北京市朝阳区九2020年第二学期九年级综合练习(二)数学试卷答案

合集下载

2020年北京市朝阳区九年级数学综合练习(无答案)

2020年北京市朝阳区九年级数学综合练习(无答案)

北京市朝阳区九年级综合练习(一)数学试卷2020.5学校班级 姓名 考号 考 生 须知 1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个. 1.自2020年1月23日起,我国仅用10天左右就完成了总建筑面积约为113 800平方米的雷神山医院和火神山医院的建设,彰显了“中国速度”.将113 800用科学记数法表示应为(A )51.13810⨯ (B )411.3810⨯ (C )41.13810⨯ (D )60.113810⨯ 2.右图是某几何体的三视图,该几何体是 (A )圆锥 (B )球 (C )长方体(D )圆柱3.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,相反数最大的是(A )a(B )b(C )c(D )d4.一个不透明的袋中装有8个黄球,m 个红球, n 个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列m 与n 的关系一定正确的是 (A )8m n == (B )8n m -= (C )8m n += (D )8m n -= 5. 如果31a =-,那么代数式1)1112-÷-+a aa (的值为 (A )3 (B )3(C )3 (D )32-6.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,CD =4, tan C =12,则AB 的长为 (A )2.5 (B )4 (C )5 (D )107.如图,直线l 1∥l 2,点A 在直线l 1上,以点A 为圆心,适当长度为半径画弧,分别交直 线l 1,l 2于B ,C 两点,以点C 为圆心,CB 长为半径画弧,与前弧交于点D (不与点B 重合),连接AC ,AD ,BC ,CD ,其中AD 交l 2于点E .若∠ECA =40°,则下列结论错误..的是 (A )∠ABC =70° (B )∠BAD =80°(C )CE =CD (D )CE =AE8.生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2019年某市第二季度日均可回收物回收量情况,随机抽取该市2019年第二季度的m 天数据,整理后绘制成统计表进行分析.日均可回收物回收量(千吨) 1≤x <22≤x <3 3≤x <44≤x <5 5≤x ≤6 合计 频数 1 2 b 3 m 频率0.050.10a0.151表中3≤x <4组的频率a 满足0.20≤a ≤0.30. 下面有四个推断: ①表中m 的值为20; ②表中b 的值可以为7;③这m 天的日均可回收物回收量的中位数在4≤x <5组; ④这m 天的日均可回收物回收量的平均数不低于3. 所有合理推断的序号是(A )①② (B )①③ (C )②③④ (D )①③④ 二、填空题(本题共16分,每小题2分) 9.若分式12x -有意义,则x 的取值范围是 . 10.分解因式:2288x x ++= .11.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC ,若AD =1,BD =4,则DEBC= .12.如图所示的网格是正方形网格,则∠AOB∠COD (填“>”、“=”或“<”).13.如图,∠1~∠6是六边形ABCDEF的外角,则∠1+∠2+∠3+∠4+∠5+∠6= °.14.用一个a的值说明命题“若a为实数,则a<2a”是错误的,这个值可以是a=.15.某地扶贫人员甲从办公室出发,骑车匀速前往所A村走访群众,出发几分钟后,扶贫人员乙发现甲的手机落在办公室,无法联系,于是骑车沿相同的路线匀速去追甲.乙刚出发2分钟,甲也发现自己手机落在办公室,立刻原路原速骑车返回办公室,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回办公室,甲继续原路原速赶往A村.甲、乙两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(乙给甲手机的时间忽略不计).有下列三个说法:①甲出发10分钟后与乙相遇;②甲的速度是400米/分;③乙返回办公室用时4分钟.其中所有正确说法的序号是.16.某兴趣小组外出登山,乘坐缆车的费用如下表所示:乘坐缆车方式乘坐缆车费用(单位:元/人)往返180单程100已知小组成员每个人都至少乘坐一次缆车,去程时有8人乘坐缆车,返程时有17人乘坐缆车,他们乘坐缆车的总费用是2400元,该小组共有人.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.计算:1132cos60(2020)3π-⎛⎫-+︒--+ ⎪⎝⎭.第11题图第12题图第13题图18.解不等式组:2(1)2 1.2x xxx-<+⎧⎪⎨+<⎪⎩,19.如图,在△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E.求证:∠BAD =∠CDE.20.关于x的一元二次方程041)1(22=+++mxmx有两个不相等的实数根.(1)求m的取值范围;(2)写出一个符合条件的m的值,并求出此时方程的根.21.如图,四边形ABCD是平行四边形,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF并延长,交AD的延长线于点G,若∠CEG=30︒,AE =2,求EG的长.22.先进制造业城市发展指数是反映一个城市先进制造水平的综合指数.对2019年我国先进制造业城市发展指数得分排名位居前列的30个城市的有关数据进行收集、整理、描述和分析.下面给出了部分信息:a.先进制造业城市发展指数得分的频数分布直方图(数据分成6组:30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x≤90):b.先进制造业城市发展指数得分在70≤x<80这一组的是:71.1 75.7 79.9c.30个城市的2019年快递业务量累计和先进制造业城市发展指数得分情况统计图:d.北京的先进制造业城市发展指数得分为79.9.根据以上信息,回答下列问题:(1)在这30个城市中,北京的先进制造业城市发展指数排名第______;(2)在30个城市的快递业务量累计和先进制造业城市发展指数得分情况统计图中,包括北京在内的少数几个城市所对应的点位于虚线l的上方.请在图中用“○”圈出代表北京的点;(3)在这30个城市中,先进制造业城市发展指数得分高于北京的城市的快递业务量累计的最小值约为_______亿件.(结果保留整数)23.如图,在△ABC中,AB=3,AC=4,BC=5.在同一平面内,△ABC内部一点O到AB,AC,BC的距离都等于a(a为常数),到点O的距离等于a的所有点组成图形G.(1)直接写出a的值;(2)连接BO并延长,交AC于点M,过点M作MN⊥BC于点N.①求证:∠BMA=∠BMN;②求直线MN与图形G的公共点个数.24.有这样一个问题:探究函数62yx=-的图象与性质并解决问题.小明根据学习函数的经验,对问题进行了探究.下面是小明的探究过程,请补充完整:(1)函数62yx=-的自变量x的取值范围是2x≠;(2)取几组y与x的对应值,填写在下表中.x…-4-2-101 1.2 1.25 2.75 2.834568…y…1 1.52367.5887.563m 1.51…m的值为;(3)如下图,在平面直角坐标系xOy中,描出补全后的表中各组对应值所对应的点,并画出该函数的图象;(4)获得性质,解决问题:①通过观察、分析、证明,可知函数62yx=-的图象是轴对称图形,它的对称轴是;②过点P(-1,n)(0<n<2)作直线l∥x轴,与函数62yx=-的图象交于点M,N (点M在点N的左侧),则PN PM-的值为.25.在平面直角坐标系xOy 中,直线1y =与一次函数y x m =-+的图象交于点P ,与反比例函数my x=的图象交于点Q,点A (1,1)与点B 关于y 轴对称. (1)直接写出点B 的坐标;(2)求点P ,Q 的坐标(用含m 的式子表示);(3)若P ,Q 两点中只有一个点在线段AB 上,直接写出m 的取值范围.26.在平面直角坐标系xOy 中,抛物线231y ax ax a =-++与y 轴交于点A . (1)求点A 的坐标(用含a 的式子表示); (2)求抛物线的对称轴;(3)已知点M (-2,-a -2),N (0, a ).若抛物线与线段MN 恰有一个公共点,结合函数图象,求a 的取值范围.27.四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转2α(045)α︒︒<<,得到线段CE ,连接DE ,过点B 作BF ⊥DE 交DE 的延长线于F ,连接BE . (1)依题意补全图1; (2)直接写出∠FBE 的度数;(3)连接AF ,用等式表示线段AF 与DE 的数量关系,并证明.图1 备用图28.在平面直角坐标系xOy中,点A(t,0) ,B(t+2,0) ,C(n,1) ,若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是_____;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=3,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.。

2023北京朝阳区初三一模数学试题及参考答案

2023北京朝阳区初三一模数学试题及参考答案

北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。

2020年北京市朝阳区高考数学二模试卷(二)(有答案解析)

2020年北京市朝阳区高考数学二模试卷(二)(有答案解析)

