通用版高考数学一轮复习2.4函数性质的综合问题讲义文
2025新高考数学一轮复习函数性质的综合应用教案

∴ -1 ≥ 0, 或 -1 ≤ 0, 解得 1≤x≤3 或-1≤x≤0,
-1 ≤ 2
-1 ≥ -2,
∴满足 xf(x-1)≥0 的 x 的取值范围是[-1,0]∪[1,3],故选 D.
规律方法
综合运用奇偶性与单调性解题的方法技巧
(1)比较大小:先利用奇偶性将不在同一单调区间上的自变量的函数值转化
又因为f(2x+1)是奇函数,所以f(x)的图象关于点(1,0)对称,
于是函数f(x)的周期为T=4×|2-1|=4.
由于f(2x+1)是奇函数,所以f(2×0+1)=f(1)=0,而f(x+2)是偶函数,
所以f(x+2)=f(-x+2),令x=1代入得f(3)=f(1)=0,因此f(-1)=0,故选B.
(2)当函数图象具有对称中心时,在对称中心两侧的单调性相同;当函数图
象具有对称轴时,在图象的对称轴两侧的单调性相反.
2.关于函数奇偶性与周期性的常用结论
(1)若f(a-x)=f(x)且f(x)为偶函数,则f(x)的周期为a;
(2)若f(a-x)=f(x)且f(x)为奇函数,则f(x)的周期为2a;
(3)若f(x+a)与f(x+b)(a≠b)都是偶函数,则f(x)的周期是2|a-b|;
[对点训练1](2024·江西赣州模拟)已知定义在R上的奇函数f(x),满足f(x+1)
因此|x-1|>1,解得x>2或x<0,即解集为(-∞,0)∪(2,+∞),故选B.
(3)(2020·新高考Ⅰ,8)若定义在R的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则
满足xf(x-1)≥0的x的取值范围是( D )
高考数学(文通用)一轮复习课件:第二章第4讲函数的奇偶性及周期性

第二章基本初等函数、导数及其应用函数的奇偶性及周期性教材回顾▼夯实基础课本温故追根求源和课梳理1.函数的奇偶性2. 周期性(1)周期函数:对于函数j=/(x),如果存在一个非零常数T,那么就称函数y=/a )为周期函数,称F 为这个函数的周期.(2)最小正周期:如果在周期函数/(兀)的所有周期中存在一个正周期.要点整會尸1. 辨明三个易误点 (1)应用函数的周期性时,应保证自变量在给定的区间内.使得当兀取定义域内的任何值时,都有 f(x+T)=f(x)的正数,那么这个最小 正数就叫做沧)的最小(2)判断函数的奇偶性,易忽视函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (3)判断函数/(兀)是奇函数,必须对定义域内的每一个x,均有/(一兀)=一/(兀),而不能说存在丸使/(一兀0)=—/(兀0),对于偶函数的判断以此类推.2.活用周期性三个常用结论对/(*)定义域内任一自变量的值(1)®f(x+a)= —f(x)9则T=2a;i⑵若Z(x+a)=y (乂),则T=2a; (1)(3)若f(x-\-a)=—屮(比)“,则T= 2a.3.奇、偶函数的三个性质(1)在奇、偶函数的定义中,f(-x)=-f(x)^ 定义域上的恒等式.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法.(3)设心),g(x)的定义域分别是Di,6,那么在它们的公共定义域上:奇+奇=奇,奇><奇=偶,偶+偶=偶,偶X偶 =偶,奇乂偶=奇.(2015•高考福建卷)下列函数为奇函数的是(D B. y=e D. j=e x -e"x 双基自测 C ・ j=cosx1.2.已知/(x)=«x 2+Z»x 是定义在[«-1,加]上的偶函数,那 么"+方的值是(B )解析:因为f(x)=ax 2-\-bx 是定义在[«-1,加]上的偶函数, 所以a~l+2a=0,所以 a =-. 3X/(—x)=/(x),所以方=0,所以a+b=£ 3 A.D. 3 23.(2016•河北省五校联盟质量监测)设/(兀)是定义在R上的周期为3的函数,当xe[ - 2, 1)时,f(x)=4x2— 2, — 2WxW 0,X, 0<x<l,B. 1A. 0D. -1解析:因为心)是周期为3的周期函数,所以龙)=/(一扌+3)4.(必修1 P39习题1.3B组T3改编)若/(x)是偶函数且在(0,+ 8)上为增函数,则函数心)在(一8, °)上捋函数5.(必修1 P39习题X3A组T6改编)已知函数/(x)是定义在R 上的奇函数,当xMO时,gx) = x(1+x),则xVO时,/(x) = x(l—x)解析:当xVO时,则一x>0,所以/(—x) = (—x)(1—x)・又/(X)为奇函数,所以/(-x) = -/(x) = (-x)(1-x),所以/(X)=x(1—X)・國例1 (2014-高考安徽卷)若函ft/(x)(xe R)是周期为4的典例剖析护考点突破」 考点一函数的周期性名师导悟以例说法奇函数,且在[0 , 2]上的解析式为/(x)=\x (1—x) , OWxWl, 、sin Ji x, 1<X W2, 5/?)+眉)=—^因为当 1 <xW2 时,/(x)=sin Tix,所以 XS =sinZ r =_2-所以 3因为当 OWxWl 时,/(x)=x(l-x), 所以简兮X 。
高考理科数学一轮总复习课标通用版课件:第2章函数2-4

考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第26页
经典品质/超出梦想
高考总复习/新课标版 数学·理
[强化训练 1.1] 已知 y=f(x)是二次函数,且 f(-32+x)=f(-23-x)对 x∈R 恒成立,f(- 32)=49,方程 f(x)=0 的两实根之差的绝对值等于 7.求此二次函数的解析式.
