, 则对称中心E 点的坐标是个数 平均 质量(g ) 质量的方差甲厂 50 150 2.6乙厂 50 150 3.1ED O CBAA .(3,-1) B.(0,0) C.(2,-1) D.(-1,3)20、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是 A .ab <0 B .ac <0C .当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D .二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根[来源:21世纪教育网AOxy12 -1 -2 -3 -11234-4BCA 1C 1B 152xoy2011年泰安市初中学业考试 数学试题(样题) 第Ⅱ卷 (非选择题,共60分)注意事项:1、答题前请填写好密封线内的内容。

2011年泰安市数学中考模拟试题

2011年泰安市数学中考模拟试题

2011年泰安市数学中考模拟试题时间:120分钟 满分:150一、选择题(本题共10小题,每题4分,共40分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在题后的括号内.)1.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克。

某地今年计划栽插这种超级水稻3000亩,预计该地今年收获这种超级杂交稻的总产量(用科学记数法表示)是( )A .2.5×106千克B . 2.46×106千克C .2.5×105千克D .2.46×105千克2.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )3.如图,DE 是ΔABC 的中位线,则ΔADE 与ΔABC 的面积之比是( )A .1:1B .1:2C .1:3D .1:4 4.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是( )A . 120°B .80°C .60°D .150°5.在下列图形中,既是中心对称图形又是轴对称图形的是 ( )A .等腰三角形B .圆C .梯形D .平行四边形6.把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得( )A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-27.相交两圆的公共弦长为16cm ,若两圆的半径长分别为10cm 和17cm ,则这两圆的圆心距为( )A .21cmB .16cmC .7cmD .27cm(1) A B C DE D C B A8.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车。

车修好后,因怕耽误上课,他比修车前加快了骑车速度匀速行驶。

下面是行驶路程s(米)关于时间t(分)的函数图像,那么符合这个同学行驶情况的图像大致是 ( )(A) (B) (C) (D)9.右图是某地区用水量与人口数情况统计图.日平均用水量为400万吨的那一年,人口数大约是( )A.180万B.200万C.300万D.400万10.如图,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m的取什范围是A . 2<m <22B .1<m <11C .10<m <12D .5<m <6二、填空题(本题共有5小题,每题4分,共20分.请把结果直接填在题中的横线上.) 11.分解因式:a 3-a= 。

2011黄冈.淄博.泰安数学中考答案-推荐下载

2011黄冈.淄博.泰安数学中考答案-推荐下载

=

1 100
x

602

41
+

99 100
x2

294 5
x 302 1065 ,表明 x=30 时,y 最大且为 1065,那么三年获利最大为 1065×3=3495
万元, 故五年获利最大值为 80+3495-50×2=3475 万元. ⑶有极大的 24.解:⑴b=1
6 号: 84 2 92 3 85 5 86.9 ; 10
∵88.1>86.9>86.4>84.6>84.2>80.8,
∴序号是 3,6 号的选手将被录用. 21.(本题满分 9 分) 解:(1)证明:连接 OE,则 OB=OE.
∵△ABC 是等边三角形, ∴∠ABC=∠C=60°.
∴△OBE 是等边三角形. D
∴∠OEB=∠C =60°.
∴OE∥AC .
∵EF⊥AC,
………3 分
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2011年山东省泰安市中考数学试题及答案

2011年山东省泰安市中考数学试题及答案

泰安市2009年高中段学校招生考试数学试题注意事项:1、 本试题分第1卷和第2卷两部分,第1卷3页为选择题,36分;第2卷8页为非选择题,84分;共120分,考试时间120分。

2、 答第1卷前务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束、试题和答题卡一并收回。

3、 第1卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的序号标号(ABCD )涂黑如有改动,必须先用橡皮擦干净,在涂改其他答案,不能答在试卷上。