A. 〔-00, 0〕B. 〔-00, 1〕C. 〔1, +°°〕7. 在棱长为1的正方体 ABCD-A 1B 1C 1D 1中,E, F 分别为线段CD 和A I B I 上的动点,且满足 CE=A I F,那么四边形D I FBE 所 围成的图形〔如下图阴影局部〕分别在该正方体有公共顶 点的三个面上的正投影的面积之和〔〕D. (0, +°°)A.有最小值B.有最大值jC.为定值35 . 等差数列{a n }首项为a 1,公差dwQ 那么“ a 〔,a 3, a 9成等比数列〞是“ a 1二d的〔〕A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6 .函数f 〔x 〕 =:,;;]:,假设函数f 〔x 〕存在零点,那么实数a 的取值范围是〔 〕2021年北京市朝阳区高考数学二模试卷〔二〕 、选择题〔本大题共 8小题,共40.0分〕1. 集合 A={x|x>1}, B={x|x (x-2)<0},贝U AUB=( ) A. {x|x>0} B. {x|1<x< 2} C.{x|1 买v 2} D. {x|x>0且 xw 1} 2 . 复数i 〔1 + i 〕的虚部为〔 〕 A. B. 1 C. 0 3 .在数学史上,中外数学家使用不同的方法对圆周率 兀进行 了估算.根据德国数学家莱布尼茨在 1674年给出的求 兀D. -1的方法绘制的程序框图如下图. 执行该程序框图, s 的值为〔 A. 4 B. D.输出 4. 在 AABC 中,H c=4, cosC = -5,那么 b=()D.为定值28 . 在同一平面内, A 为动点,B, C 为定点,且/BAC4, 二A 却?于口,BC=1, P为BC 中点•过点p 作pQ gC 交AC 所在直线于Q ,那么;Q 在;c 方向上投影的最大值 二、填空题(本大题共 6小题,共30.0分)9 . a=log 3e, b=ln3, c=log 32,贝U a, b, c 中最小的是 .10 .点M (1, 2)在抛物线 C: y 2=2px (p>0)上,那么点M 到抛物线C 焦点的距 离是.I x - votO.* ( i = 1 + 2r,11 .圆心;{y = 1十(.为参数)上的点P 到直线| y = —1 + (t 为参数)的距离 最小值是. f 工之L12 .实数x, y 满足 ¥=#,能说明“假设z=x+y 的最大值为4,那么x=1, y=3〞为假 [x 4- y < 4.命题的一组(x, y)值是.13 .由数字1, 2, 3, 4, 5, 6组成没有重复数字的三位数,偶数共有 个,其中 个位数字比十位数字大的偶数共有 个. 14 .如图,在平面直角坐标系xOy 中,点 O (0, 0) , M (-4, 0) , N (4, 0),P (0, -2) , Q (0, 2) , H (4, 2).线段OM 上的动点A 满足;力一%时(''(必‘)); 线段HN 上的动点B 满足j 二"N 直线PA 与直线QB 交于点L,设直线PA 的斜 ntf ni\ 7率记为k,直线QB 的斜率记为k',那么k?k'的值为;当入变化时,动点L 一定 在 (填“圆、椭圆、双曲线、抛物线〞之中的一个)上.三、解做题(本大题共 6小题,共80.0分) 15 .函数 fix) = 2sinxcosx + 入瓦,".一超.(I )求函数f (x)的最小正周期;(n )当某E [一彳,同时,求证:/(X )之一十B.C.是(某电视台举行文艺比赛, 并通过网络比照赛进行直播. 比16.赛现场有5名专家评委给每位参赛选手评分, 场外观众可以通过网络给每位参赛选手评分. 每位选手的最终得分由专家评分和观众评分确定.某选手参与比赛后,现场专家评分情况如表;场外有数万名观众参与评分,将评分根据[7, 8) , [8, 9) , [9, 10]分组,绘成频率分布直方图如图:专家A B C D E评分9.69.59.68.99.7(I )求a的值,并用频率估计概率,估计某场外观众评分不小于9的概率;(n)从5名专家中随机选取3人,X表示评分不小于9分的人数;从场外观众中随机选取3人,用频率估计概率, Y表示评分不小于9分的人数;试求 E (X)与E (Y)的值;(出)考虑以下两种方案来确定该选手的最终得分:方案一:用所有专家与观众的评分的平均数匚作为该选手的最终得分.r 4方案二:分别计算专家评分的平均数;和观众评分的平均数;,用以士作为该选手最终得分.请直接写出f与',的大小关系.频率在三^柱ABC-A i B i C i中,底面ABC是正三角形,侧棱AAUB面17.ABC. D, E分别是边BC, AC的中点,线段BC i与B i C交于点G,且AB=4, 叫=2k.(I )求证:EG//平面AB i D;(n)求证:BC i"面AB i D;(m )求二面角A-B i C-B的余弦值.18.函数f (x) = (2ax2+4x) lnx-ax2-4x (aCR,且a*O) (I )求曲线y=f(x)在点(1, f (1))处的切线方程;(n )假设函数f (x)的极小值为试求a的值.19 .椭圆C: 4 + y Z= l (a>1)的离心率为坐.(I )求椭圆C的方程;(n)设直线l过点M (1, 0)且与椭圆C相交于A, B两点.过点A作直线x=3 的垂线,垂足为D .证实直线BD过x轴上的定点.20 .对于由有限个自然数组成的集合A,定义集合S (A) ={a+b|aCA, bCA},记集合S(A)的元素个数为d (S (A)).定义变换T,变换T将集合A变换为集合T (A) =AUS (A).(I )假设A={0 , 1, 2},求S (A) , T (A);(n)假设集合A有n个元素,证实:" d (S (A) ) =2n-1〞的充要条件是“集合A 中的所有元素能组成公差不为.的等差数列〞;(出)假设A?{1 , 2, 3, 4, 5, 6, 7, 8}且{1 , 2, 3,…,25, 26}? T (T (A)), 求元素个数最少的集合 A.1 .答案:A解析:解:根据不等式的解法,易得 B={x|0vx 匚< 2},均召-2? 4 5 .又有 A={ x|x> 1},那么 AUB={x|x>0}. 应选:A.根据不等式的解法,B={x[0vx<2},然后根据并集的定义“由所有属于集合 A 或属于集合B 的元素所组成的集合叫做并集〞进行求解即可. 此题考查并集的运算,注意结合数轴来求解,属于容易题.2 .答案:B 解析:解:.i (1 + i) =-1 + i,. i (1 + i)的虚部为1. 应选:B.直接利用复数代数形式的乘除运算化简得答案.此题考查复数代数形式的乘除运算,考查复数的根本概念,是根底题.3 .答案:C 解析:解:第一次,s=4, k=1, k>3否,第二次, 乂辐,k =2 ,k4否, 第二次,s= |+?=m ,k=3, k>3是, 程序终止,输出s=* 应选:C.根据程序框图进行模拟运算即可. 此题主要考查程序框图的识别和判断, 根据条件进行模拟运算是解决此题的关键.比拟根底.4 .答案:B 解析:【分析】由利用同角三角函数根本关系式可求 值. 此题主要考查了同角三角函数根本关系式, 础题. 【解答】解:*c=4, CORC =(, sinC=dl-co5i 々巧,,由正弦定理 岛可得:解得:b=3. 应选:B.答案与解析sinC 的值,根据正弦定理即可计算得解b 的正弦定理在解三角形中的综合应用,属于基5 .答案:C 解析:【分析】此题考查等差、等比数列的定义以及判断,涉及充分必要的定义与判断,属于根底题. 根据题意,设数列{a n }的公差为d,从充分性与必要性的角度分析“ a i, a 3, a 9成等比 数列〞和“ a i =d 〞的关系,综合即可得答案. 【解答】解:根据题意,设数列{a n }的公差为d,假设 a i, a 3, a 9成等比数列,那么〔a 3〕2=a i 39,即〔a i +2d 〕 2=a i • 〔a i +8d 〕,变形可得:a i =d,那么“a i, a 3, a 9成等比数列〞是“ a i =d 〞的充分条件;假设 a i =d,贝U a 3=a i +2d=3d, a 9=a i +8d=9d,贝U 有〔a 3〕2=a i a 9,贝U " a i, a 3, a 9成等比数 列〞是“ a i =d 〞的必要条件;综合可得:“ a i, a 3, a 9成等比数列〞是“ a i =d 〞的充要条件; 应选:C.6 .答案:D 解析:解:函数f 〔x 〕=:上管,函数的图象如图:函数f 〔x 〕存在零点,那么实数 a 的取值范围是: 〔.,+°°〕. 应选:D.画出函数的图象,利用数形结合推出 a 的范围即可.此题考查分段函数的应用,函数的零点的判断, 考查数形结合以及计算水平.7 .答案:DD'B'E f解后面解:依题意,设四边形D I FBE的四个顶点在后面,上面,左面的投影点分别为D', F', B', E',那么四边形D I FBE在上面,后面,左面的投影分别如上图.所以在后面的投影的面积为S后=1 M=1 ,在上面的投影面积S±=D'E' 1=DEX1 = DE,在左面的投影面积S左=B'E' 1=CEX1=CE,所以四边形D1FBE所围成的图形〔如下图阴影局部〕分别在该正方体有公共顶点的三个面上的正投影的面积之和S=S 后+S 上+S 左=1 + DE+CE=1 + CD=2.应选:D.分别在后,上,左三个平面得到该四边形的投影,求其面积和即可.此题考查了正方体中四边形的投影问题,考查空间想象水平.属于中档题.8 .答案:C 解析:解:建立如下图的平面直角坐标系,那么〔4, 0〕, C4,0〕, P〔0,0〕,设 A 〔x, y〕,那么xv 0,设直线AB, AC的斜率分别为k b k2, 由到角公式得:G an J化简彳导:x2+ (y-,)=;,口次那么x*:,那么」苧叔V0,由;在;方向上投影的几何意义可得:.在;方向上投影为DP|二|x|, 那么H、方向上投影的最大值是降应选:C.先建系,再由到角公式得:=常二tan,化简得:x2+ (y<)=:,那么x29[那么-;今v 0,再由二在M方向上投影的几何意义可得解・此题考查了到角公式及平面向量数量积的运算,属中档题.9 .答案:c 解析:解:b=ln3>1,又2V ev 3,所以10g32V log3ev 1,即cv a< b,故a, b, c中最小的是 c.故答案为:c由对数值大小的比拟得:b=1n3>1,又2V e<3,所以10g32v1og3ev 1,即cvavb,得解.此题考查了对数值大小的比拟,属简单题.10 .答案:2解析:解:由点M (1, 2)在抛物线C: y2=2px (p>0)上,可得4=2p, p=2,抛物线C: y2=4x,焦点坐标F (1, 0),那么点M到抛物线C焦点的距离是:2,故答案为:2.由题意可知:点的坐标代入抛物线方程,求出p=2,求得焦点F (1, 0),利用直线的两点式,即可求点M到抛物线C焦点的距离.此题考查抛物线的标准方程及简单几何性质,直线的两点式方程,考查计算水平,属于根底题. 11 .答案:睥1 解析:解:由ly = 1+ 就月.得x2+(y-1)2=1,由,ly =一1 + t 得x-2y-3=0 ,,一,、一■ 一I r , r、 _ ■ - . |0"2~ 3| J-1圆心〔0, 1〕到直线x+2y+1=0的距离d=:=、后,所以所求距离的最小值为-1故答案为:.^5-1.化成直角坐标方程后用点到直线的距离,再减去半径. 此题考查了参数方程化成普通方程,属中档题.12 .答案:〔2, 2〕r x>l,解析:解:实数x, y 满足y 皂币 的可行域 以及x+y=4的直线方程如图:能说明"假设z=x+y 的最大值为4,那么x=1,y=3〞 为假命题的一组〔x, y 〕值是〔2, 2〕. 故答案为:〔2, 2〕.画出约束条件的可行域,目标函数取得最大值 的直线,然后求解即可.此题考查线性规划的简单应用,画出可行域是 解题的关键.13 .答案:60 36解析:解:根据题意, 对于第一空:分 2步分析:①要求是没有重复数字的三位偶数,其个位是 ②在剩下的5个数字中任选2个,安排在前 那么有3X20=60个符合题意的三位偶数; 对于第二空:分 3种情况讨论:①,当其个位为2时,十位数字只能是 的三位数;②,当其个位为4时,十位数字可以是 个符合题意的三位数;③,当其个位为6时,十位数字可以是5 >4=20个符合题意的三位数;那么有4+12+20=36个符合题意的三位数; 故答案为:60, 36.对于第一空:分 2步分析:①分析可得要求三位偶数的个位有 3种情况,②在剩下的 5个数字中任选2个,安排在前2个数位,由分步计数原理计算可得答案;对于第二空:按个位数字分 3种情况讨论,分别求出每种情况下的三位数的数目,由加 法原理计算可得答案.