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第12页
经典品质/超出梦想
高考总复习/新课标版
答案
1.(1)ax2+bx+c (2)a(x-h)2+k
(3)a(x-x1)(x-x2) 2.(1)-2ba (2)(-2ba,4ac4-a b2) (3)向上 向下 (4)[4ac4-a b2,+∞) (-∞,4ac4-a b2]
经典品质/超出梦想
高考总复习/新课标版 数学·理
02 函数的概念、基本初等函数 (Ⅰ)及函数的应用
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第1页
经典品质/超出梦想
高考总复习/新课标版 数学·理
§2.4 二次函数
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第15页
经典品质/超出梦想
高考总复习/新课标版 数学·理
2.(教材改编)若函数 f(x)=4x2-kx-8 在区间[5,20]上是单调函数,则实数 k 的取 值范围是________.
解析:二次函数的对称轴方程是 x=8k,
故只需8k≤5 或8k≥20,即 k≤40 或 k≥160. 故所求 k 的取值范围是(-∞,40]∪[160,+∞) 答案:(-∞,40]∪[160,+∞)
高考理科数学第一轮复习第二章函数 函数的综合问题

函数的综合应用一.函数综合问题1.函数内容本身的相互综合,包括概念、性质、图象及几种基本初等函数的综合问题 2.函数与方程、不等式的综合问题 3.函数与数列、三角的综合问题 4.函数与几何的综合问题5.函数在实际应用(上一节)的综合问题 二、举例剖析 函数的性质综合 例1.书P32例2变式一:已知奇函数)(x f 满足)18(log ,2)(,)1,0(),()2(21f x f x x f x f x则时且=∈-=+的值为 。
解:())4()2()()2(+=+-=∴-=+x f x f x f x f x f892)89(log )89log ()98(log )18log 4()18log ()18(log 89log 22222212-=-=-=-==-=-=f f f f f f例2.书P33例4函数与几何例3.若f (x )是R 上的减函数,且f (x )的图象经过点)3,0(A 和)1,3(-B ,则不等式21)1(<-+x f 的解集 (-1,2) 。
函数与方程、不等式 例4.书P33例3函数与数列例5.书P32例1(备)变式一:设函数)(1log 2*∈=N n xy n(1)n=1,2,3……时,把已知函数的图象和直线y=1的交点横坐标依次记为a 1,a 2,a 3,…a n , …,求证:a 1+a 2+a 3+a n <1;(2)对于每一个n 值,设A n ,B n 为已知函数图象上与x 轴距离为1的两点,求证:n 取任意一个正整数时,以A n B n 为直径的圆都与一条定直线相切,求出这条定直线和切点坐标.解:(1)原函数化为n n n a a x x n y y x n y 21,)21(,log 11,log 12==⎪⎩⎪⎨⎧-==-=即得则1211211)211(21321<-=--=++++∴n n an a a a (2) 以A n,B n 为曲线上的点且与x 轴距离为1,则nn n n n n n n n n B A B A 2122)22(),1,2(),1,2(22+=+-=---,又A n,B n 的中点C 到y 轴的距离为n n n n B A 21222=+-,所以,以C 为圆心,以n n B A 为直线的圆与y 轴相切,故定直线为x=0,且切点为(0,0).三.小结变式一.已知定义在R 上的函数 满足: (1)求证: ,且当x<0时, (2)求证 在R 上是减函数)(x f ,1)(0,0),()()(<<>•=+x f x n f m f n m f 时且1)0(=f )(x f 1)(>x f1.函数的概念、性质及几种基本初等函数的综合问题。
高考数学一轮复习讲义 第二章 2.4 函数的奇偶性与周期性课件

一轮复习讲义
函数的奇偶性与周期性
要点梳理
忆一忆知识要点
1.奇、偶函数的概念 一般地,设函数 y=f(x)的定义域为 A.如果对于任意的 x∈A, 都有 f(-x)=f(x) ,那么称函数 y=f(x)是偶函数. 如果对于任意的 x∈A,都有f(-x)=-f(x),那么称函数 y =f(x)是奇函数. 奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.
函数奇偶性的判断
例 1 判断下列函数的奇偶性. (1)f(x)= 9-x2+ x2-9;(2)f(x)=(x+1) (3)f(x)=|x+4-3|-x23.
11-+xx;
确定函数的奇偶性时,必须先判定函数定义域是否关于原点 对称.若对称,再验证 f(-x)=±f(x)或其等价形式 f(-x)±f(x) =0 是否成立.
故原函数是奇函数.
(2)由22+-xx≥0 且 2-x≠0⇒-2≤x<2,
定义域关于原点不对称,故原函数是非奇非偶函数.
