对数的运算性质及对数函数

合集下载

对数函数性质运算公式

对数函数性质运算公式

对数函数性质运算公式对数函数是数学中的一种特殊函数,它是指数函数的逆运算。

对数函数的性质和运算公式是我们学习和应用对数函数的基础。

一、对数函数的定义和性质1. 对数函数的定义:对于正数a和正数x,以a为底的对数函数定义为y=loga(x),其中a>0且a≠1,x>0。

2.对数函数的性质:a)对数函数的定义域是正实数集R+,值域是实数集R;b) 当x=1时,loga(1)=0,这是对数函数的一个特殊性质;c) loga(a)=1,这是对数函数的另一个特殊性质;d) 对于任意正实数a和正实数x,loga(a^x)=x,这是对数函数的重要性质。

二、对数函数的运算公式1.对数函数的换底公式:对于正实数a、b和正实数x,loga(x)=logb(x)/logb(a)。

这一公式可以用来在不同底数的对数之间进行换算。

2.对数函数的乘法公式:对于正实数a、b和正实数x、y,有loga(xy)=loga(x)+loga(y)。

这一公式表示对数函数可以将乘法运算转化为加法运算。

3.对数函数的除法公式:对于正实数a、b和正实数x、y,有loga(x/y)=loga(x)-loga(y)。

这一公式表示对数函数可以将除法运算转化为减法运算。

4.对数函数的幂函数公式:对于正实数a、b和正实数x,有loga(x^b)=b*loga(x)。

这一公式表示对数函数可以将幂函数运算转化为乘法运算。

5.对数函数的逆函数公式:对于正实数a、b和正实数x,有a^loga(x)=x。

这一公式表示对数函数和指数函数是互为逆函数。

三、应用举例1.求解对数方程:需要利用对数函数的性质和运算公式来求解对数方程,例如:log2(x+3)+log2(x-1)=3,可以先将乘法公式应用到方程中,然后解方程得到结果。

2.求解指数方程:对数函数和指数函数是互为逆函数,可以利用对数函数的性质和运算公式来求解指数方程,例如:2^x=5,可以将对数公式应用到方程中,然后解方程得到结果。

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质

对数的计算以及对数函数的基本性质1.对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N=,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式:log 10a =,log 1a a =,log ba ab =. (3)常用对数与自然对数 常用对数:lg N ,即10log N; 自然对数:ln N ,即log e N(其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-= ③数乘:log log ()n a a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 2.对数函数及其性质 定义:函数log (0a y x a =>且1)a ≠叫做对数函数图象:定义域:(0,)+∞ 值域:R 过定点:图象过定点(1,0),即当1x =时,0y =.1 xy O1xyO奇偶性:非奇非偶 单调性:在(0,)+∞上是增函数1a >;在(0,)+∞上是减函数01a <<; 函数值的变化情况:log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<变化对图象的影响:在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高. 判断技巧:指数函数令1=x 得到第一象限内底大图上;对数函数令1=y 得到第一象限底大图下。

对数的运算与对数函数

对数的运算与对数函数

1.对数的概念如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。

即指数式与对数式的互化:log ba aN b N =⇔=2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。

自然对数:通常将以无理数 2.71828e =⋅⋅⋅为底的对数叫做自然对数,记作ln N 。

3.对数的运算性质:如果0a >,且1,0,0a M N ≠>>,那么:⑴log ()log log a a a M N M N ⋅=+;(积的对数等于对数的和) 推广1212log (...)log log ...log a k a a a k N N N N N N ⋅=+++ ⑵log log log aa a MM N N=-;(商的对数等于对数的差) ⑶log log (R)a a M M ααα=∈,则log a = 。

⑷log a N a N =2.换底公式:log log log a b a NN b=(,0,,1,0a b a b N >≠>) 换底公式的意义:把以一个数为底的对数换成以另一个大于0且不等于1的数为底的对数,以达到计算、化简或证明的目的. 推广:⑴1log log a b b a=⑵log log log log a b c a b c d d =, ⑶1log log n a a M M n =,则log na m M = 。

特别地:log log 1a b b a =知识要点对数运算与对数函数【例1】 求下列各式中x 的取值范围。

(1)2log (5)x +(2)1log (10)x x --【例2】 将下列指数式化为对数式,对数式化为指数式。

(1) 1642= (2) 9132=- (3) 481log 3=(4) 6125log -=a (5)lg0.0013=-; (6)ln100=4.606【例3】 计算(1)lg 4lg 25+ (2)22log 24log 6-(3)531log ()3(4) 001.0lg (5)e1ln (6)1lg【巩固1】3log =2log =(2log (2= 21log 52+=【巩固2】). A. 1 B. -1 C. 2 D. -2【巩固3】计算2(lg5)lg 2lg50+⋅= .知识要点【例4】 (1)(2 。