此题考查排列、组合的应用,涉及分步、分类计数原理的应用,属于根底题.解析:解:叫;「A (-4 入,0),又 P (0, -2) , .*=*$; r 二厂 _ ___ . , 2(-2) / . . , L HRB (4,2-2 k= 4^0- =-2, kk =,设 L (x, y),那么 k=\ k =^, .kk1 = 1?;〞=;, 1 / = = X,即彳-适=1 .2、4或6,有3种情况, 2个数位,有 A 52=20种情况,1,百位数字有4种情况,此时有4个符合题意 1、2、3,百位数字有4种情况,此时有 3>4=121、2、3、4、5,百位数字有4种情况,此时有14.答案:; 双曲线故答案为::,彳先=1 .根据向量关系得到 A, B 的坐标,再根据斜率公式可得 kk'=;设P (x, y),根据斜 I 率公式可得P 点轨迹方程.此题考查了圆锥曲线的轨迹问题,属中档题. 15 .答案:解:(I) J ⑺="Ehwhh + 笈 3gA -木, =#i 也 2M + \3cosZx, =・ 证实:(II)由于第中, 即归+沁一,1, 所以f (x)在上单调递增. 当 2# + ;=—;时, J Q即工:一;,时, /.%山=一"手所以当X E 时,f W > 75.解析:(I)首先利用三角函数关系式的恒等变换, 把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期.(n )利用函数的关系式,进一步利用函数的定义域求出函数的值域.此题考查的知识要点:三角函数关系式的变换,正弦函数的性质的应用,主要考察学生 的运算水平和转换水平,属于根底题型.16 .答案:解:(I)由图知a=0.3,某场外观众评分不小于 9的概率是1. (n ) X 的可能取值为 2, 3. P (X=2)所以X 的分布列为: X233 dP 弱3J 12 所以 E (X ) =2乂-+3XG = M .J0*J 1由题意可知,T 〜巩工],所以E (Y)所以f (x)的最小正周期 2ltT=V =n3 / 、端 2W ; P (X =3)= np=|(m)* * * = 2 ^ x0 + 0x4 + 0x 2.= 0BC i DA'-=OxO + 〔-2〕x4+2\Nx2u2 = OBC 1 叫'所以 BC i ±DA, BCUDB i.又由于DA ADB I =D,所以BC i,平面AB i D. ............................ 〔 9分〕 (出)解:显然平面 B i CB 的一个法向量为“ =(I, 0, 0)'=0, L *呼n 8-诙平片灯=0,付1 4尸窗% ; 0, 【电/ 4叼如ririA.设二面角A-BiC-B 的平面角为0,由图可知此二面角为锐二面角,解析:(I)证实EG/AB i.然后利用直线与平面平行的判定定理证实 EG/印面AB i D.(n )取B iC i 的中点D i,连接DD i,建立空间直角坐标系 D-xyz,通过向量的数量积证实BC i IDA, BCODB i,然后证实BC i 」平面AB i D.(出)求出平面 B i CB 的一个法向量,平面 AB i C 的一个法向量,设二面角 A-B i C-B 的平面角为0,利用空间向量的数量积求解二面角的余弦函数值即可. 此题考查直线与平面垂直以及平行的判定定理的应用, 二面角的平面角的求法,考查计算水平.解析:此题考查了离散型随机变量的期望和方差,属中档题.(I )由图知a=0.3,某场外观众评分不小于 9的概率是:(n )计算概率可得分布列和期望;(m)专家评分的平均分高于观众评分的平均分,17.答案:(本小题总分值14分)(I)证实:由于E 为AC 中点,G 为B i C 中点.所以EG/AB 1. 又由于EG?平面AB i D, AB i ?平面AB i D, 所以EG/狂面AB i D. .................... ( 4分) (II )证实:取BiCi 的中点Di,连接DDi.显然DA, DC, DD i 两两互相垂直,如图,建立空间直角坐 标系D-xyz,那么 D (0,0,0),42、, 0, 0),B (0,-2,0),fl 1(O 1 -2, 2j),2. 2^2), B R G, 1, 0), C (0, 2, 0). 所以又由于 设平面AB i C 的一个法向量为:叼=〔x, y, z 〕,又;=(一2屈 2,.) ni L, ■ =〔.,4, -西设x=i ,贝U y =/1,上二亚,那么:a,隹两.'III所以COSfi =而・. 〔 I4 分〕但专家人数远小于观众人数, 故小于.18 .答案:(本小题总分值13分)解:(I )函数 f (x) = (2ax 2+4x) lnx-ax 2-4x (aCR,且 aw .. 由题意可知 f' (x) =4 (ax+1) lnx, xC (0, +°°).f' (1) =0, f (1) =-a-4, .•曲线y=f (x)在点(1, f (1))处的切线方程为 y=-a-4. ....... ( 3分) (n )①当av-1时,x 变化时f (x) , f (x)变化情况如下表:x ◎ 4 Tf-l 1)1 (1, +°°) f (x) -0 +0 -f (x)极小值极大值此时晨一:)②当a=-1时,f' (x) wo 在(0, +oo )上恒成立,所以f (x)在(0, +°°)单调递减. 此时f (x)无极小值,故不成立.③当-1<av .时,x 变化时f' (x) , f (x)变化情况如下表: x (0, 1) 1 J 1A+ 8)f (x) -0 + 0 -f (x)极小值/极大值解得u = -2 +避或a = -2—?3. 由于-1vav0,所以 u =④当a>0时,x 变化时f' (x) , f (x)变化情况如下表: x (0, 1) 1 (1, +°°) f (x)-+f (x)极小值解得a =—2 +小或H =一2-$3 ,故不成立. 综上所述,二-2 +祠. ............ . (13分)解析:(I )由题意可知 f (x) =4 (ax+1) lnx, xC (0, +0°) , f' (1) =0, f (1) =-a-4, 由此能求出曲线 y=f (x)在点(1, f (1))处的切线方程.(n )当av-1时,求出f]-3 =1 +力M-口)=;,解得口 = -^>-1 ,不成立;②当a=-1 f (x)在(0, +8)单调递减.f (x)无极小值;由题意可得一以一4=:,求出4=\信-2;当a>0时,极小值f (1) =-a-4.由此能求出a 的值.此题考查切线方程的求法,考查实数值的求法,考查导数性质、函数的单调性、最值等 根底知识,考查运算求解水平,考查化归与转化思想,是中档题.= 119 .答案:(I )解:由题意可得[〞 —3 解得a=J , b=1 ,\a 2 = b 2 + c 2时,f (x) w 师(0, +oo)上恒成立, 当-1vav0 时,极小值 f (1) =-a-4,所以椭圆C 的方程为;+y 2=i.(n )直线BD 恒过x 轴上的定点 N (2, 0).证实如下 (1)当直线l 斜率不存在时,直线l 的方程为x=1, 不妨设 A (1,乎),B (1, ¥), D (3,悟)此时,直线BD 的方程为:y ((x-2),所以直线BD 过点(2, 0)(2)当直线l 的斜率存在时,设 A (xi, yi) , B (x2, y2),直线AB 为y=k (x-1), D (3, yi).解析:(I )由题意列关于a, b, c 的方程组,求解可得 a, b, c 的值,那么椭圆方程可 求;(n)当直线AB 的斜率不存在时,直线 BD 过点(2, 0).当直线AB 的斜率存在时, 设直线AB 为y=k (x-i),联立方程组,消去 y 整理得:(i+3k 2) x 2-6k 2x+3k 2-3=0,利 用韦达定理、直线方程,结合条件求出直线BD 过x 轴上的定点.此题考查椭圆方程求法,考查考查两直线的交点是否为定点的判断与求法,考查椭圆、 韦达定理、根的判别式、直线方程、弦长公式等根底知识,考查推理论证水平、运算求 解水平,考查化归与转化思想、函数与方程思想,是中档题.20 .答案:解:(I )假设集合 A={0 , i, 2},那么 S (A) =T (A) ={0 , i, 2, 3, 4} •….(3 分)(n )令 A={Xi, x2,…xn}.不妨设 xi 〈x2<e y xn. 充分性:设{xk}是公差为d (dWQ)的等差数列. 贝U x i +x j =x i + (i-i) d+x i + (j-i) d=2x i + (i+j-2) d (iW, j 而)且2M+jwm.所以x i +x j 共有2n-i 个不同的值.即 d (S (A) ) =2n-i. 必要性:假设 d (S (A) ) =2n-i . 由于 2x i 〈x i +x i+i v 2x i+i, ( i=i, 2,…,n-i).所以 S (A)中有 2n-i 个不同的元素:2x i, 2x 2 ,…,2x n, x i + x 2, x 2+x 3,…,x n-i +x n. 任意x i +x j (iw, j 切)的值都与上述某一项相等.又 x i +x i+i v x i +x i+2V x i+i + x i+2, 且 x i + x i+i V 2x i+i V x i+i +x i+2 , i=i , 2 , …,n-2 . 所以X i +x i+2=2x i+i ,所以{x k }是等差数列,且公差不为 0.….(8分)(出)首先证实:iCA.假设i?A, A 中的元素均大于i,从而i?S (A), 因此 i?T (A) , i?S (T (A)),故 i?T (T (A)),与{i , 2, 3,…,25, 26} ?T (T (A))矛盾,因此i CA. 设A 的元素个数为n, S (A)的元素个数至多为C : + n,从而T (A),的元素个数至多为 C -+n+n=,f^m. * 2假设n=2,那么T (A)元素个数至多为5,从而T (T (A))的元素个数至多为亨=20, 而T (T (A))中元素至少为 26,因此n>3假设 A 有三个元素,设 A={1 , a2, a 3},且 1va 2〈a3W8,那么 1, 2, a2, a 2+1, a 3, a 3+1, 2a 2, a 2+a 3, 2a 3C T (A),, = «一1) x 2+ 所以 x i +x 2= :(1+3k 2) x 2-6k 2x+3k 2-3=0.直线 北BD: y-y i = 所以由于(x-3),令 y=0,得 x-3=故直线BD 过点(2,0). 综上所述,直线 BD 恒过x 轴上的定点(2, 0)从而1, 2, 3, 47(T (A) ) .假设a2>5, T (T (A))中比4大的最小数为32,那么5?T (T (A)),与题意矛盾,故a2<5.集合T (T (A)).中最大数为4a3,由于26CT (T (A)),故4a3> 26从而a3>7, (i)假设A={1 , a2, 7},且a2<5.此时1, 2, a2, a2+1, 7, 8, 2a2, 7+a2, 14b (A), 那么有8+14=22, 2X14=28CT (T (A)),在22 与28之间可能的数为14+2a2, 21+a2. 此时23, 24, 25, 26不能全在T (T (A)).中,不满足题意. (ii)假设A={1 , 32, 8},且32<5 此时1, 2 , 32 , 32+1, 8 , 9 , 232 , 8+ 32, 16CT (A), 那么有16+9=25 CT (T (A)),假设26 CT (T (A)),那么16+232=26 或16+ (8+32)=26, 解得32=5或32=2 .当A={1 , 2, 8}时,15, 21, 23?T (T (A)).,不满足题意.当A={1 , 2, 8}时,T (T (A) ) ={1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 32},满足题意.故元素个数最少的集合A为{1, 5, 8} ....................... ... ( 13分)解析:(I)根据定义直接进行计算即可(n)根据充分条件和必要条件的一结合等差数列的性质进行证实(m )首先证实:1 CA,然后根据条件分别判断A中元素情况即可得到结论.此题主要考查集合元素性质以及充分条件和必要条件的应用, 综合性强,难度比拟大.不太好理解.。