(3)函数定义域为(-∞,0)∪(0,+∞),关于原点对称, 又当 x>0 时,f(x)=x2+x,则当 x<0 时,-x>0, 故 f(-x)=x2-x=f(x); 当 x<0 时,f(x)=x2-x,则当 x>0 时,-x<0, 故 f(-x)=x2+x=f(x),故原函数是偶函数. (4)由1|x-2-x22>|-0,2≠0 得定义域为(-1,0)∪(0,1),关于原点对 称,∴f(x)=-l(gx(21--2x)2-) 2=-lg(1x-2 x2). ∵f(-x)=-lg[1(--(x-)2x)2]=-lg(1x-2 x2)=f(x),
专题四函数性质的综合问题(2021年高考数学一轮复习专题)

专题四函数性质的综合问题一、题型全归纳题型一 函数的奇偶性与单调性【题型要点】函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性,列出不等式(组),要注意函数定义域对参数的影响.【例1】已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 13,b =(ln 3)2,c =ln 3,则( ) A .f (a )>f (b )>f (c ) B .f (b )>f (a )>f (c ) C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )【解析】 由题意易知f (x )在(0,+∞)上是减函数,又因为|a |=ln 3>1,b =(ln 3)2>|a |,0<c =ln 32<|a |,所以f (c )>f (|a |)>f (b ).又由题意知f (a )=f (|a |),所以f (c )>f (a )>f (b ).故选C.题型二 函数的奇偶性与周期性【题型要点】周期性与奇偶性结合,此类问题多考查求值问题,常利用奇偶性及周期性进行转换,将所求函数值的自变量转化到已知解析式的定义域内求解.【例1】(2020·武昌区调研考试)已知f (x )是定义域为R 的奇函数,且函数y =f (x -1)为偶函数,当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f = .【解析】解法一:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),f (x +4)=f (x ),即f (x )的周期T =4,因为0≤x ≤1时,f (x )=x 3,所以⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛4-25f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛23-f =⎪⎭⎫ ⎝⎛+211-f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫⎝⎛21-f =-18. 解法二:因为f (x )是R 上的奇函数,y =f (x -1)为偶函数,所以f (x -1)=f (-x -1)=-f (x +1),所以f (x +2)=-f (x ),由题意知,当-1≤x <0时,f (x )=x 3,故当-1≤x ≤1时,f (x )=x 3,当1<x ≤3时,-1<x -2≤1,f (x )=-(x -2)3,所以⎪⎭⎫ ⎝⎛25f =32-25-⎪⎭⎫⎝⎛=-18.题型三 函数的综合性应用【题型要点】求解函数的综合性应用的策略(1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.【例1】(2020·陕西榆林一中模拟)已知偶函数f (x )满足f (x )+f (2-x )=0,现给出下列命题:①函数f (x )是以2为周期的周期函数;②函数f (x )是以4为周期的周期函数;③函数f (x -1)为奇函数;④函数f (x -3)为偶函数,其中真命题的个数是( ) A .1 B .2 C .3D .4【解析】 偶函数f (x )满足f (x )+f (2-x )=0,所以f (-x )=f (x )=-f (2-x ),f (x +2)=-f (x ), f (x +4)=-f (x +2)=f (x ),可得f (x )的最小正周期为4,故①错误,②正确; 由f (x +2)=-f (x ),可得f (x +1)=-f (x -1).又f (-x -1)=f (x +1),所以f (-x -1)=-f (x -1),故f (x -1)为奇函数,③正确; 若f (x -3)为偶函数,则f (x -3)=f (-x -3),又f (-x -3)=f (x +3),所以f (x +3)=f (x -3),即f (x +6)=f (x ),可得6为f (x )的周期,这与4为最小正周期矛盾,故④错误,故选B.题型四 函数性质中“三个二级”结论的灵活应用结论一、奇函数的最值性质【题型要点】已知函数f (x )是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f (x )+f (-x )=0.特别地,若奇函数f (x )在D 上有最值,则f (x )max +f (x )min =0,且若0∈D ,则f (0)=0.【例1】设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m = .【解析】函数f (x )的定义域为R ,f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),所以g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,所以M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2.结论二、抽象函数的周期性(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a . (2)如果f (x +a )=1f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .【例2】已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (17)= .【解析】由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数. 由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ),所以f (x )是最小正周期为8的偶函数,所以f (17)=f (1+2×8)=f (1)=2.结论三、抽象函数的对称性已知函数f (x )是定义在R 上的函数.(1)若f (a +x )=f (b -x )恒成立,则y =f (x )的图象关于直线x =a +b 2对称,特别地,若f (a +x )=f (a -x )恒成立,则y =f (x )的图象关于直线x =a 对称.(2)若函数y =f (x )满足f (a +x )+f (a -x )=0,即f (x )=-f (2a -x ),则f (x )的图象关于点(a ,0)对称.