对数函数的运算与性质

对数函数的运算与性质

对数函数的运算与性质对数函数是数学中常见的一类函数,具有独特的运算性质和特点。

本文将探讨对数函数的运算规则、性质以及其在实际应用中的重要意义。

一、对数函数的定义和性质对数函数的定义如下:对于任意实数x>0和正实数a (a ≠ 1),称满足a^x = y的x为以a为底y的对数,记作x=log_a y。

对数函数有以下基本运算性质:1. 对数与指数的互为反函数关系:log_a a^x = x,a^log_a y = y。

2. 对数的运算法则:log_a (xy) = log_a x + log_a y,log_a (x/y) =log_a x - log_a y,log_a x^m = mlog_a x。

3. 对数函数的定义域和值域:对数函数log_a x的定义域是x>0,值域是实数集。

4. 对数函数的图像特点:不同底数的对数函数在x轴的正半轴上有不同的图像特点。

以e为底的自然对数函数y=lnx是单调递增函数,底数大于1的对数函数是增函数,底数在0和1之间的对数函数是减函数。

二、对数函数的运算法则1. 对数的乘方法则:log_a x^p = plog_a x。

其中,对于底数相同的对数函数,指数相加等于原来两个数的乘积的对数。

例如,log_a (x^2y^3) = 2 log_a x + 3 log_a y。

2. 对数的换底公式:log_a x = log_b x / log_b a。

该公式用于将一个底数为a的对数转化为底数为b的对数。

例如,log_3 2 = log_10 2 / log_10 3。

3. 对数的消去法则:如果log_a x = log_a y,则x=y。

该法则用于解方程时,当两个对数底相同时,如果其对数相等,那么其底数也相等。

三、对数函数的应用对数函数在实际应用中有广泛的用途,以下介绍几个常见的应用领域:1. 科学计算与统计学:对数函数可以简化复杂计算和数据分析过程,特别适用于大数据的处理和处理结果的可视化呈现。

对数函数运算法则

对数函数运算法则

对数函数运算法则对数函数是指以固定底数为基的函数,常用的对数函数有以10为底的常用对数函数和以e为底的自然对数函数。

1.对数函数的定义:假设a是一个正数且a≠1,那么对于任意一个正数x,a的对数函数定义为:logₐ(x) = y ,其中 a^y = x。

其中,a称为底数,x称为真数,y称为指数。

2.对数函数的主要性质:性质1:对数函数的定义域和值域常用对数函数log₁₀(x):定义域:(0,+∞)值域:(-∞,+∞)自然对数函数ln(x):定义域:(0,+∞)值域:(-∞,+∞)性质2:对数函数的对数关系对于任意的正数a,b以及正整数m,n,有如下对数关系:(1) logₐ(a*b) = logₐ(a) + logₐ(b)(2) logₐ(a/b) = logₐ(a) - logₐ(b)(3) logₐ(a^m) = m * logₐ(a)(4) logₐ(a^n) = n * logₐ(a)性质3:对数函数的换底公式logₐ(b) = logᵦ(b) / logᵦ(a)常用的换底公式:(1) logₐ(b) = logᵦ(b) / logᵦ(a) = ln(b) / ln(a)(2) logₐ(b) = (logc(b) / logc(a))性质4:对数函数的性质(1)对数函数是单调递增函数,当底数大于1时,递增性体现在定义域上,当底数小于1时,递增性体现在定义域的补集上。

(2) 对数函数在x轴上有一个特殊点x=1,对于常用对数函数log₁₀(x),有log₁₀(1) = 0,对于自然对数函数ln(x),有ln(1) = 0。

3.对数函数的应用:(1)对数函数在数学中的应用包括解方程、化简复杂式子以及处理与指数相关的问题。

(2)在经济学、生物学、物理学、化学等科学领域中,对数函数被广泛应用于模型的建立、数据的处理以及分析中。

(3)在工程学中,对数函数常用于描述信号的强度、放大倍数等参数。

(4)对数函数还被应用于金融领域,如货币的增长、股票的涨幅等问题。

对数运算和对数函数

对数运算和对数函数

对数与对数函数一、相关知识点1.对数的定义:如果()1,0≠>=a a N a x 且,那么数x 叫做以a 为底,N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数。