第Ⅰ卷(选择题 共36分)一、选择题(本大题共12分,在每小题给出的四个选项中,只有一个是正确的,请把正确的答案选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记0分) 1、 下列各式,运算结果为负数的是(A ))3()2(---- (B ))3()2(-⨯- (C )2)2(-- (D )3)3(--2、 光的传播速度约为300000km/s ,太阳光照射到地球上大约需要500s ,则太阳到地球的距离用科学记数法可表示为 (A )km 71015⨯ (B )km 9105.1⨯(C )km 8105.1⨯ (D )km 81015⨯ 3、 抛物线1822-+-=x x y 的顶点坐标为(A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)4、 如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=3,则弦AB 所对圆周角的度数为(A )30° (B )60°(C )30°或150° (D )60°或120° 5、 若的值为则2y-x 2,54,32==yx(A )53 (B )-2(C )553 (D )56 6、 如图,是一个工件的三视图,则此工件的全面积是(A )85πcm 2 (B )90πcm 2 (C )155πcm 2 (D )165πcm 27、 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是 (A )2 (B )3 (C )25(D )4 8、 某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 9、 在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为 (A )km 3310 (B )km 335 (C )km 25 (D )km 3510、 某校为了了解七年级学生的身高情况(单位:cm ,精确到1cm ),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在 (A )第二组 (B )第三组 (C )第四组 (D )第五组11、 如图,在△ABC 中,AD 是BC 边的中线,∠ADC=30°,将△ADC 沿AD 折叠,使C 点落在C ’的位置,若BC=4,则BC ’的长为 (A )32 (B )22 (C )4 (D )3 12、 如图,双曲线)0(>k xky =经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

2011——2019泰安市中考真题《反比例函数》汇编

2011——2019泰安市中考真题《反比例函数》汇编

2011——2019泰安市中考真题《反比例函数》汇编1、(2011•泰安)如图,一次函数y=k 1x+b 的图象经过A (0,﹣2),B (1,0)两点,与反比例函数的图象在第一象限内的交点为M ,若△OBM 的面积为2. (1)求一次函数和反比例函数的表达式;(2)在x 轴上是否存在点P ,使AM△MP ?若存在,求出点P 的坐标;若不存在,说明理由.2、(2012泰安)如图,一次函数y kx b =+的图象与坐标轴分别交于A ,B 两点,与反比例函数n y x=的图象在第二象限的交点为C ,CD △x 轴,垂足为D ,若OB=2,OD=4,△AOB 的面积为1. (1)求一次函数与反比例的解析式; (2)直接写出当0x <时,0kkx b x+->的解集.3、(2013泰安)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数y=的图象经过点C ,一次函数y=ax+b 的图象经过点C ,一次函数y=ax+b 的图象经过点A , (1)求反比例函数与一次函数的解析式;(2)求点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.4、(2014泰安)(8分)如图①,△OAB 中,A (0,2),B (4,0),将△AOB 向右平移m 个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数xk=y 的图象经过点A′,一次函数y=ax+b 的图象经过A′、B′两点.求反比例函数及一次函数的表达式; (2)若反比例函数xk=y 的图象经过点A′及A′B′的中点M ,求m 的值.5、(本小题满分8分) 一次函数y=kx+b 与反比例函数y=mx图象相交于A (-1,4),B (2,n )两点,直线AB 交x 轴于点D 。