2020年北京朝阳区九年级中考数学一模试卷带讲解

2020年北京朝阳区九年级中考数学一模试卷带讲解
∵S2=(6-2)×180°=4×180°=720°,
∴S1=1080°-720°=360°,
∴ =360°,
故答案为:360.
【点睛】本题考查了多边形的内角与外角,掌握知识点是解题关键.
14.用一个 的值说明命题“若 为实数,则 ”是错误的,这个值可以是 _________.
【14题答案】
【分析】举出一个反例:a=0,说明命题“若 为实数,则 ”是错误的即可.
【详解】解:由题意,得 ,所以这四个数中,相反数最大的是a.
故选:A.
【点睛】本题考查了数轴的知识、相反数的定义和实数的大小比较,属于基础题型,明确哪个数越大则其相反数就越小是解本题的关键.
4.一个不透明的袋中装有8个黄球, 个红球, 个白球,每个球除颜色外都相同.任意摸出一个球,是黄球的概率与不是黄球的概率相同,下列 与 的关系一定正确的是()
【详解】原式

当 时,原式 .
故选:B.
【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键;
6.如图, 的直径 垂直于弦 ,垂足为 , , ,则 的长为()
A.2.5B.4C.5D.10
【6题答案】
C
【分析】先根据垂径定理得出CE=DE=2,易得∠B=∠C,然后在Rt△ACE和Rt△BDE中分别利用∠C和∠B的正切求出AE与BE的长,进而可得答案.
乙返回办公室用了14-10=4(分钟),故③正确;
故答案为:①②③.
【点睛】本题考查了一次函数的应用,根据图象获取条件是解题关键.
16.某兴趣小组外出登山,乘坐缆车的费用如下表所示:
乘坐缆车方式
乘坐缆车费用(单位:元/人)
往返
180
单程
100

2020年北京市朝阳区初三数学一模答案

2020年北京市朝阳区初三数学一模答案

北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考 2020.5一、选择题(本题共16分,每小题2分)题号 1 2 3 4 5 6 7 8 答案ADACBCCD二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分) 17.解:原式 1321+32=+⨯- 3+3=.18.解:原不等式组为()21212x x x x -+⎧⎪⎨+⎪⎩<,①<. ②解不等式①得,4x <. 解不等式②得,1x >. ∴原不等式组的解集为1x <<4.19.证明:∵AB =AC ,∴∠B =∠C . ∵ AD ⊥BC , ∴∠ADB =90︒. ∴∠BAD +∠B =90︒. ∵DE ⊥AC , ∴∠DEC =90︒. ∴∠CDE +∠C =90︒. ∴∠BAD =∠CDE .题号 9 101112 答案 x ≠2 ()222x +14< 题号 13 14 15 16 答案360答案不唯一, 如 a =0①②③2020.解:(1)由题意得, 221(1)404m m ∆=+-⨯>.解得21->m . (2)答案不唯一,如:m =0.此时,方程为20x x +=. 解得1201x x ==-,.21.(1)证明:∵四边形ABCD 是平行四边形, ∴∠B =∠ADC .∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD=90°. ∵BE = DF ,∴△ABE ≌△ADF .∴AB =AD .∴四边形ABCD 是菱形.(2)解:由(1)知AD //BC .∴∠EAG =90°,∠G =∠CEG =30°. ∴EG =2AE =4.22.解:(1)3;(2)(3)31.23.(1)a =1;(2)①由题意可知图形G 是以O 为圆心,a 为半径的圆, AB ,AC ,BC 与⊙O 相切.∴∠ABM =∠NBM .∵AB =3,AC =4,BC =5, ∴∠A =90°. ∵MN ⊥BC ,∴∠A =∠BNM =90°. ∴∠BMA =∠BMN .②如图,设⊙O 与AC 的切点为D ,连接OD ,作OE ⊥MN 于点E . ∴OD ⊥AC . ∴OD = OE . ∴OE 为⊙O 的半径. ∴MN 为⊙O 的切线.∴直线MN 与图形G 的公共点个数为1.24.解:(2)m =2;(3)(4)①直线2x =.②6.25.解:(1)B (-1,1);(2)把1y =代入y x m =-+,得1x m =-.把1y =代入my x=,得x m =. ∴P (1m -,1), Q (m ,1). (3)10m -≤<或12m <≤.26.解:(1)∵抛物线231y ax ax a =-++与y 轴交于点A ,令0x =,得1y a =+. ∴A (0, a +1).(2)由抛物线231y ax ax a =-++可知3322a x a -=-=. ∴抛物线的对称轴是直线32x =.(3)对于任意的实数a ,都有+1a a >. 可知点A 总在点N 的上方.令抛物线上的点C (-2,C y ). ∴111C y a =+.①如图1,当a >0时,2C y a -->. ∴点C 在点M 的上方.结合函数图象,可知抛物线与线段MN 没有公共点. ②当a <0时,(ⅰ)如图2抛物线经过点M 时,=2C y a --.∴1=4a -.结合函数图象,可知抛物线与线段MN 恰有一个有 公共点M .(ⅰ)当14a -<<0时,可知抛物线与线段MN 没有公共点.(ⅰ)如图3,当14a <-时,2C y a --<.∴点C 在点M 的下方结合函数图象,可知抛物线与线段MN 恰有 一个有公共点.综上所述,a 的取值范围是14a -≤.27.解:(1)①补全图形,如图所示.②∠FBE = 45︒;图1图2图3(2)2DE AF=.证明:如图,作AH⊥AF,交BF的延长线于点H,设DF与AB交于点G,根据题意可知,CD= CE,∠ECD =2α,∠ABC =∠BCD =∠CDA=∠DAB=90︒.∴∠EDC=90︒-α, CB= CE,∠BCE =90︒-2α.∴∠CBE =45︒+α,∠ADF=α.∴∠ABE =45︒-α.∵BF⊥DE,∴∠BFD=90︒.∵∠AGD =∠FGB,∴∠FBG =α.∴∠FBE =∠FEB =45︒.∴FB = FE .∵AH⊥AF,∠BAD=90︒,∴∠HAB =∠F AD.∴△HAB≌△F AD.∴HB= FD, AH=AF.∴HF= DE,∠H =45︒.∴2HF AF=.∴2DE AF=.28.解:(1)(0,2);(2)如图,设以O为圆心,AB为半径的圆与直线y=1在第二象限的交点为D,作DE垂直x 轴于点E,∴OD=2,DE=1.在Rt△ODE中,根据勾股定理得OE=3.∴n的取值范围是n<3-.(3)-4<t≤-2或4323<t≤2或t =0或t=433.。

2020年北京市朝阳区高考数学一模试卷(二)(有答案解析)

2020年北京市朝阳区高考数学一模试卷(二)(有答案解析)