2.几种常见对数(1)()1,0≠>a a 且①01log =a ; ②1log =a a ; ③N a Na =log ; ④N a N a =log .(两个对数恒等式) (2)对数的重要公式:①换底公式:()0,1,log log log >=N b a b aN aNb均为大于零且不等于;②abba log 1log =,推广:da d c cb b a log log log log =⋅⋅. (3)对数的运算法则:如果0,0,1,0>>≠>N M a a 且,那么 ①()Na M a MN aloglog log += ; ②NaM a N Malog log log -=; ③()R n n MaM a n∈=log log ;④b a b a mnnm log log = . 3.反函数,只需了解:指数函数xa y =与对数函数xa y log =互为反函数,它们的图象关于直线x y =对称。

题型一:对数的化简和求值1.计算:(1)2110025lg 41lg ÷⎪⎭⎫ ⎝⎛-;(2)32log 2450lg 2lg 5lg +⋅+;(3)()232031027.0252lg 3.0lg 21000lg 8lg 27lg --⎪⎭⎫⎝⎛-⨯+-++-+;(4)()222lg 20lg 5lg 8lg 325lg +++. 2.已知()[]0lg log log 25=x ,求x 的值.3.已知0>a ,且1≠a ,m a =2log ,n a =3log ,求nm a +2的值能力提高:(1).设m ba==52,且211=+ba ,则=m ; (2).若632==b a ,求证:c b a 111=+题型二:(1)对数函数的基本性质题型一:基本性质1.函数()()223lg +-=x x f 恒过定点_______________________2.如果0log log 2121<<y x ,那么()(A)1<<x y ; (B)1<<y x ;(C)y x <<1; (D)x y <<1.3.已知()x x f a log =,()x x g b log =,()x x r c log =,()x x h d log =的图象如图所示则a ,b ,c ,d 的大小为A.b a d c <<<;B.a b d c <<<;C.b a c d <<<;D.d c b a <<<4.若函数()⎪⎩⎪⎨⎧<⎪⎭⎫⎝⎛+≥=)()(4214log 2x x f x x x f ,则⎪⎭⎫⎝⎛23f 的值是( ) A.21; B.1; C.23; D.2 5.若点()b a ,在x y lg =图像上,1≠a ,则下列点也在此图像上的是()A.⎪⎭⎫⎝⎛b a ,1;B. ()b a -1,10;C.⎪⎭⎫⎝⎛+1,10b a ; D.()b a 2,2. 6.函数()()13log 2+=xx f 的值域为7.为了得到函数103lg+=x y 的图像,只需把函数x y lg =的图像上所有的点( ) A.向左平移3个单位长度,再向上平移1个单位长度; B.向右平移3个单位长度,再向上平移1个单位长度; C.向左平移3个单位长度,再向下平移1个单位长度; D.向右平移3个单位长度,再向下平移1个单位长度.8.若函数()()()101≠>--=a a a a k x f xx且在R 上既是奇函数,又是减函数()()k x x g a +=log 的图象是( )9.对于函数()x f 定义域中任意的()2121,x x x x ≠,有如下结论: ①()()()2121x f x f x x f ⋅=+; ②()()()2121x f x f x x f +=⋅; ③()()02121>--x x x f x f ; ④()()222121x f x f x x f +<⎪⎭⎫ ⎝⎛+. 当()x x f lg =时,上述结论中正确结论的序号是. 能力提高:1.已知函数()22log 21+-=a y x 的值域是R ,求a 的取值范围.2.已知函数()()1log 22++=ax ax x f 的定义域为全体实数,求a 的取值范围.3.已知函数()()1log 22++=ax axx f 的值域域为全体实数,求a 的取值范围。

对数公式及对数函数的总结

对数公式及对数函数的总结

对数公式及对数函数的总结对数公式是数学中一种重要的数学工具,可以用来简化复杂的计算、求解方程和表示关系等。

对数公式和对数函数广泛应用于数学、物理、工程等领域,有很多重要的性质和应用。

下面将对对数公式及对数函数的性质、定义以及应用进行总结。

一、对数公式1. 对数的定义:设a>0且a≠1,b>0,则称b是以a为底的对数的真数,记作b=logₐb。

a称为对数的底数,b称为真数,带底数和真数的对数,称为对数的对数。

对数的定义可以用反函数的概念来构造对数函数,即对数函数是幂函数的反函数。

2. 常用对数公式:常用对数是以10为底的对数,记作logb(x),其中b=10,x>0。

常用对数公式如下:十进制和对数公式:logb(xy) = logb(x) + logb(y)数字乘方和对数公式:logb(x/y) = logb(x) - logb(y)对数乘方和对数公式:logb(x^k) = klogb(x)对数的换底公式:loga(b) = logc(b) / logc(a),其中c>0且c≠1自然对数的定义:ln(x) = logₑ(x)自然对数的性质:ln(e^x) = x,其中x为任意实数。