(1)求一次函数与反比例函数的表达式;(2)过点B 作BC△y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年山东省泰安市中考数学试卷一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.(3分)的倒数是()A.B.C.D.2.(3分)下列运算正确的是()A.3a2+4a2=7a4B.3a2﹣4a2=﹣a2C.3a•4a2=12a2 D.3.(3分)下列图形:其中是中心对称图形的个数为()A.1 B.2 C.3 D.44.(3分)第六次全国人口普查公布的数据表明,登记的全国人口数量约为1 340 000 000人.这个数据用科学记数法表示为()A.134×107人B.13.4×108人 C.1.34×109人 D.1.34×1010人5.(3分)下列等式不成立的是()A.m2﹣16=(m﹣4)(m+4)B.m2+4m=m(m+4)C.m2﹣8m+16=(m﹣4)2D.m2+3m+9=(m+3)26.(3分)下列几何体:其中,左视图是平行四边形的有()A.4个 B.3个 C.2个 D.1个7.(3分)下列运算正确的是()A.B.C. D.8.(3分)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()A.25°B.30°C.20°D.35°9.(3分)某校篮球班21名同学的身高如下表身高cm180186188192208人数(个)46542则该校篮球班21名同学身高的众数和中位数分别是(单位:cm)()A.186,186 B.186,187 C.186,188 D.208,18810.(3分)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.11.(3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是()A.B.C.D.12.(3分)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)13.(3分)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>214.(3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π15.(3分)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.16.(3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.17.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1918.(3分)不等式组的最小整数解为()A.0 B.1 C.2 D.﹣119.(3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.620.(3分)若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353A.5 B.﹣3 C.﹣13 D.﹣27二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)23.(3分)方程2x2+5x﹣3=0的解是.24.(3分)化简:的结果为.25.(3分)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA 上一点,若∠ABC=32°,则∠P的度数为.26.(3分)甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损.第1次第2次第3次第4次第5次甲9088879392乙848785989■则乙的平均成绩高于甲的平均成绩的概率是.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)27.(8分)某工厂的甲车间承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天加工零件各多少个?28.(10分)如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.29.(10分)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG 是菱形.30.(10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?31.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.2011年山东省泰安市中考数学试卷参考答案与试题解析一.选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错.不选或选出的答案超过一个,均记零分)1.(3分)的倒数是()A.B.C.D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:的倒数是﹣,故选:D.【点评】此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列运算正确的是()A.3a2+4a2=7a4B.3a2﹣4a2=﹣a2C.3a•4a2=12a2 D.【分析】根据合并同类项的法则、单项式乘以单项式的法则、以及整式的混合运算法则计算即可.【解答】解:A、3a2+4a2=7a2,故本选项错误;B、3a2﹣4a2=﹣a2,故本选项正确;C、3a•4a2=12a3,故本选项错误;D、(3a2)2÷4a2=a2,故本选项错误.故选:B.【点评】本题主要考查合并同类项的法则以及整式的运算法则,牢记法则是关键.3.