【例2】(2020·黑龙江牡丹江一中期末)设f (x )是(-∞,+∞)上的奇函数,且f (x +2)=-f (x ),下面关于f (x )的判定,其中正确命题的个数为( ) ①f (4)=0;②f (x )是以4为周期的函数;③f (x )的图象关于x =1对称;④f (x )的图象关于x =2对称. A .1 B .2 C .3 D .4【解析】 因为f (x )是(-∞,+∞)上的奇函数,所以f (-x )=-f (x ),f (0)=0,因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是以4为周期的周期函数,f (4)=f (0)=0, 因为f (x +2)=-f (x ),所以f [(x +1)+1]=f (-x ),令t =x +1,则f (t +1)=f (1-t ),所以f (x +1)=f (1-x ), 所以f (x )的图象关于x =1对称,而f (2+x )=f (2-x )显然不成立.故正确的命题是①②③,故选C.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)已知定义域为(-1,1)的奇函数f (x )是减函数,且f (a -3)+f (9-a 2)<0,则实数a 的取值范围是( )A .(22,3)B .(3,10)C .(22,4)D .(-2,3)【解析】:由f (a -3)+f (9-a 2)<0得f (a -3)<-f (9-a 2).又由奇函数性质得f (a -3)<f (a 2-9).因为f (x )是定义域为(-1,1)的减函数,所以⎩⎪⎨⎪⎧-1<a -3<1,-1<a 2-9<1,a -3>a 2-9,解得22<a <3.2.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=( ) A .-2 B .2 C .-98D .98【解析】:由f (x +4)=f (x )知,f (x )是周期为4的周期函数,f (2 019)=f (504×4+3)=f (3)=f (-1). 由f (1)=2×12=2得f (-1)=-f (1)=-2,所以f (2 019)=-2.故选A.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4D .-4【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.(2020·广东六校第一次联考)定义在R 上的函数f (x )满足f (x )=f (2-x )及f (x )=-f (-x ),且在[0,1]上有f (x )=x 2,则⎪⎭⎫⎝⎛212019f =( ) A.94 B.14 C .-94D .-14【解析】:函数f (x )的定义域是R ,f (x )=-f (-x ),所以函数f (x )是奇函数.又f (x )=f (2-x ),所以f (-x )=f (2+x )=-f (x ),所以f (4+x )=-f (2+x )=f (x ),故函数f (x )是以4为周期的奇函数,所以⎪⎭⎫ ⎝⎛212019f =⎪⎭⎫ ⎝⎛21-2020f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f .因为在[0,1]上有f (x )=x 2,所以⎪⎭⎫ ⎝⎛21f =221⎪⎭⎫ ⎝⎛=14, 故⎪⎭⎫ ⎝⎛212019f =-14,故选D. 5.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<⎪⎭⎫ ⎝⎛31f 的x 的取值范围是( )A.⎪⎭⎫ ⎝⎛3231, B.⎪⎭⎫⎢⎣⎡3231, C.⎪⎭⎫⎝⎛3221,D.⎪⎭⎫⎢⎣⎡3221,【解析】:因为f (x )是偶函数,所以其图象关于y 轴对称,又f (x )在[0,+∞)上单调递增,f (2x -1)<⎪⎭⎫⎝⎛31f ,所以|2x -1|<13,所以13<x <23.6.(2020·石家庄市模拟(一))已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则在(1,3)上,f (x )≤1的解集是( )A.⎥⎦⎤ ⎝⎛231,B.⎥⎦⎤⎢⎣⎡2523,C.⎪⎭⎫⎢⎣⎡323,D .[2,3)【解析】因为0≤x ≤1时,f (x )=4x -1,所以f (x )在区间[0,1]上是增函数,又函数f (x )是奇函数,所以函数f (x )在区间[-1,1]上是增函数,因为f (x )=f (2-x ),所以函数f (x )的图象关于直线x =1对称,所以函数f (x )在区间(1,3)上是减函数,又⎪⎭⎫ ⎝⎛21f =1,所以⎪⎭⎫ ⎝⎛23f =1,所以在区间(1,3)上不等式f (x )≤1的解集为⎪⎭⎫⎢⎣⎡323,,故选C.6.(2020·黑龙江齐齐哈尔二模)已知函数f (x )是偶函数,定义域为R ,单调增区间为[0,+∞),且f (1)=0,则(x -1)f (x -1)≤0的解集为( ) A .[-2,0] B .[-1,1]C .(-∞,0]∪[1,2]D .(-∞,-1]∪[0,1]【解析】:由题意可知,函数f (x )在(-∞,0]上单调递减,且f (-1)=0,令x -1=t ,则tf (t )≤0,当t ≥0时,f (t )≤0,解得0≤t ≤1;当t <0时,f (t )≥0,解得t ≤-1,所以0≤x -1≤1或x -1≤-1,所以x ≤0或1≤x ≤2.故选C. 7.对于函数f (x )=a sin x +bx +c (其中a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( ) A .4和6 B .3和1 C .2和4D .1和2【解析】:设g (x )=a sin x +bx ,则f (x )=g (x )+c ,且函数g (x )为奇函数.注意到c ∈Z ,所以f (1)+f (-1)=2c 为偶数.故选D.8.(2020·甘肃甘谷一中第一次质检)已知定义在R 上的函数f (x )满足条件:①对任意的x ∈R ,都有f (x +4)=f (x );②对任意的x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2);③函数f (x +2)的图象关于y 轴对称,则下列结论正确的是( )A .f (7)<f (6.5)<f (4.5)B .f (7)<f (4.5)<f (6.5)C .f (4.5)<f (7)<f (6.5)D .f (4.5)<f (6.5)<f (7)【解析】:因为对任意的x ∈R ,都有f (x +4)=f (x ),所以函数是以4为周期的周期函数,因为函数f (x +2)的图象关于y 轴对称,所以函数f (x )的图象关于x =2对称, 因为x 1,x 2∈[0,2]且x 1<x 2,都有f (x 1)<f (x 2).所以函数f (x )在[0,2]上为增函数, 所以函数f (x )在[2,4]上为减函数.易知f (7)=f (3),f (6.5)=f (2.5),f (4.5)=f (0.5)=f (3.5),则f (3.5)<f (3)<f (2.5),即f (4.5)<f (7)<f (6.5).9.