2020年北京市朝阳区高考数学一模试卷(二)一、选择题(本大题共8小题,共40.0分)1.已知集合A={x|x>1},集合B={x|x2<4},则A∩B=()A. {x|x>-2}B. {x|1<x<2}C. {x|1≤x<2}D. R2.在复平面内,复数z=对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.()4的展开式中的常数项为()A. -12B. -6C. 6D. 124.若函数f(x)=,则函数f(x)的值域是()A. (-∞,2)B. (-∞,2]C. [0,+∞)D. (-∞,0)∪(0,2)5.如图,函数f(x)的图象是由正弦曲线或余弦曲线经过变换得到的,则f(x)的解析式可以是()A. f(x)=sin(2x+)B. f(x)=sin(4x+)C. f(x)=cos(2x+)D. f(x)=cos(4x+)6.记不等式组,所表示的平面区域为D.“点(-1,1)∈D”是“k≤-1”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为()A. 4B. 2C.D.8.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是()A. 5B. 6C. 7D. 8二、填空题(本大题共6小题,共30.0分)9.双曲线-y2=1的右焦点到其一条渐近线的距离是______.10.执行如图所示的程序框图,输出的x值为______.11.在极坐标系中,直线ρcosθ=1与圆ρ=4cosθ交于A,B两点,则|AB|=______.12.能说明“函数(x)的图象在区间[0,2]上是一条连续不断的曲线,若f(0)•f(2)>0,则f(x)在(0,2)内无零点”为假命题的一个函数是______.13.天坛公园是明清两代皇帝“祭天”“祈谷”的场所•天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石铺成(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是______.14.在平面内,点A是定点,动点B,C满足||=||=1,=0,则集合{P|=+,1≤λ≤2}所表示的区域的面积是______.三、解答题(本大题共6小题,共80.0分)15.在△ABC中,a=,∠A=120°,△ABC的面积等于,且b<c.(Ⅰ)求b的值;(Ⅱ)求cos2B的值.16.某部门在同一上班高峰时段对甲、乙两座地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求“乘客A,B乘车等待时间都小于20分钟”的概率;(Ⅱ)在上班高峰时段,从乙站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.17.如图,在多面体ABCDEF中,平面ADEF⊥平面ABCD,四边形ADEF为正方形,四边形ABCD为梯形,且AD∥BC,∠BAD=90°,AB=AD=1,BC=3.(Ⅰ)求证:AF⊥CD;(Ⅱ)求直线BF与平面CDE所成角的正弦值;(Ⅲ)线段BD上是否存在点M,使得直线CE∥平面AFM?若存在,求的值;若不存在,请说明理由.18.已知函数f(x)=(a∈R且a≠0).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)当a=-1时,求证:f(x)≥x+1;(Ⅲ)讨论函数f(x)的极值.19.已知点M(x0,y0)为椭圆C:+y2=1上任意一点,直线l:x0x+2y0y=2与圆(x-1)2+y2=6交于A,B两点,点F为椭圆C的左焦点.(Ⅰ)求椭圆C的离心率及左焦点F的坐标;(Ⅱ)求证:直线l与椭圆C相切;(Ⅲ)判断∠AFB是否为定值,并说明理由.20.在无穷数列{a n}中,a1,a2是给定的正整数,a n+2=|a n+1-a n|,n∈N*.(Ⅰ)若a1=3,a2=1,写出a9,a10,a100的值;(Ⅱ)证明:数列{a n}中存在值为0的项;(Ⅲ)证明若a1,a2互质,则数列{a n}中必有无穷多项为1.-------- 答案与解析 --------1.答案:B解析:解:∵集合A={x|x>1},集合B={x|x2<4}={x|-2<x<2},∴A∩B={x|1<x<2}.故选:B.先求出集合A,集合B,由此能求出A∩B.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.答案:D解析:解:==-i+2所对应的点为(2,-1),该点位于第四象限故选:D.根据1=-i2将复数进行化简成复数的标准形式,得到复数所对应的点,从而得到该点所在的位置.本题主要考查了复数代数形式的运算,复数和复平面内的点的对应关系,属于基础题.3.答案:C解析:解:()4的展开式中的通项公式为T r+1=•(-1)r•x2r-4,令2r-4=0,求得r=2,可得展开式中的常数项为=6,故选:C.在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.4.答案:A解析:解:当x<1时,0<2x<2,当x≥1时,f(x)=-log2x≤-log21=0,综上f(x)<2,即函数的值域为(-∞,2),故选:A.分别结合指数函数,对数函数的性质求出函数的取值范围即可.本题主要考查函数值域的计算,结合分段函数的解析式分别求出对应范围是解决本题的关键.5.答案:A解析:解:函数的周期T=2×(-)=2×=π,即=π,则ω=2,排除B,D,当x=时,f()=1,若f(x)=sin(2x+),则f()=sin(2×+)=sin=1,若f(x)=cos(2x+),则f()=cos(2×+)=cos=0,不满足条件.排除C,故选:A.根据周期先求出ω的值,排除B,D,然后在通过f()=1,进行排除即可.本题主要考查三角函数图象的识别和判断,结合条件利用排除法是解决本题的关键.6.答案:C解析:解:若点(-1,1)∈D,得满足,则k≤-1,即充分性成立,若k≤-1,则不等式组对应区域为阴影部分,则A(-1,1)∈D,即“点(-1,1)∈D”是“k≤-1”的充要条件,故选:C.作出不等式组对应的平面区域,结合不等式组以及充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合不等式组的关系是解决本题的关键.7.答案:D解析:解:由题意几何体是直观图如图:是正方体的一部分,三棱锥P-ABC,正方体的棱长为:2,几何体的体积为:=.故选:D.画出几何体的直观图,利用三视图的数据,求解几何体的体积即可.本题考查三视图求解几何体的体积,判断几何体的形状是解题的关键.8.答案:B解析:解:设周一,周二,周三开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),∩B∩C则n(A)=14,n(B)=10,n(C)=8,n(A∪B∪C)=20,因为n(A∪B∪C)=n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C),所以14+10+8-20+n(A∩B∩C)≥3n(A∩B∩C),即n(A∩B∩C)≤=6.故选:B.设周一,周二,周三开车上班的职工组成的集合分别为A,B,C,集合A,B,C中元素个数分别为n(A),n(B),n(C),根据n(A∪B∪C)=n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C),且n(A∩B)≥n(A∩B∩C),n(A∩C)≥n(A∩B∩C),n(B∩C)≥n(A∩B∩C)可得.本题考查了Venn图表达集合的关系以及运算,属中档题.9.答案:1解析:解:双曲线-y2=1的右焦点坐标为(,0),一条渐近线方程,x-2y=0∴双曲线-y2=1的右焦点到一条渐近线的距离为=1.故答案为:1.确定双曲线的右焦点与一条渐近线方程,利用点到直线的距离公式,即可得到结论.本题考查双曲线的几何性质,考查点到直线的距离公式,考查学生的计算能力,属于基础题.10.答案:解析:解:当x=2,n=1时,n≤2成立,则x==,n=2,此时n≤2成立,则x==,n=3,此时n≤2不成立,输出x=,故答案为:根据程序框图进行模拟计算即可.本题主要考查程序框图的应用,利用条件进行模拟运算是解决本题的关键.11.答案:2解析:解:直线ρcosθ=1的普通方程为x=1,圆ρ=4cosθ的普通方程为x2+y2-4x=0,圆心C(2,0),半径r==2,圆心C(2,0)到直线x=1的距离d=1,∴|AB|=2=2=2.故答案为:2.求出直线的普通方程和圆的普通方程,求出圆心和半径,再求出圆心到直线的距离,由此能求出弦长.本题考查弦长的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查运算求解能力,是中档题.12.答案:f(x)=(x-1)2解析:解:“若f(0)•f(2)>0,则f(x)在(0,2)内无零点”为假命题,即“若f(0)•f(2)>0,则f(x)在(0,2)有零点”为真命题,取函数f(x)=(x-1)2,可得:f(0)•f(2)=1×1=1>0,f(1)=0,故答案为:f(x)=(x-1)2取函数f(x)=(x-1)2,可得:f(0)•f(2)=1×1=1>0,f(1)=0,满足“若f(0)•f(2)>0,则f(x)在(0,2)有零点”为真命题,即”若f(0)•f(2)>0,则f (x)在(0,2)内无零点”为假命题,得解本题考查了函数的零点与方程根的关系及零点定理,属中档题.13.答案:243 3402解析:解:由题意知每环石块数构成等差数列,首项a1=9,d=9,则a27=a1+26d=9+26×9=243,上、中、下三层坛所有的扇面形石块数为前27项和,即S27====3402,故答案为:243,3402根据条件知每环石块数构成等差数列,首项a1=9,d=9,利用等差数列的通项公式以及前n项和公式进行计算即可.本题主要考查等差数列的应用,结合等差数列的通项公式是解决本题的关键.14.答案:3π解析:解:由,得=λ2+1,∵1≤λ≤2,∴2≤λ2+1≤5,∴||,∴P点轨迹为以A为圆心的圆环,其面积为:5π-2π=3π,故答案为:3π.把所给等式平方,得到的范围,即P点的轨迹为圆环,得解.此题考查了向量模的几何意义,难度不大.15.答案:解:(Ⅰ)∵a=,∠A=120°,△ABC的面积等于,∴可得:=bc sin A=bc,可得:bc=4,①∴由余弦定理可得:21=b2+c2+bc=(b+c)2-bc=(b+c)2-4,可得:(b+c)2=25,解得:b+c=5,②∴联立①②可得:b=4,c=1,或b=1,c=4,∵b<c,∴可得:b=1,c=4.可得b的值为1.(Ⅱ)∵由(Ⅰ)可得:a=,b=1,c=4,∴cos B===,∴cos2B=2cos2B-1=.解析:(Ⅰ)由已知利用三角形的面积公式可求bc=4,由余弦定理可解得b+c=5,联立①②,根据b<c,可得b的值.(Ⅱ)由(Ⅰ)根据余弦定理可求cos B的值,根据二倍角的余弦函数公式即可计算得解cos2B的值.本题主要考查了三角形的面积公式,余弦定理,二倍角的余弦函数公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.16.答案:解:(Ⅰ)设M表示事件“乘客A乘车等待时间都小于20分钟”,N表示“乘客B乘车等待时间都小于20分钟”,C表示“乘客A,B乘车等待时间都小于20分钟”,由题意得:P(A)=(0.012+0.040+0.048)×5=0.5,P(B)=(0.016+0.028+0.036)×5=0.4,∴“乘客A,B乘车等待时间都小于20分钟”的概率:P(C)=P(MN)=P(M)P(N)=0.5×0.4=0.2.(Ⅱ)由(Ⅰ)得乙站乘客乘车等待时间小于20分钟的概率为0.4,∴乙站乘客乘车时间等待时间小于20分钟的概率为,X的可能取值为0,1,2,3,且X~B(3,),P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,X 0 1 2 3PE(X)=3×=.解析:(Ⅰ)设M表示事件“乘客A乘车等待时间都小于20分钟”,N表示“乘客B 乘车等待时间都小于20分钟”,C表示“乘客A,B乘车等待时间都小于20分钟”,由题意得:P(A)=(0.012+0.040+0.048)×5=0.5,P(B)=(0.016+0.028+0.036)×5=0.4,由此能求出“乘客A,B乘车等待时间都小于20分钟”的概率.(Ⅱ)X的可能取值为0,1,2,3,且X~B(3,),由此能求出随机变量X的分布列与数学期望.本题考查概率、离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率乘法公式、二项分布等基础知识,考查运算求解能力,是中档题.17.答案:解:(Ⅰ)证明:∵四边形ADEF为正方形,∴AF⊥AD,又∵平面ADEF⊥平面ABCD,∴AF⊥平面ABCD,∴AF⊥CD;(Ⅱ)取BC的三等分点G,H如图,连接EG,可由EF∥AD,AD∥BC,得EF∥BG,且EF=AD=BG=1,∴四边形BGEF为平行四边形,∴GE∥BF,∵DE∥AF,∴DE⊥平面ABCD,∴平面EDC⊥平面ABCD,作GN⊥CD于N,则GN⊥平面EDC,连接EN,则∠GEN为GE与平面EDC所成的角,在Rt△CGD中,求得GN=,又GE=BF=,∴sin∠GEN==,故直线BF与平面CDE所成角的正弦值为:;(Ⅲ)连接FH,易证四边形EFHC为平行四边形,∴EC∥FH,∴EC∥平面AFH,连接AH交BD于M,则CE∥平面AFM,此时,∴.解析:(Ⅰ)利用两面垂直的性质定理易证;(Ⅱ)取BC的三等分点G,H,把BF平移至EG,作GN⊥CD于N,得∠GEN即为所求;(Ⅲ)连接FH,易证EC∥平面AFH,连AH交BD于M即可.此题考查了线面垂直,面面垂直,线面所成角,线面平行等,难度适中.18.答案:(Ⅰ)解:当a=1时,f(x)=,f′(x)=,f(1)=0,f′(1)=1,∴曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1;(Ⅱ)证明:当a=-1时,f(x)=,证明f(x)≥x+1,即证ln(-x)≤x2+x,令t=-x(t>0),也就是证t2-t-ln t>0(t>0).令g(t)=t2-t-ln t,则g′(t)===.当t∈(0,1)时,g′(t)<0,当t∈(1,+∞)时,g′(t)>0,∴g(t)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(t)≥g(1)=0,即f(x)≥x+1;(Ⅲ)解:f(x)=,则f′(x)=,当a>0时,由f′(x)>0,得1-ln(ax)>0,即0<ax<e,∴0<x<;由f′(x)<0,得1-ln(ax)<0,即ax>e,x>.∴f(x)在(0,)上单调递增,在(,+∞)上单调递减,∴f(x)有极大值为f()=;当a<0时,由f′(x)>0,得1-ln(ax)>0,即ax<e,∴<x<0;由f′(x)<0,得1-ln(ax)<0,即ax>e,x<.∴f(x)在(-∞,)上单调递减,在(,0)上单调递增,∴f(x)有极小值为f()=.解析:(Ⅰ)把a=1代入函数解析式,求得函数的导函数,进一步求出f(1)与f′(1),再由直线方程的点斜式得答案;(Ⅱ)当a=-1时,f(x)=,把证明f(x)≥x+1转化为证ln(-x)≤x2+x,令t=-x(t>0),构造函数g(t)=t2-t-ln t,利用导数证明g(t)≥0即可;(Ⅲ)求出原函数的导函数,对a分类分析函数的单调性,进一步求得极值.本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,体现了分类讨论的数学思想方法,属难题.19.答案:解:(Ⅰ)由题意可得a=,b=1,则c==1,∴椭圆C的离心率e==,左焦点F的坐标(-1,0),证明:(Ⅱ)由题意可得+y02=1,当y0=0时,直线l的方程为x=或x=-,直线l与椭圆相切,当y0≠0时,由可得(2y02+x02)x2-4x0x+4-4y02=0,即x2-2xx0+2-2y02=0,∴△=(-2x0)2-4(2-2y02)=4x02+8y02-8=0,故直线l与椭圆C相切.(Ⅲ)设A(x1,y1),B(x2,y2),当y0=0时,x1=x2,y1=-y2,x1=±,∴•=(x1+1)2-y12=(x1+1)2-6+(x1-1)2=2x12-4=0,∴⊥,即∠AFB=90°当y0≠0时,由,(y02+1)x2-2(2y02+x0x)x+2-10y02=0,则x1+x2=,x1x2=,∴y1y2=x1x2-(x1+x2)+=,∴•=(x1+1,y1)•(x2+1,y2)=x1x2+x1+x2+1+y1y2=++==0,∴⊥,即∠AFB=90°综上所述∠AFB为定值90°.解析:(Ⅰ)根据椭圆的离心率公式即可求出,(Ⅱ)根据判别式即可证明.(Ⅲ)根据向量的数量积和韦达定理即可证明,需要分类讨论,本题考查椭圆的简单性质,考查向量的运算,注意直线方程和椭圆方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.20.答案:(Ⅰ)解:由a1=3,a2=1,a n+2=|a n+1-a n|,n∈N*.得a9=0,a10=1,a100=1;(Ⅱ)证明:反证法:假设∀i,a i≠0,由于a n+2=|a n+1-a n|,记M=max{a1,a2},则a1≤M,a2≤M.则0<a3=|a2-a1|≤M-1,0<a4=|a3-a2|≤M-1,0<a5=|a4-a3|=M-2,0<a6=|a5-a4|=M-2,…,依次递推,有0<a7=|a6-a5|≤M-3,0<a8=|a7-a6|≤M-3…,则由数学归纳法易得a2k+1≤M-k,k∈N*.当k>M时,a2k+1<0,与a2k+1>0矛盾.故存在i,使a i=0.∴数列{a n}必在有限项后出现值为0的项;(Ⅲ)证明:首先证明:数列{a n}中必有“1”项.用反证法,假设数列{a n}中没有“1”项,由(Ⅱ)知,数列{a n}中必有“0”项,设第一个“0”项是a m(m≥3),令a m-1=p,p>1,p∈N*,则必有a m-2=p,于是,由p=a m-1=|a m-2-a m-3|=|p-a m-3|,则a m-3=2p,因此p是a m-3的因数,由p=a m-2=|a m-3-a m-4|=|2p-a m-4|,则a m-4=p或3p,因此p是a m-4的因数.依次递推,可得p是a1,a2的因数,∵p>1,∴这与a1,a2互质矛盾.∴数列{a n}中必有“1”项.其次证明数列{a n}中必有无穷多项为“1”.假设数列{a n}中的第一个“1”项是a k,令a k-1=q,q>1,q∈N*,则a k+1=|a k-a k-1|=q-1,若a k+1=q-1=1,则数列中的项从a k开始,依次为“1,1,0”的无限循环,故有无穷多项为1;若a k+1=q-1>1,则a k+2=|a k+1-a k|=q-2,a k+3=|a k+2-a k+1|=1,若a k+2=q-2=1,则进入“1,1,0”的无限循环,有无穷多项为1;若a k+2=q-2>1,则从a k开始的项依次为1,q-1,q-2,1,q-3,q-4,1,…,必出现连续两个“1”项,从而进入“1,1,0”的无限循环,故必有无穷多项为1.解析:本题考查数列递推式,考查逻辑思维能力与推理运算能力,训练了利用反证法证明与自然数有关的命题,属于难题.(Ⅰ)由a1=3,a2=1,结合数列递推式直接求得a9,a10,a100的值;(Ⅱ)利用反证法证明,假设∀i,a i≠0,由于a n+2=|a n+1-a n|,证得当k>M时,a2k+1<0,与a2k+1>0矛盾;(Ⅲ)利用反证法证明数列{a n}中必有“1”项,再利用综合法证明数列{a n}中必有无穷多项为“1”.。