(3分)下列图形:其中是中心对称图形的个数为()A.1 B.2 C.3 D.4【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:一图是轴对称图形,不是中心对称图形;二图是中心对称图形;三图是轴对称图形,不是中心对称图形;四图既是中心对称图形,也是轴对称图形;所以中心对称图形的个数为2.故选:B.【点评】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)第六次全国人口普查公布的数据表明,登记的全国人口数量约为1 340 000 000人.这个数据用科学记数法表示为()A.134×107人B.13.4×108人 C.1.34×109人 D.1.34×1010人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 340 000 000=1.34×109人.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)下列等式不成立的是()A.m2﹣16=(m﹣4)(m+4)B.m2+4m=m(m+4)C.m2﹣8m+16=(m﹣4)2D.m2+3m+9=(m+3)2【分析】由平方差公式,提公因式以及完全平方公式分解因式的知识求解即可求得答案.【解答】解:A、m2﹣16=(m﹣4)(m+4),故本选项正确;B、m2+4m=m(m+4),故本选项正确;C、m2﹣8m+16=(m﹣4)2,故本选项正确;D、m2+3m+9≠(m+3)2,故本选项错误.故选:D.【点评】此题考查了因式分解的知识.注意因式分解的步骤:先提公因式,再用公式法分解,注意分解要彻底.6.(3分)下列几何体:其中,左视图是平行四边形的有()A.4个 B.3个 C.2个 D.1个【分析】左视图是从几何体的左面看所得到的图形.【解答】解:圆柱的左视图是长方形,长方形是一个特殊的平行四边形;圆锥的左视图是三角形;棱柱的左视图是长方形,长方形是一个特殊的平行四边形;长方体的左视图是长方形,长方形是一个特殊的平行四边形;故左视图是平行四边形的有3个,故选:B.【点评】此题主要考查了几何体的三视图,解决此类图的关键是由立体图形得到三视图,以及考查学生空间想象能力.7.(3分)下列运算正确的是()A.B.C. D.【分析】根据二次根式运算的法则,分别计算得出各答案的值,即可得出正确答案.【解答】解:A.∵=5,故此选项错误;B.∵4﹣=4﹣3=,故此选项错误;C.÷==3,故此选项错误;D.∵•==6,故此选项正确.故选:D.【点评】此题主要考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.8.(3分)如图,l∥m,等腰直角三角形ABC的直角顶点C在直线m上,若∠β=20°,则∠α的度数为()A.25°B.30°C.20°D.35°【分析】根据平角的定义求出∠ACR,根据平行线的性质得出∠FDC=∠ACR=70°,求出∠AFD,即可得到答案.【解答】解:∵∠β=20°,∠ACB=90°,∴∠ACR=180°﹣90°﹣20°=70°,∵l∥m,∠FDC=∠ACR=70°,∴∠AFD=∠FDC﹣∠A=70°﹣45°=25°,∴∠a=∠AFD=25°,故选:A.【点评】本题主要考查对平行线的性质,三角形的外角性质,对顶角、邻补角等知识点的理解和掌握,求出∠AFD的度数是解此题的关键.9.(3分)某校篮球班21名同学的身高如下表身高cm180186188192208人数(个)46542则该校篮球班21名同学身高的众数和中位数分别是(单位:cm)()A.186,186 B.186,187 C.186,188 D.208,188【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:众数是:186cm;中位数是:188cm.故选:C.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.(3分)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A.B.C.D.【分析】连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD==,OD=,再利用勾股定理即可得出结论.【解答】解:连接OA,设⊙O的半径为r,∵AB垂直平分半径OC,AB=,∴AD==,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=.故选:A.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.(3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则列方程正确的是()A.B.C.D.【分析】根据甲乙两种奖品共30件,可找到等量关系列出一个方程,在根据甲乙两种奖品的总价格找到一个等量关系列出一个方程,将两个方程组成一个二元一次方程组.【解答】解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以x+y=30因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=400由上可得方程组:故选:B.【点评】本题考查根据实际问题抽象出方程组:根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.12.(3分)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是()A.(3,﹣6)B.(﹣3,6)C.(﹣3,﹣6)D.(3,6)【分析】正确作出A旋转以后的A′点,即可确定坐标.【解答】解:由图知A点的坐标为(6,3),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,点A′的坐标是(3,﹣6).故选:A.【点评】本题考查了图形的旋转,抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.13.