(2020·甘肃静宁一中一模)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<⎪⎭⎫ ⎝⎛25f <⎪⎭⎫ ⎝⎛27fB .⎪⎭⎫ ⎝⎛27f <⎪⎭⎫ ⎝⎛25f <f (1)C .⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫ ⎝⎛25fD .⎪⎭⎫ ⎝⎛25f <f (1)<⎪⎭⎫ ⎝⎛27f【解析】:函数f (x +2)是偶函数,则其图象关于y 轴对称,所以函数y =f (x )的图象关于x =2对称,则⎪⎭⎫⎝⎛25f =⎪⎭⎫ ⎝⎛23f ,⎪⎭⎫ ⎝⎛27f =⎪⎭⎫ ⎝⎛21f ,函数y =f (x )在[0,2]上单调递增,则有⎪⎭⎫ ⎝⎛21f <f (1)<⎪⎭⎫ ⎝⎛23f ,所以⎪⎭⎫ ⎝⎛27f <f (1)<⎪⎭⎫⎝⎛25f .故选C. 10.(2020·辽宁沈阳东北育才学校联考(二))函数f (x )是定义在R 上的奇函数,且f (-1)=0,若对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,则不等式f (x )<0的解集为( )A .(-∞,-1)∪(1,+∞)B .(-1,0)∪(0,1)C .(-∞,-1)∪(0,1)D .(-1,0)∪(1,+∞)【解析】:令F (x )=xf (x ),因为函数f (x )是定义在R 上的奇函数,所以F (-x )=-xf (-x )=xf (x )=F (x ), 所以F (x )是偶函数,因为f (-1)=0,所以F (-1)=0,则F (1)=0,因为对任意x 1,x 2∈(-∞,0),且x 1≠x 2时,都 有x 1f (x 1)-x 2f (x 2)x 1-x 2<0成立,所以F (x )在(-∞,0)上单调递减,所以F (x )在(0,+∞)上单调递增,所以不等式f (x )<0的解集为(-∞,-1)∪(0,1),故选C.二、填空题1.若偶函数f (x )满足f (x )=x 3-8(x ≥0),则f (x -2)>0的条件为 .【解析】:由f (x )=x 3-8(x ≥0),知f (x )在[0,+∞)上单调递增,且f (2)=0.所以,由已知条件可知f (x -2)>0⇒f (|x -2|)>f (2).所以|x -2|>2,解得x <0或x >4. 2.设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________; 【解析】 易知函数f (x )的定义域为R ,且f (x )为偶函数.当x ≥0时,f (x )=ln(1+x )-11+x 2,易知此时f (x )单调递增.所以f (x )>f (2x -1)⇒f (|x |)>f (|2x -1|),所以|x |>|2x -1|,解得13<x <1.3.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)= . 【解析】:因为f (x )为偶函数,所以f (-1)=f (1).又f (x )的图象关于直线x =2对称,所以f (1)=f (3).所以f (-1)=3.4.已知定义在R 上的函数f (x )满足f (x +2)=1f (x ),当x ∈[0,2)时,f (x )=x +e x ,则f (2020)=________.【解析】因为定义在R 上的函数f (x )满足f (x +2)=1f (x ),所以f (x +4)=1f (x +2)=f (x ),所以函数f (x )的周期为4.当x ∈[0,2)时,f (x )=x +e x ,所以f (2020)=f (505×4+0)=f (0)=0+e 0=1. 5.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )= .【解析】:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.6.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )-f (-x )x <0的解集为 .【解析】:因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数.因为f (x )-f (-x )x =2·f (x )x <0,即⎩⎪⎨⎪⎧x >0,f (x )<0或⎩⎪⎨⎪⎧x <0,f (x )>0,解得x ∈(-1,0)∪(0,1). 三、解答题1.函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论.【解析】:(1)因为对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), 所以令x 1=x 2=1,得f (1)=2f (1),所以f (1)=0.(2)f (x )为偶函数.证明如下:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),所以f (-1)=12f (1)=0.令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ),所以f (-x )=f (x ),所以f (x )为偶函数.2.已知函数f (x )对任意x ∈R 满足f (x )+f (-x )=0,f (x -1)=f (x +1),若当x ∈[0,1)时,f (x )=a x +b (a >0且a ≠1),且⎪⎭⎫ ⎝⎛23f =12.(1)求实数a ,b 的值;(2)求函数f (x )的值域.【解析】:(1)因为f (x )+f (-x )=0,所以f (-x )=-f (x ),即f (x )是奇函数. 因为f (x -1)=f (x +1),所以f (x +2)=f (x ),即函数f (x )是周期为2的周期函数,所以f (0)=0,即b =-1.又⎪⎭⎫⎝⎛23f =⎪⎭⎫⎝⎛21-f =⎪⎭⎫⎝⎛21-f =1-a =12,解得a =14. (2)当x ∈[0,1)时,f (x )=a x +b =x⎪⎭⎫⎝⎛41-1∈⎥⎦⎤⎢⎣⎡043-,,由f (x )为奇函数知,当x ∈(-1,0)时,f (x )∈⎪⎭⎫ ⎝⎛430,, 又因为f (x )是周期为2的周期函数,所以当x ∈R 时,f (x )∈⎪⎭⎫⎝⎛4343-,.。
高考数学一轮复习 第二章 函数、导数及其应用 2.4 指数函数课件(理)

【知识梳理】 1.根式 (1)根式的概念 ①若____,则x叫做a的n次方根,其中n>1且n∈N*.式子
叫x做n=a根式,这里n叫做根指数,a叫做被开方数.
na
②a的n次方根的表示:
xn=a⇒x=
(当n为奇数且n∈N*时), na ____(当n为偶数且n∈N*时). na
(2)根式的性质
【小题快练】
链接教材 练一练 1.(必修1P56例6改编)若函数f(x)=ax(a>0,且a≠1)的 图象经过点A( ),则f(-1)=________.
2 ,1 3
【解析】依题意可知a2=1 ,解得a= 3 ,
3
3
所以f(x)=( 3)x,所以f(-1)=( )-1=3
答案:
3
3
3.