2021年北京朝阳区九年级中考二模数学试卷含答案

2021年北京朝阳区九年级中考二模数学试卷含答案

北京市朝阳区九年级综合练习(二)数学试卷2021.6学校班级姓名考号考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,请将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.如果代数式25x-有意义,那么实数x的取值范围是(A)x =5 (B)x≠5 (C)x < 5 (D)x > 52.目前世界上已知最小的动物病毒的最大颗粒的直径约有0.000 000 023米. 将0.000 000 023用科学记数法表示应为(A)8103.2-⨯(B)9103.2-⨯(C)81023.0-⨯(D)91023-⨯3.如图,∠B=43º,∠ADE=43º,∠AED=72º,则∠C的度数为(A)72º (B)65 º(C)50º (D)43 º4.下列安全图标中,是中心对称图形但不是轴对称图形的是(A)(B)(C)(D)5.下列抽样调查最合理的是(A)了解某小区居民的消防常识,对你所在班级的同学进行调查(B)了解某市垃圾分类的宣传情况,对该市的所有学校进行调查(C)了解某校学生每天的平均睡眠时间,对该校学生周末的睡眠时间进行调查(D)了解某市第一季度的空气质量情况,对该市第一季度随机抽取30天进行调查6.一个正多边形的内角和为1080°,则这个正多边形的每一个外角的度数为(A)30°(B)45°(C)60°(D)72°7.一个圆锥的侧面展开图是圆心角为120°,半径为3的扇形,这个圆锥的底面圆的半径为 (A )π (B )3 (C )2 (D )18.为了解某校学生每周课外阅读时间的情况,随机抽取该校a 名学生进行调查,获得的数据整理后绘制成统计表如下:表中4≤x <6组的频数b 满足25≤b ≤35.下面有四个推断: ①表中a 的值为100; ②表中c 的值可以为0.31;③这a 名学生每周课外阅读时间的中位数一定不在6~8之间; ④这a 名学生每周课外阅读时间的平均数不会超过6. 所有合理推断的序号是(A )①② (B )③④ (C )①②③ (D )②③④二、填空题(本题共16分,每小题2分) 9.3的相反数是 .10.分解因式:=++3632m m _____.11.在一个不透明的袋子里有1个黄球,2个白球,3个红球,这些球除颜色外无其他差别,从袋子中随机取出一个球是白球的概率是_______.12. 如图,△ABC 内接于⊙O ,∠ACB =50º,则∠ABO = _______ º.第12题图 第13题图13. 利用热气球探测建筑物高度(如图所示),热气球与建筑物的水平距离AD =100m ,则这栋建筑物的高度BC 约为_____ m (7.13,4.12≈≈,结果保留整数).14.若一次函数)0(≠+=k b kx y 的图象可以由x y 2=的图象平移得到,且经过点(0,1),则这个一次函数的表达式为_________.15. 用一组a ,b 的值说明命题“若22a b >,则a b >”是假命题,这组值可以是a =_____,b =______. 16.甲、乙、丙三人进行乒乓球单打训练,每局两人进行比赛,第三个人做裁判,每一局都要分出胜负,胜方和原来的裁判进行新一局的比赛,输方转做裁判,依次进行.半天训练结束时,发现甲共当裁判4局,乙、丙分别打了9局、14局比赛,在这半天的训练中,甲、乙、丙三人共打了 局比赛,其中第7局比赛的裁判是 .三、解答题(本题共68分,第17-22题,每题5分;第23-26题,每题6分;第27-28题,每题7分)17.计算:10)31()25(12---++tan60º.18.解不等式)4(232-≥-x x ,并把它的解集在数轴上表示出来.19.先化简再求值:xx x x 1)1111(2-⋅-++,其中x =12-.20.已知:如图,△ABC 为锐角三角形,AB >AC .求作:BC 边上的高AD .作法:△以点A 为圆心,AB 长为半径画弧,交BC 的延长线于点E ;△分别以点B ,E 为圆心,以AB 长为半径画弧,两弧相交 于点F (不与点A 重合); △连接AF 交BC 于点D . 线段AD 就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明. 证明:连接AE ,EF ,BF .△AB =AE = EF = BF ,△四边形ABFE 是_______(________)(填推理依据). △AF △BE .即AD 是△ABC 中BC 边上的高.21.关于x 的一元二次方程0)1(2=++-m x m x . (1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m 的取值范围.22. 如图,在菱形ABCD 中,AC ,BD 相交于点O ,过B ,C 两点分别作AC ,BD 的平行线,相交于点E .(1)求证:四边形BOCE 是矩形;(2)连接EO 交BC 于点F ,连接AF ,若△ABC =60°,AB =2,求AF 的长.23.在平面直角坐标系xOy 中,过点A (2,2)作x 轴,y 轴的垂线,与反比例函数)4(<=k xky 的图象分别交于点B ,C ,直线AB 与x 轴相交于点D . (1)当4-=k 时,求线段AC ,BD 的长;(2)当AC <2BD 时,直接写出k 的取值范围.24.如图, P A 与⊙O 相切于点A ,点B 在⊙O 上,P A=PB .(1)求证:PB 是⊙O 的切线;(2)AD 为⊙O 的直径,AD=2,PO 与⊙O 相交于点C ,若C 为PO 的中点,求PD 的长.25.为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a. 这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:b.参与奖优秀奖卓越奖人数101010第一次竞赛平均分828795人数21216第二次竞赛平均分848793c. 第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d.平均数中位数众数第一次竞赛m87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出m,n的值;(3)可以推断出第次竞赛中初三年级全体学生的成绩水平较高,理由是.26.在正方形ABCD 中,将线段DA 绕点D 旋转得到线段DP (不与BC 平行),直线DP 与直线BC 相交于点E ,直线AP 与直线DC 相交于点F .(1)如图1,当点P 在正方形内部,且∠ADP =60°时,求证:DE +CE =DF ;(2)当线段DP 运动到图2位置时,依题意补全图2,用等式表示线段DE ,CE ,DF 之间的数量关系,并证明.图1 图227.在平面直角坐标系xOy 中,点()11P x y ,,()22Q x y ,为抛物线)0(1222<++-=a ah ahx ax y 上的两点.(1)当h=1时,求抛物线的对称轴;(2)若对于102x ≤≤,245h x h --≤≤,都有12y y ≥,求h 的取值范围.28.在平面直角坐标系xOy 中,对于图形Q 和△P ,给出如下定义:若图形Q 上的所有的点都在△P 的内部或△P 的边上,则△P 的最小值称为点P 对图形Q 的可视度.如图1,△AOB 的度数为点O 对线段AB 的可视度. (1)已知点N (2,0),在点)332,0(1M ,)3,1(2M ,)3,2(3M 中,对线段ON 的 可视度为60º的点是______.(2)如图2,已知点A (-2,2),B (-2,-2),C (2,-2),D (2,2),E (0,4).①直接写出点E 对四边形ABCD 的可视度为______º; ②已知点F (a ,4),若点F 对四边形ABCD 的可视度为45°,求a 的值.图1 图2北京市朝阳区九年级综合练习(二)数学试卷答案及评分参考 2021.6二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分;第23-26题,每小题6分;第27-28题,每小题7分) 17. 解:原式13=-…………………………………………………………4分2.=…………………………………………………………………5分18. 解: 2328x x -≥- (1)分2328.x x --≥-- (2)分 510.x -≥- (3)分 2.x ≤ (4)分不等式的解集在数轴上表示如下:………………………………………………………5分19. 解:xx x x 1)1111(2-⋅-++ xx x x x 1)1)(1(11-⋅-++-=……………………………………………………………3分11+=x . …………………………………………………………………………4分 ∵x =12-, ∴原式22=. ………………………………………………………………………5分312-1020.(1)依作法补全图形,如下图.……………………………………………………………………3分(2)菱形.…………………………………………………………………………………4分 四条边相等的四边形是菱形.………………………………………………………5分21.(1)证明:()2Δ=14m m +- …………………………………………………………1分2(1)m =-. ………………………………………………………………2分∵2(1)0m -≥,∴方程总有两个实数根. ……………………………………………………3分 (2)解:∵1(1)2m m x +±-=,∴12, 1.x m x ==……………………………………………………………4分∵方程有一个根为负数,∴m < 0. (5)分22.(1)证明:∵BE ∥AC ,EC ∥BD ,∴四边形B O C E 是平行四边形. …………………………………………1分 ∵四边形ABCD 是菱形,∴A C ⊥B D . ………………………………………………………………2分 ∴∠BOC =90°.∴四边形B O C E 是矩形. (3)分 (2)解:∵四边形ABCD 是菱形,∠ABC =60°,∴△A B C 是等边三角形. ………………………………………………………4分∵四边形BOCE 是矩形,∴BF =12AB .∴∠AFB=90°.∵AB =2,∴………………………………5分23. 解:(1)当4k =-时,B (2,-2),C (-2,2),D (2,0).………………………2分 ∴A C =4,BD =2. ………………………………………………………………4分 (2)4k <-或443k <<. …………………………………………………………6分24. (1)证明:连接OB .∵P A 是⊙O 的切线,∴∠P AO=90º. ……………………………1分 ∵点B 在⊙O 上,∴AO =BO .∵P A =PB ,PO =PO ,∴△APO ≌△BPO . ………………………2分∴∠PBO=∠P AO =90º.∴PB 是⊙O 的切线. ………………………3分(2)解:∵AD 是⊙O 的直径,AD =2,∴O A =1. ……………………………………………………………………4分 ∵C 为PO 的中点,∴PO=2.∴PA =3.……………………………………………………………………5分∴在Rt △PAD 中,由勾股定理可得PD=7. ……………………………6分25. 解:(1)如图所示.…………………………………2分(2)88,90.………………………………………………………………………4分 (3)二,理由需支持推断.……………………………………………………6分CDB A OP26.(1)证明:设AB =a .∵四边形ABCD 是正方形, ∴AD =CD =a .∵DA =DP ,∠ADP =60°, ∴△APD 是等边三角形. ∴∠P AD =60°.∴在Rt △ADF 中,.……………………………………………1分 在Rt △DCE 中,,. ∴DE +CE =DF .……………………………………………………………2分(2)依题意补全图形,如图所示.………………………………………………3分D E -C E =D F . ………………………………………………………………………4分 证明:作DH ⊥AP 交BC 于点H . ∵DH ⊥AF ,∴∠HDC+∠AFD =90°. ∵∠HDC+∠DHC =90°, ∴∠AFD =∠DHC .∵AD =DC ,∠ADF=∠DCH =90°,∴△A D F ≌△D C H . ……………………………………………………………5分 ∴DF =CH .∵DA =DP ,∴∠ADH=∠EDH .∵AD ∥BC ,∴∠ADH=∠EHD . ∴∠EDH=∠EHD .∴E D =E H . ……………………………………………………………………6分 ∴DE -CE =DF .27.解:(1)当1h =时,抛物线的表达式为122++-=a ax ax y .∴()21+1y a x =-.∴抛物线的对称轴为直线1x =.……………………………………………2分 (2)设抛物线上四个点的坐标为()0A A y ,,()2B B y ,,()4C C h y -,,()5D D h y -,.∵0a <,∴1y 的最小值必为A y 或B y .①由0a <可知,当522h ≤≤时,存在2y ≥1y ,不符合题意.②当2h <时,总有42h ->.∵当x h >时,y 随x 的增大而减小,∴B C D y y y >>.当43h ≤时,4h h h --≥.∴A C D y y y ≥>,符合题意. 当423h <<时,4h h h --<. ∴A C y y <,不符合题意.③当52h >时,∵当x h <时,y 随x 的增大而增大,∴C D y y <,A B y y <. 当5h ≥时,50h -≤. ∴D A y y ≤,符合题意. 当552h <<时,50h ->. ∴D A y y >,不符合题意.综上所述,h 的取值范围是43h ≤或5h ≥.……………………………………7分28.(1)M1,M2.…………………………………………………………………………2分(2)①90;……………………………………………………………………………3分②解:由题意可知,四边形ABCD是正方形,点F在直线y=4上.…………4分如图所示,点F对正方形ABCD的可视度为45°,当点F是以点D为圆心,4为半径的圆和直线y=4的交点时,过点D作DN⊥EF于点N,则有DN=2,DF=4,可得NF=5分∴a=2.……………6分当点F是以点A为圆心,4为半径的圆和直线y=4的交点时,同理可得,a=2-.综上,a的值为2或2-.…………………………………7分=4。