(3分)已知一次函数y=mx+n﹣2的图象如图所示,则m、n的取值范围是()A.m>0,n<2 B.m>0,n>2 C.m<0,n<2 D.m<0,n>2【分析】先根据一次函数的图象经过二、四象限可知m<0,再根据函数图象与y轴交于正半轴可知n﹣2>0,进而可得出结论.【解答】解:∵一次函数y=mx+n﹣2的图象过二、四象限,∴m<0,∵函数图象与y轴交于正半轴,∴n﹣2>0,∴n>2.故选:D.【点评】本题考查的是一次函数的图象,即直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.14.(3分)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π【分析】半圆的面积就是圆锥的侧面积,根据半圆的弧长等于圆锥底面圆的周长,即可求得圆锥底面圆的半径,进而求得面积,从而求解.【解答】解:侧面积是:×π×22=2π.底面的周长是2π.则底面圆半径是1,面积是π.则该圆锥的全面积是:2π+π=3π.故选:C.【点评】本题主要考查了圆锥的计算,正确理解圆锥的底面的周长等于展开图中扇形的弧长是解题的关键.15.(3分)如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选:C.【点评】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.16.(3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为()A.B.C.D.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有9种等可能的结果,两次所取球的编号相同的有3种,∴两次所取球的编号相同的概率为=.故选:C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.18.(3分)不等式组的最小整数解为()A.0 B.1 C.2 D.﹣1【分析】首先解不等式组求得不等式的解集,然后确定解集中的最小整数值即可.【解答】解:解第一个不等式得:x<3;解第二个不等式得:x>﹣1故不等式组的解集是:﹣1<x<3.故最小整数解是:0故选:A.【点评】本题主要考查了不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A.B.C.D.6【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论.【解答】解:∵△CEO是△CEB翻折而成,∴BC=OC,BE=OE,∠B=∠COE=90°,∴EO⊥AC,∵O是矩形ABCD的中心,∴OE是AC的垂直平分线,AC=2BC=2×3=6,∴AE=CE,在Rt△ABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在Rt△AOE中,设OE=x,则AE=3﹣x,AE2=AO2+OE2,即(3﹣x)2=32+x2,解得x=,∴AE=EC=3﹣=2.故选:A.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.20.(3分)若二次函数y=ax2+bx+c的x与y的部分对应值如下表,则当x=1时,y的值为()x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353A.5 B.﹣3 C.﹣13 D.﹣27【分析】由表可知,抛物线的对称轴为x=﹣3,顶点为(﹣3,5),再用待定系数法求得二次函数的解析式,再把x=1代入即可求得y的值.【解答】解:设二次函数的解析式为y=a(x﹣h)2+k,∵当x=﹣4或﹣2时,y=3,由抛物线的对称性可知h=﹣3,k=5,∴y=a(x+3)2+5,把(﹣2,3)代入得,a=﹣2,∴二次函数的解析式为y=﹣2(x+3)2+5,当x=1时,y=﹣27.故选:D.【点评】本题考查了待定系数法求二次函数的解析式,抛物线是轴对称图形,由表看出抛物线的对称轴为x=﹣3,顶点为(﹣3,5),是本题的关键.二、填空题(本大题共4个小题,满分12分,只要求填写最后结果,每小题填对的3分)23.(3分)方程2x2+5x﹣3=0的解是.【分析】先把方程化为(x+3)(x﹣)=0的形式,再求出x的值即可.【解答】解:原方程可化为:(x+3)(x﹣)=0,故x1=﹣3,x2=.故答案为:x1=﹣3,x2=.【点评】本题考查的是解一元二次方程的因式分解法,能把原方程化为两个因式积的形式是解答此题的关键.24.(3分)化简:的结果为x﹣6.【分析】先将括号里面的通分合并同类项,然后将除法转换成乘法,约分化简得到最简代数式.【解答】解:原式=×=×=x﹣6故答案为:x﹣6【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.25.(3分)如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA 上一点,若∠ABC=32°,则∠P的度数为26°.【分析】连接OA,则△PAO是直角三角形,根据圆周角定理即可求得∠POA的度数,进而根据直角三角形的性质求解.【解答】解:连接OA.∴∠PAO=90°,∵∠O=2∠B=64°,∴∠P=90°﹣64°=26°.故答案为:26°.【点评】本题主要考查了切线的性质,以及圆周角定理,正确利用定理,作出辅助线求得∠POA的度数是解题的关键.26.(3分)甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数被污损.第1次第2次第3次第4次第5次甲9088879392乙848785989■则乙的平均成绩高于甲的平均成绩的概率是.【分析】首先计算出甲的平均成绩,再根据乙的成绩在97,98,99的时候,平均成绩大于甲的成绩,随机事件概率的求法即可得出结果.