3
2.(必修1P60B组T1改编)若函数y=(a2-1)x在R上为增函 数,则实数a的取值范围是________. 【解析】由y=(a2-1)x在(-∞,+∞)上为增函数,得a21>1,解得a> 或a<- . 答案:a> 或2a<- 2
2
2
感悟考题 试一试
3.(2016·泉州模拟)函数f(x)=ax-1(a>0,a≠1)的图象
恒过点A,下列函数中图象不经过点A的是 ( )
A.y=
B.y=|x-2|
C.y=2x1-1x
D.y=log2(2x)
【解析】选A.由f(x)=ax-1(a>0,a≠1)的图象恒过点
(1,1),又0= ,知(1,1)不在y= 的图象上.
1
【规范解答】(1)
4 16x8y4 2x2y
(16x8y4)4 2x2y
高考数学一轮复习第二章函数的概念及其基本性质2.4.2幂函数课件理

命题法 幂函数的图象及性质的应用 典例 (1)在同一直角坐标系中,函数 f(x)=xa(x>0),g(x)=logax 的图象可能是( )
(2)若
a=21
2 3
,b=51
2 3
,c=21
1 3
,则
a,b,c
的大小关系是(
)
A.a<b<c
B.c<a<b
C.b<c<a
D.b<a<c
[解析] (1)因为 a>0,所以 f(x)=xa 在(0,+∞)上为增函数,故 A 不符合;在 B 中,由 f(x)的图象知
第二章 函数的概念及其基本性质
第4讲 二次函数与幂函数
考点二 幂函数
撬点·基础点 重难点
1 幂函数的定义 一般地,形如 y=xα (α∈R)的函数称为幂函数.
2 五种幂函数图象的比较
3 幂函数的性质比较
注意点 α 的大小对幂函数图象的影响
幂函数在第一象限的图象中,以直线 x=1 为分界,当 0<x<1 时,α 越大,图象越低(即图象越靠近 x 轴, 可记为“指大图低”);当 x>1 时,α 越大,图象越高(即图象离 x 轴越远,不包含 y=x0).
a>1,由 g(x)的图象知 0<a<1,矛盾,故 B 不符合;在 C 中,由 f(x)的图象知 0<a<1,由 g(x)的图象知 a>1,
矛盾,故 C 不符合;在 D 中,由 f(x)的图象知 0<a<1,由 g(x)的图象知 0<a<1,相符.
(2)因为
y=x2Biblioteka 3在第一象限内是增函数,所以
a=21
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节函数性质的综合问题考点一 函数的单调性与奇偶性[典例] (1)(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3](2)函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1) D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 [解析] (1)∵f (x )为奇函数, ∴f (-x )=-f (x ).∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)上单调递减, ∴-1≤x -2≤1,∴1≤x ≤3.(2)∵函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,∴函数y =f (x )在[2,4]上单调递减,且在[0,4]上函数y =f (x )满足f (2-x )=f (2+x ),∴f (1)=f (3),f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52.[答案] (1)D (2)B[解题技法]函数的单调性与奇偶性的综合问题解题思路(1)解决比较大小、最值问题应充分利用奇函数在关于原点对称的两个区间上具有相同的单调性,偶函数在关于原点对称的两个区间上具有相反的单调性.(2)解决不等式问题时一定要充分利用已知的条件,把已知不等式转化成f (x 1)>f (x 2)或f (x 1)<f (x 2)的形式,再根据函数的奇偶性与单调性, 列出不等式(组),要注意函数定义域对参数的影响.[题组训练]1.已知函数f (x )满足以下两个条件:①任意x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0;②对定义域内任意x 有f (x )+f (-x )=0,则符合条件的函数是( )A .f (x )=2xB .f (x )=1-|x |C .f (x )=-x 3D .f (x )=ln(x 2+3)解析:选C 由条件①可知,f (x )在(0,+∞)上单调递减,则可排除A 、D 选项,由条件②可知,f (x )为奇函数,则可排除B 选项,故选C.2.(2018·石家庄一模)设f (x )是定义在[-2b,3+b ]上的偶函数,且在[-2b,0]上为增函数,则f (x -1)≥f (3)的解集为( )A .[-3,3]B .[-2,4]C .[-1,5]D .[0,6]解析:选B 因为f (x )是定义在[-2b,3+b ]上的偶函数, 所以有-2b +3+b =0,解得b =3,由函数f (x )在[-6,0]上为增函数,得f (x )在(0,6]上为减函数,故f (x -1)≥f (3)⇒f (|x -1|)≥f (3)⇒|x -1|≤3,故-2≤x ≤4.考点二 函数的周期性与奇偶性[典例] (2017·山东高考)已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x,则f (919)=________.[解析] ∵f (x +4)=f (x -2), ∴f (x +6)=f (x ),∴f (x )的周期为6, ∵919=153×6+1,∴f (919)=f (1).又f (x )为偶函数,∴f (919)=f (1)=f (-1)=6. [答案] 6[解题技法]已知f (x )是周期函数且为偶函数,求函数值,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内,把未知区间上的函数性质转化为已知区间上的函数性质求解.[题组训练]1.已知定义在R 上的奇函数f (x )满足f (x )=-f ⎝ ⎛⎭⎪⎫x +32,且f (1)=2,则f (2 018)=________.解析:因为f (x )=-f ⎝ ⎛⎭⎪⎫x +32,所以f (x +3)=f ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +32+32=-f ⎝ ⎛⎭⎪⎫x +32=f (x ).所以f (x )是以3为周期的周期函数.则f (2 018)=f (672×3+2)=f (2)=f (-1)=-f (1)=-2. 答案:-22.已知f (x )是定义在R 上以3为周期的偶函数,若f (1)<1,f (5)=2a -3,则实数a 的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3<1,即a <2.答案:(-∞,2)考点三 函数性质的综合应用[典例] (1)(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50(2)定义在R 上的奇函数f (x )满足f ⎝ ⎛⎭⎪⎫x +32=f (x ),当x ∈⎝ ⎛⎦⎥⎤0,12时,f (x )=log 12(1-x ),则f (x )在区间⎝ ⎛⎭⎪⎫1,32内是( )A .减函数且f (x )>0B .减函数且f (x )<0C .增函数且f (x )>0D .增函数且f (x )<0[解析] (1)法一:∵f (x )是奇函数, ∴f (-x )=-f (x ), ∴f (1-x )=-f (x -1).