2020年北京市朝阳区九年级中考数学三模试卷 解析版

2020年北京市朝阳区九年级中考数学三模试卷  解析版

2020年北京市朝阳区中考数学三模试卷一.选择题(共8小题)1.某种球形病毒的直径为0.00000043米,将数据0.00000043用科学记数法表示为()A.4.3×10﹣6B.0.43×10﹣6C.43×10﹣6D.4.3×10﹣72.下列各数在数轴上对应的点到原点的距离最近的是()A.﹣2B.﹣1C.2D.33.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.130πcm2B.120πcm2C.65πcm2D.60πcm24.如图,在▱ABCD中,AE平分∠BAD,交CD边于E,AD=3,EC=2,则AB的长为()A.1B.2C.3D.55.小红同学对数据25,32,23,25,4■,43进行统计分析,发现“4■”的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.众数D.方差6.如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=50°,则∠B的度数为()A.50°B.65°C.75°D.130°7.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x28.某公司为了解销售人员某季度商品的销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成统计表进行分析.组别销售数量(件)频数频率A20≤x<4020.04B40≤x<6060.12C60≤x<8013bD80≤x<100a0.48E100≤x<12050.10合计501下面有三个推断:①表中a的值为24;②表中b的值为0.13;③这50名销售人员该季度销售数量的中位数在D组.所有合理推断的序号是()A.①②B.①③C.②③D.①②③二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围是.10.在如图所示的几何体中,主视图是三角形的是.(填序号)11.如图,已知▱ABCD,通过测量、计算得到▱ABCD的面积约为cm2.(结果保留一位小数)12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是.13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.15.在一次函数y=x+b的图象上有一点A,将点A沿该直线移动到点B处,若点B的横坐标减去点A的横坐标的差为1,则点B的纵坐标减去点A的纵坐标的差为.16.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a ≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=;b=.三.解答题(共12小题)17.计算:|﹣1|﹣tan60°+(π﹣3.14)0+()﹣1.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在△ABE中,C,D是边BE上的两点,有下面四个关系式:(1)AB=AE,(2)BC=DE,(3)AC=AD,(4)∠BAC=∠EAD.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:20.通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.21.如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=2,AD=4,求BE的长.22.为了解某社区居民掌握民法知识的情况,对社区内的甲、乙两个小区各500名居民进行了测试,从中各随机抽取50名居民的成绩(百分制)进行整理、描述、分析,得到部分信息:a.甲小区50名居民成绩的频数直方图如下(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.图中,70≤x<80组的前5名的成绩是:79 79 79 78 77c.图中,80≤x<90组的成绩如下:82838485858686868686 86868687878788888989 d.两组样本数据的平均数、中位数、众数、优秀率(85分及以上)、满分人数如下表所示:小区平均数中位数众数优秀率满分人数甲78.5884.5a b1乙76.9279.59040%4根据以上信息,回答下列问题:(1)求表中a,b的值;(2)请估计甲小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,分析甲、乙两个小区参加测试的居民掌握民法知识的情况.23.如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)若cos∠P AB=,BC=2,求PO的长.24.如图,点D是射线BC上的一定点,点P是线段AB上一动点,连接PD,作BQ垂直PD,交直线PD于点Q.小腾根据学习函数的经验,对线段PB,PD,BQ的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段PB,PD,BQ的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 BP/cm0.00 1.00 2.00 3.00 4.00 5.00 6.00PD/cm 2.00 1.220.98 1.56 2.43 3.38 4.35BQ/cm0.000.78 1.94 1.82 1.56 1.41 1.31在PB,PD,BQ的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PD>BQ时,PB长度范围是cm.25.在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n(n>0),且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=(x>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若PN≥3PM,结合函数的图象,直接写出n的取值范围.26.在平面直角坐标系xOy中,二次函数y=ax2﹣2ax+c的图象经过点A(﹣1,1),将A 点向右平移3个单位长度,再向上平移2个单位长度,得到点B,直线y=2x+m经过点B,与y轴交于点C.(1)求点B,C的坐标;(2)求二次函数图象的对称轴;(3)若二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点,结合函数图象,直接写出a的取值范围.27.在△ABC中,∠C=90°,AC=BC,点P在线段BA的延长线上,作PD⊥AC,交AC 的延长线于点D,点D关于直线AB的对称点为E,连接PE并延长PE到点F,使EF=AC,连接CF.(1)依题意补全图1;(2)求证:AD=CF;(3)若AC=2,点Q在直线AB上,写出一个AQ的值,使得对于任意的点P总有QD =QF,并证明.28.在平面直角坐标系xOy中,A(t,0),B(t+4,0),线段AB的中点为C,若平面内存在一点P使得∠APC或者∠BPC为直角(点P不与A,B,C重合),则称P为线段AB 的直角点.(1)当t=0时,①在点P1(,0),P2(,),P3(,﹣)中,线段AB的直角点是;②直线y=x+b上存在四个线段AB的直角点,直接写出b取值范围;(2)直线y=x+1与x,y轴交于点M,N.若线段MN上只存在两个线段AB的直角点,直接写出t取值范围.2020年北京市朝阳区中考数学三模试卷参考答案与试题解析一.选择题(共8小题)1.某种球形病毒的直径为0.00000043米,将数据0.00000043用科学记数法表示为()A.4.3×10﹣6B.0.43×10﹣6C.43×10﹣6D.4.3×10﹣7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000043=4.3×10﹣7,故选:D.2.下列各数在数轴上对应的点到原点的距离最近的是()A.﹣2B.﹣1C.2D.3【分析】根据到原点距离最近的点就是绝对值最小的数,对每个数作出判断,即可求出答案.【解答】解:∵﹣2到原点的距离是2个长度单位,﹣1到原点的距离是1个长度单位,2到原点的距离是2个长度单位,3到原点的距离是3个长度单位,∴到原点的距离最近的是﹣1.故选:B.3.已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的侧面积是()A.130πcm2B.120πcm2C.65πcm2D.60πcm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算.【解答】解:这个圆锥的侧面积=×2π×5×13=65π(cm2),故选:C.4.如图,在▱ABCD中,AE平分∠BAD,交CD边于E,AD=3,EC=2,则AB的长为()A.1B.2C.3D.5【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴DE=AD=3,∴CD=CE+DE=2+3=5,∴AB=5.故选:D.5.小红同学对数据25,32,23,25,4■,43进行统计分析,发现“4■”的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.中位数B.平均数C.众数D.方差【分析】根据中位数定义可得答案.【解答】解:中位数与计算结果与被涂污数字无关,故选:A.6.如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=50°,则∠B的度数为()A.50°B.65°C.75°D.130°【分析】首先证明∠DAC=∠CAB=25°,再证明∠ACB=90°,利用三角形内角和定理即可解决问题.【解答】解:∵BC=CD,∴=,∴∠DAC=∠CAB,∵∠DAB=50°,∴∠CAB=×50°=25°,∵AB是直径,∴∠ACB=90°,∴∠B=90°﹣25°=65°,故选:B.7.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x2【分析】由点A(﹣1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A、B;再根据B(1,m),C(2,m﹣n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.【解答】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=的图象关于原点对称,因此选项A、B错误;∵n>0,∴m﹣n<m;由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.8.某公司为了解销售人员某季度商品的销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成统计表进行分析.组别销售数量(件)频数频率A20≤x<4020.04B40≤x<6060.12C60≤x<8013bD80≤x<100a0.48E100≤x<12050.10合计501下面有三个推断:①表中a的值为24;②表中b的值为0.13;③这50名销售人员该季度销售数量的中位数在D组.所有合理推断的序号是()A.①②B.①③C.②③D.①②③【分析】①用50减去各个组别的频数即可求解;②用1减去各个组别的频率即可求解;③根据中位数的定义即可求解.【解答】解:①a=50﹣2﹣6﹣13﹣5=24,是合理推断;②b=1﹣0.04﹣0.12﹣0.48﹣0.10=0.26,不是合理推断;③按照从小到大的顺序排列,第25和第26个数据都在D组,故这50名销售人员该季度销售数量的中位数在D组,是合理推断.故选:B.二.填空题(共8小题)9.若在实数范围内有意义,则x的取值范围是x≥3.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.10.在如图所示的几何体中,主视图是三角形的是③.(填序号)【分析】找到从正面看所得到的图形,得出主视图是三角形的即可.