【解答】解:甲的平均成绩为:=90,乙的被污损的成绩可能是90,91,92,93,94,95,96,97,98,99共10种可能,乙的成绩为97,98,99的时候,平均成绩大于甲的成绩,乙的平均成绩高于甲的平均成绩的概率是.故答案为:.【点评】本题考查了平均数的求法,以及随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=,难度适中.三、解答题(本大题共5小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤)27.(8分)某工厂的甲车间承担了加工2100个机器零件的任务,甲车间单独加工了900个零件后,由于任务紧急,要求乙车间与甲车间同时加工,结果比原计划提前12天完成任务.已知乙车间的工作效率是甲车间的1.5倍,求甲、乙两车间每天加工零件各多少个?【分析】先设甲车间每天加工零件x个,则乙车间每天加工零件1.5x个,由题意列分式方程即可得问题答案.【解答】解:设甲车间每天加工零件x个,则乙车间每天加工零件1.5x个.根据题意,得,解之,得x=60,经检验,x=60是方程的解,符合题意,1.5x=90.答:甲乙两车间每天加工零件分别为60个、90个.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.本题需注意应设较小的量为未知数.28.(10分)如图,一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)两点,与反比例函数的图象在第一象限内的交点为M,若△OBM的面积为2.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥MP?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)根据一次函数y=k1x+b的图象经过A(0,﹣2),B(1,0)可得到关于b、k1的方程组,进而可得到一次函数的解析式,设M(m,n)作MD⊥x 轴于点D,由△OBM的面积为2可求出n的值,将M(m,4)代入y=2x﹣2求出m的值,由M(3,4)在双曲线上即可求出k2的值,进而求出其反比例函数的解析式;(2)过点M(3,4)作MP⊥AM交x轴于点P,由MD⊥BP可求出∠PMD=∠MBD=∠ABO,再由锐角三角函数的定义可得出OP的值,进而可得出结论.【解答】解:(1)∵直线y=k1x+b过A(0,﹣2),B(1,0)两点∴,∴∴一次函数的表达式为y=2x﹣2.(3分)∴设M(m,n),作MD⊥x轴于点D=2,∵S△OBM∴,∴∴n=4(5分)∴将M(m,4)代入y=2x﹣2得4=2m﹣2,∴m=3∵M(3,4)在双曲线上,∴,∴k2=12∴反比例函数的表达式为(2)过点M(3,4)作MP⊥AM交x轴于点P,∵MD⊥BP,∴∠PMD=∠MBD=∠ABO∴tan∠PMD=tan∠MBD=tan∠ABO==2(8分)∴在Rt△PDM中,,∴PD=2MD=8,∴OP=OD+PD=11∴在x轴上存在点P,使PM⊥AM,此时点P的坐标为(11,0)(10分)【点评】本题考查的是反比例函数与一次函数的交点问题,涉及到的知识点为用待定系数法求一次函数与反比例函数的解析式、锐角三角函数的定义,熟知以上知识是解答此题的关键.29.(10分)已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG 是菱形.【分析】(1)由点E是BC的中点,BC=2AD,可证得四边形AECD为平行四边形,即可得△AOE∽△COF;(2)连接DE,易得四边形ABED是平行四边形,又由∠ABE=90°,可证得四边形ABED是矩形,根据矩形的性质,易证得EF=GD=GE=DF,则可得四边形EFDG是菱形.【解答】证明:(1)∵点E是BC的中点,BC=2AD,∴EC=BE=BC=AD,又∵AD∥BC,∴四边形AECD为平行四边形,∴AE∥DC,∴△AOE∽△COF;(2)连接DE,∵AD∥BE,AD=BE,∴四边形ABED是平行四边形,又∠ABE=90°,∴四边形ABED是矩形,∴GE=GA=GB=GD=BD=AE,∴E、F分别是BC、CD的中点,∴EF、GE是△CBD的两条中位线,∴EF=BD=GD,GE=CD=DF,又GE=GD,∴EF=GD=GE=DF,∴四边形EFDG是菱形.【点评】此题考查了相似三角形的判定与性质,平行四边形的判定与性质,矩形与菱形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是要注意数形结合思想的应用.30.(10分)某商店经营一种小商品,进价为每件20元,据市场分析,在一个月内,售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.(1)当售价定为每件30元时,一个月可获利多少元?(2)当售价定为每件多少元时,一个月的获利最大?最大利润是多少元?【分析】(1)当售价定为30元时,可知每一件赚10元钱,再有售价定为25元时,可卖出105件,而售价每上涨1元,就少卖5件.可计算出一个月可获利多少元;(2)设售价为每件x元时,一个月的获利为y元,得到y与x的二次函数关系式求出函数的最大值即可.【解答】解:(1)获利:(30﹣20)[105﹣5(30﹣25)]=800;答:当售价定为30元时,一个月可获利800元;(2)设售价为每件x元时,一个月的获利为y元,由题意,得y=(x﹣20)[105﹣5(x﹣25)]=﹣5x2+330x﹣4600=﹣5(x﹣33)2+845,当x=33时,y的最大值为845,故当售价定为33元时,一个月的利润最大,最大利润是845元.【点评】本题主要考查了二次函数的应用,能正确表示出月销售量是解题的关键.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.31.(10分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.【点评】本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.。

相关文档
最新文档