由f (1-x )=f (1+x ),得-f (x -1)=f (x +1), ∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ), ∴函数f (x )是周期为4的周期函数. 由f (x )为奇函数得f (0)=0. 又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称, ∴f (2)=f (0)=0,∴f (-2)=0.又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0, ∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50) =0×12+f (49)+f (50) =f (1)+f (2)=2+0=2.法二:由题意可设f (x )=2sin ⎝ ⎛⎭⎪⎫π2x ,作出f (x )的部分图象如图所示.由图可知,f (x )的一个周期为4,所以f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (49)+f (50)=12×0+f (1)+f (2)=2.(2)当x ∈⎝ ⎛⎦⎥⎤0,12时,由f (x )=log 12(1-x )可知,f (x )单调递增且f (x )>0,又函数f (x )为奇函数,所以f (x )在区间⎣⎢⎡⎭⎪⎫-12,0上也单调递增,且f (x )<0.由f ⎝ ⎛⎭⎪⎫x +32=f (x )知,函数的周期为32,所以在区间⎝ ⎛⎭⎪⎫1,32上,函数f (x )单调递增且f (x )<0.[答案] (1)C (2)D[解题技法](1)函数的奇偶性、对称性、周期性,知二断一.特别注意“奇函数若在x =0处有定义,则一定有f (0)=0;偶函数一定有f (|x |)=f (x )”在解题中的应用.(2)解决周期性、奇偶性与单调性结合的问题,通常先利用周期性转化自变量所在的区间,再利用奇偶性和单调性求解.[题组训练]1.定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,2)上单调递减,则下列结论正确的是( )A .0<f (1)<f (3)B .f (3)<0<f (1)C .f (1)<0<f (3)D .f (3)<f (1)<0解析:选C 由函数f (x )是定义在R 上的奇函数,得f (0)=0. 由f (x +2)=-f (x ),得f (x +4)=-f (x +2)=f (x ), 故函数f (x )是以4为周期的周期函数, 所以f (3)=f (-1). 又f (x )在[0,2)上单调递减, 所以函数f (x )在(-2,2)上单调递减,所以f (-1)>f (0)>f (1), 即f (1)<0<f (3).2.已知函数y =f (x )的定义域为R ,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有f x 1-f x 2x 1-x 2>0恒成立;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (17),则a ,b ,c 的大小关系正确的是( )A .a <b <cB .b <a <cC .a <c <bD .c <b <a解析:选B 由①知函数f (x )在区间[4,8]上单调递增.由②知f (x +8)=-f (x +4)=f (x ),所以函数f (x )的周期为8,所以b =f (11)=f (3),c =f (17)=f (2×8+1)=f (1).由③可知f (x )的图象关于直线x =4对称,所以b =f (11)=f (3)=f (5),c =f (1)=f (7).因为函数f (x )在区间[4,8]上单调递增,所以f (5)<f (6)<f (7),即b <a <c .[课时跟踪检测]A 级——保大分专练1.(2019·长春质检)下列函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选D 选项A ,B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0, +∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.2.下列函数中,与函数y =12x -2x的定义域、单调性与奇偶性均一致的函数是( )A .y =cos xB .y =x 13C .y =1xD .y =⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0解析:选D 函数y =12x -2x为奇函数,且在R 上单调递减.函数y =cos x是偶函数,且在R 上不单调.函数y =x 13是奇函数,但在R 上单调递增.函数y=1x 的定义域是{x |x ≠0},不是R.画出函数y =⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0的大致图象如图所示,可知该函数是奇函数,且在R 上单调递减.故选D.3.已知定义在R 上的奇函数f (x )有f ⎝ ⎛⎭⎪⎫x +52+f (x )=0,当-54≤x ≤0时,f (x )=2x +a ,则f (16)的值为( )A.12 B .-12C.32D .-32解析:选A 由f ⎝⎛⎭⎪⎫x +52+f (x )=0,得f (x )=-f ⎝⎛⎭⎪⎫x +52=f (x +5),∴f (x )是以5为周期的周期函数, ∴f (16)=f (1+3×5)=f (1). ∵f (x )是R 上的奇函数, ∴f (0)=1+a =0,∴a =-1. ∴当-54≤x ≤0时,f (x )=2x-1,∴f (-1)=2-1-1=-12,∴f (1)=12,∴f (16)=12.4.已知函数f (x )是奇函数,在(0,+∞)上是减函数,且在区间[a ,b ](a <b <0)上的值域为[-3,4],则在区间[-b ,-a ]上( )A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3解析:选B 法一:根据题意作出y =f (x )的简图,由图知,选B. 法二:当x ∈[-b ,-a ]时,-x ∈[a ,b ], 由题意得f (b )≤f (-x )≤f (a ),即-3≤-f (x )≤4,∴-4≤f (x )≤3,即在区间[-b ,-a ]上,f (x )min =-4,f (x )max =3,故选B. 5.(2018·惠州一调)已知定义域为R 的偶函数f (x )在(-∞,0]上是减函数,且f (1)=2,则不等式f (log 2x )>2的解集为( )A .(2,+∞) B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)C.⎝ ⎛⎭⎪⎫0,22∪(2,+∞) D .(2,+∞)解析:选B 因为f (x )是R 上的偶函数,且在(-∞,0]上是减函数, 所以f (x )在[0,+∞)上是增函数,所以f (log 2x )>2=f (1)⇔f (|log 2x |)>f (1)⇔|log 2x |>1⇔log 2x >1或log 2x <-1⇔x >2或0<x <12.6.(2019·合肥调研)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有( )A .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14B .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32C .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14D .