二、对数函数1. 对数函数的定义:对数函数y=logₐ(x)是幂函数y=a^x的反函数,其中a>0且a≠1、对于任意正数x和任意实数a,对数函数的守恒是:a^logₐ(x) = x。

2.对数函数的性质:对数函数有以下性质:a) 当0<x<1时,0<logₐ(x)<∞;当x>1时,-∞<logₐ(x)<0。

b) 对数函数logₐ(x)在定义域内是递增函数。

c)对数函数的图像是以(1,0)为对称轴的反比例函数图像。

d)对数函数的增长速度比幂函数的增长速度慢。

三、对数函数的应用1.指数增长和对数函数:对数函数常用于描绘指数增长的情况。

例如,在经济学中,对数函数可以用来描述人口增长、物质消耗和资本积累等指数增长的趋势。

对数与对数函数

对数与对数函数

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: logaa=1;如果a=1或=0那么logaa 就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:loga M^n = nloga M 如果a<0,那么这个等式两边就不会成立 (比如,log(-2) 4^(-2) 就不等于(-2)*log(-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象Oxyy = l o g x a ><a <a111( ))底数互为倒数的两个对数函数的图象关于x (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是1 11111 1xxxxy y y yOO OOABC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是yyO x yO x yABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B.答案:C9.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1Oxy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f(x 2)]<f (221x x +)成立的函数是 A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47.(2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.(2004年苏州市模拟题)已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169. 小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数的运算性质及对数函数
一.对数的运算性质:如果 a > 0 ,a ≠ 1, M > 0 ,N > 0, 那么
(1)log ()log log a a a MN M N =+;
(2)log log -log a a a M M N N
=; (3)log log ()n a a M n M n R =∈. 二.换底公式:log log log m a m N N a
= ( a > 0 , a ≠ 1 ;0,1m m >≠) 注意:两个较为常用的推论: (1)log log 1a b b a ⨯= ; (2)log log m n a a n b b m =
(a 、0b >且均不为1). 例1.计算:(1)lg14-21g 18lg 7lg 37-+; (2)9
lg 243lg ; (3)8log 9log 5.12lg 85lg 21lg 278⋅-+-
例2.计算:(1) 0.21log 35
-; (2)4492log 3log 2log 32⋅+.
例3.已知18log 9a =,185b =,求36log 45(用 a , b 表示).
13)1(32526log 28log 2log )1(22333--+----=a a D a a C a B a A a a 、、、、表示为()
用,那么已知变式
(高考)2.==+==m ,211,52则且设b
a m
b a ( ) A .10 B .10 C .20 D .100
三、对数函数
1. 设a =21log 3,b =3)2
1(,c =21
3,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c
2.已知函数f (x )=x 21log 2的值域为[-1,1],则函数f (x )的定义域是( )
A .[22,2]
B .[-1,1]
C .[12,2]
D .(-∞,22
]∪[2,+∞) 3.对数式b a a =--)5(log 2中,实数a 的取值范围是
( ) A .)5,(-∞ B .(2,5) C .),2(+∞ D . )5,3()3,2(
4.函数12log ,1()2,
1x x x f x x ≥⎧⎪=⎨⎪<⎩的值域为_________.
5.函数y =3)2(log ++x a (a >0且a ≠1)的图象过定点_______.
6.如果函数f (x )=x a )3(-与g (x )=x a log 的增减性相同,则a 的取值范围是________.
7.当a >1时,函数y =x a log 和y =x a )1(-的图象只可能是(
)
8.函数y =)124(log 23
1++-x x 的单调递减区间是________.
9.将函数x 2log y =的图象向左平移3个单位,得到图象1C ,再将1C 向上平移2个单位得到图象2C ,则2C 的解析式为 .
10.已知函数()lg f x x =,若()1f ab =,22()()f a f b +=_________.
11.求函数y =log 3x +1log 3 3x -2
的定义域.
12.函数f (x )=)53(log 221+-ax x 在[-1,+∞)上是减函数,求实数a 的取值范围.
上的单调性,并证明在判断)的奇偶性并证明;(判断)(已知函数)1,1((x)2(x)1)1,1(,11log )f(.132--∈+-=f f x x x x。

相关文档
最新文档