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14 解析:选C 因为f (x +2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数的周期为4,作出f (x )的草图,如图,由图可知f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14.7.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________. 解析:f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-128.(2018·合肥二模)设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则函数f (x )在[1,2]上的解析式是________________.解析:令x ∈[-1,0],则-x ∈[0,1],结合题意可得f (x )=f (-x )=log 2(-x +1), 令x ∈[1,2],则x -2∈[-1,0],故f (x )=log 2[-(x -2)+1]=log 2(3-x ). 故函数f (x )在[1,2]上的解析式是f (x )=log 2(3-x ). 答案:f (x )=log 2(3-x )9.已知定义在R 上的奇函数y =f (x )在(0,+∞)内单调递增,且f ⎝ ⎛⎭⎪⎫12=0,则f (x )>0的解集为_______________.解析:由奇函数y =f (x )在(0,+∞)内单调递增,且f ⎝ ⎛⎭⎪⎫12=0,可知函数y =f (x )在(-∞,0)内单调递增,且f ⎝ ⎛⎭⎪⎫-12=0.由f (x )>0,可得x >12或-12<x <0. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <0或x >1210.已知函数f (x )为偶函数,且函数f (x )与g (x )的图象关于直线y =x 对称,若g (3)=2,则f (-2)=________.解析:因为函数f (x )与g (x )的图象关于直线y =x 对称,且g (3)=2,所以f (2)=3.因为函数f (x )为偶函数,所以f (-2)=f (2)=3.答案:311.设f (x )是定义域为R 的周期函数,最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判断f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式. 解:(1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ). 又f (x )的定义域为R ,∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ; 从而当1≤x ≤2时,-1≤x -2≤0,f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎪⎨⎪⎧-x ,x ∈[-1,0],x ,x ∈,,-x +2,x ∈[1,2].12.设函数f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1)求f (π)的值;(2)当-4≤x ≤4时,求函数f (x )的图象与x 轴所围成图形的面积.解:(1)由f (x +2)=-f (x )得,f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ), 所以f (x )是以4为周期的周期函数,所以f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数且f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ). 故函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.当-4≤x ≤4时,设f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4. B 级——创高分自选1.已知f (x )是定义在R 上的偶函数,且f (x )在(0,+∞)上单调递增,则( ) A .f (0)>f (log 32)>f (-log 23) B .f (log 32)>f (0)>f (-log 23) C .f (-log 23)>f (log 32)>f (0) D .f (-log 23)>f (0)>f (log 32)解析:选C ∵log 23>log 22=1=log 33>log 32>0,且函数f (x )在(0,+∞)上单调递增, ∴f (log 23)>f (log 32)>f (0),又函数f (x )为偶函数,∴f (log 23)=f (-log 23), ∴f (-log 23)>f (log 32)>f (0).2.定义在实数集R 上的函数f (x )满足f (x )+f (x +2)=0,且f (4-x )=f (x ).现有以下三种叙述:①8是函数f (x )的一个周期; ②f (x )的图象关于直线x =2对称; ③f (x )是偶函数.其中正确的序号是________.解析:由f (x )+f (x +2)=0,得f (x +2)=-f (x ), 则f (x +4)=-f (x +2)=f (x ),即4是f (x )的一个周期,8也是f (x )的一个周期,故①正确; 由f (4-x )=f (x ),得f (x )的图象关于直线x =2对称,故②正确; 由f (4-x )=f (x )与f (x +4)=f (x ), 得f (4-x )=f (-x ),f (-x )=f (x ), 即函数f (x )为偶函数,故③正确. 答案:①②③3.设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈⎣⎢⎡⎦⎥⎤0,12,都有f (x 1+x 2)=f (x 1)·f (x 2).(1)设f (1)=2,求f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫14; (2)证明:f (x )是周期函数.解:(1)由f (x 1+x 2)=f (x 1)·f (x 2),x 1,x 2∈⎣⎢⎡⎦⎥⎤0,12,知f (x )=f ⎝ ⎛⎭⎪⎫x 2·f ⎝ ⎛⎭⎪⎫x 2≥0,x ∈[0,1]. ∵f (1)=f ⎝ ⎛⎭⎪⎫12+12=f ⎝ ⎛⎭⎪⎫12·f ⎝ ⎛⎭⎪⎫12=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫122,f (1)=2,∴f ⎝ ⎛⎭⎪⎫12=212. ∵f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫14+14=f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫14=⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫142,f ⎝ ⎛⎭⎪⎫12=212, ∴f ⎝ ⎛⎭⎪⎫14=214. (2)证明:依题设,y =f (x )关于直线x =1对称, ∴f (x )=f (2-x ).又∵f (-x )=f (x ),∴f (-x )=f (2-x ),∴f (x )=f (2+x ), ∴f (x )是定义在R 上的周期函数,且2是它的一个周期.。