【解答】解:①的主视图是矩形;②的主视图是矩形,③的主视图是等腰三角形.∴主视图是三角形的是③.故答案为:③.11.如图,已知▱ABCD,通过测量、计算得到▱ABCD的面积约为0.8cm2.(结果保留一位小数)【分析】过点A作AE⊥BC于点E,测量出BC,AE的长,再利用平行四边形的面积公式即可求出▱ABCD的面积.【解答】解:如图所示,过点A作AE⊥BC于点E,经测量AE≈0.7cm,BC≈1.1cm,S▱ABCD=BC•DE=1.1×0.7≈0.8(cm2),故答案为:0.8.12.若关于x的一元二次方程x2﹣2x﹣k=0没有实数根,则k的取值范围是k<﹣1.【分析】根据关于x的一元二次方程x2﹣2x﹣k=0没有实数根,得出△=4+4k<0,再进行计算即可.【解答】解:∵一元二次方程x2﹣2x﹣k=0没有实数根,∴△=(﹣2)2﹣4×1×(﹣k)=4+4k<0,∴k的取值范围是k<﹣1;故答案为:k<﹣1.13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=45°.【分析】直接利用网格得出对应角∠1=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=45°.故答案为:45°.14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为5.【分析】先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.故答案为:5.15.在一次函数y=x+b的图象上有一点A,将点A沿该直线移动到点B处,若点B的横坐标减去点A的横坐标的差为1,则点B的纵坐标减去点A的纵坐标的差为1.【分析】设点A(a,c),点B(m,n),将点A,点B坐标代入解析式,可得c=a+b,n =m+b,即可求解.【解答】解:设点A(a,c),点B(m,n),∵点A,点B在一次函数y=x+b的图象上,∴c=a+b,n=m+b,∴n﹣c=m﹣a=1,故答案为:1.16.某公园的门票价格如表:购票人数1~5051~100100以上门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b(a ≥b).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a=70;b=40.【分析】分两种情况讨论,由两次门票费用,列出方程组,可求解.【解答】解:∵=99,=117,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:,∴(不合题意舍去),若a+b>100时,由题意可得,∴,故答案为:70,40.三.解答题(共12小题)17.计算:|﹣1|﹣tan60°+(π﹣3.14)0+()﹣1.【分析】先按照绝对值的化简法则、特殊角的锐角三角函数值、零指数幂和负整数指数幂的运算法则化简,再按照实数的加减法法则计算即可.【解答】解:|﹣1|﹣tan60°+(π﹣3.14)0+()﹣1=﹣1﹣+1+2=2.18.解不等式组,并把它的解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x≤3,解不等式②,x>﹣1,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示如下:.19.如图,在△ABE中,C,D是边BE上的两点,有下面四个关系式:(1)AB=AE,(2)BC=DE,(3)AC=AD,(4)∠BAC=∠EAD.请用其中两个作为已知条件,余下两个作为求证的结论,写出你的已知和求证,并证明.已知:求证:证明:【分析】已知:AB=AE,BC=DE,求证:AC=AD,∠BAC=∠EAD;由“SAS”可证△ABC≌△AED,可得AC=AD,∠BAC=∠EAD.【解答】解:已知:AB=AE,BC=DE,求证:AC=AD,∠BAC=∠EAD,证明:∵AB=AE,∴∠B=∠E,∵AB=AE,∠B=∠E,BC=DE,∴△ABC≌△AED(SAS),∴AC=AD,∠BAC=∠EAD;也可以(1)(3)⇒(2)(4)或(2)(3)⇒(1)(4)或(1)(4)⇒(2)(3)或(3)(4)⇒(1)(2).证明方法类似.20.通过使用手机app购票,智能闸机、手持验票机验票的方式,能够大大缩短游客排队购票、验票的等待时间,且操作极其简单,已知某公园采用新的售票、验票方式后,平均每分钟接待游客的人数是原来的10倍,且接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟,求该公园原来平均每分钟接待游客的人数.【分析】设该公园原来平均每分钟接待游客的人数为x人,由“接待5000名游客的入园时间比原来接待600名游客的入园时间还少5分钟”列出方程可求解.【解答】解:设该公园原来平均每分钟接待游客的人数为x人,由题意可得:,解得:x=20,经检验,x=20是原方程的解,答:该公园原来平均每分钟接待游客的人数为20人.21.如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=2,AD=4,求BE的长.【分析】(1)由平行四边形的性质可得AD∥BC,AD=BC=BD,由两组对边平行的四边形是平行四边形,可证四边形BDEC是平行四边形,即可得结论;(2)连接BE交CD于O,由菱形的性质可得DO=CO=CD=1,BO=BE,CD⊥BE,由勾股定理可求BO的长,即可求解.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=CD,∵AD=BD,∴BD=BC,∵CE∥BD,AD∥BC,∴四边形BDEC是平行四边形,又∵BD=BC,∴四边形BDEC是菱形;(2)如图,连接BE交CD于O,∵四边形BDEC是菱形,∴DO=CO=CD=1,BO=BE,CD⊥BE,在Rt△BDO中,AD=BD=4,DO=1,∴BO===,∴BE=2BO=2.22.为了解某社区居民掌握民法知识的情况,对社区内的甲、乙两个小区各500名居民进行了测试,从中各随机抽取50名居民的成绩(百分制)进行整理、描述、分析,得到部分信息:a.甲小区50名居民成绩的频数直方图如下(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);b.图中,70≤x<80组的前5名的成绩是:79 79 79 78 77c.图中,80≤x<90组的成绩如下:82838485858686868686 86868687878788888989 d.两组样本数据的平均数、中位数、众数、优秀率(85分及以上)、满分人数如下表所示:小区平均数中位数众数优秀率满分人数甲78.5884.5a b1乙76.9279.59040%4根据以上信息,回答下列问题:(1)求表中a,b的值;(2)请估计甲小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,分析甲、乙两个小区参加测试的居民掌握民法知识的情况.【分析】(1)由众数的定义和优秀率的计算公式可求解;(2)A小区500名居民成绩能超过平均数的人数:500×=310(人);(3)根据统计量:平均数、中位数、众数、优秀率,即可分析甲、乙两小区参加测试的居民掌握民法知识的情况.【解答】解:(1)∵86出现的次数最多,∴众数a=86,优秀率b=×100%=50%;(2)500×=310(人),答:甲小区500名居民成绩能超过平均数的人数为310人;(3)从平均数看,甲小区居民掌握民法知识平均分比乙小区居民掌握民法知识的平均分高;从中位数看,甲小区居民掌握民法知识的情况比乙小区居民掌握民法知识的情况好;从众数看,乙小区居民掌握民法知识的情况比甲小区居民掌握民法知识的情况好;从优秀率看,甲小区居民掌握民法知识的成绩优秀率比乙小区居民掌握民法知识的成绩优秀率高.23.如图,P A是⊙O的切线,切点为A,AC是⊙O的直径,过A点作AB⊥PO于点D,交⊙O于B,连接BC,PB.(1)求证:PB是⊙O的切线;(2)若cos∠P AB=,BC=2,求PO的长.【分析】(1)连结OB,根据圆周角定理得到∠ABC=90°,证明△AOP≌△BOP,得到∠OBP=∠OAP,根据切线的判定定理证明;(2)根据余弦的定义求出OA,证明△P AO∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)连接OB,∵AC为⊙O的直径,∴∠ABC=90°,∵AB⊥PO,∴PO∥BC∴∠AOP=∠C,∠POB=∠OBC,∵OB=OC,∴∠OBC=∠C,∴∠AOP=∠POB,在△AOP和△BOP中,∵,∴△AOP≌△BOP(SAS),∴∠OBP=∠OAP,∵P A为⊙O的切线,∴∠OAP=90°,∴∠OBP=90°,∴PB是⊙O的切线;(2)∵∠P AB+∠BAC=∠BAC+∠C=90°,∴∠P AB=∠C,∴cos∠P AB=cos∠C==,∵BC=2,∴AC=2,∴AO=,∵∠P AO=∠ABC=90°,∠POA=∠C,∴△P AO∽△ABC,∴=,即=,解得PO=5.24.如图,点D是射线BC上的一定点,点P是线段AB上一动点,连接PD,作BQ垂直PD,交直线PD于点Q.小腾根据学习函数的经验,对线段PB,PD,BQ的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点P在AB上的不同位置,画图、测量,得到了线段PB,PD,BQ的长度的几组值,如表:位置1位置2位置3位置4位置5位置6位置7 BP/cm0.00 1.00 2.00 3.00 4.00 5.00 6.00PD/cm 2.00 1.220.98 1.56 2.43 3.38 4.35BQ/cm0.000.78 1.94 1.82 1.56 1.41 1.31在PB,PD,BQ的长度这三个量中,确定BP的长度是自变量,PD的长度和BQ 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PD>BQ时,PB长度范围是0<PB<1.5或BP>3.2cm.【分析】(1)确定BP的长度是自变量,PD的长度和PQ的长度都是这个自变量的函数.(2)利用描点法画出函数图象即可.(3)写出函数PD的图象在函数BQ的函数图象的上方时,自变量x的取值范围即可.【解答】解:(1)在PB,PD,BQ的长度这三个量中,确定BP的长度是自变量,PD的长度和PQ的长度都是这个自变量的函数,故答案为PB,PD,BQ.(2)函数图象如图所示:(3)观察图象可知PD>BQ时,PB的长度范围为:0<PB<1.5或BP>3.2.故答案为0<PB<1.5或BP>3.2.25.在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n(n>0),且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=(x>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若PN≥3PM,结合函数的图象,直接写出n的取值范围.【分析】(1)将点A坐标代入双曲线解析式中和直线解析式中,求解即可得出结论;(2)①先求出点M,N点坐标,即可得出结论;②先求出点P坐标,进而表示出点M,N的坐标,得出PM,PN,利用PN≥3PM建立表达式求解即可得出结论.【解答】解:(1)∵函数y=(x>0)的图象与直线y=mx交于点A(2,2),∴k=2×2=4,2=2m,∴m=1,即k=4,m=1;(2)①由(1)知,k=4,m=1,∴双曲线的解析式为y=,直线OA的解析式为y=x,∵n=1,∴P(1,1),∵PM∥x轴,∴M(0,1),N(4,1),∴PM=1,PM=4﹣1=3,∴PN=3PM;②由①知,如图,双曲线的解析式为y=,直线OA的解析式为y=x,∵点P的横坐标为n,∴P(n,n),∵PM∥x轴,∴M(0,n),N(,n),∵PN≥3PM,∴PM=n,PN=﹣n,∵PN≥3PM,∴﹣n≥3n,∵∴0<n≤1.26.在平面直角坐标系xOy中,二次函数y=ax2﹣2ax+c的图象经过点A(﹣1,1),将A 点向右平移3个单位长度,再向上平移2个单位长度,得到点B,直线y=2x+m经过点B,与y轴交于点C.(1)求点B,C的坐标;(2)求二次函数图象的对称轴;(3)若二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点,结合函数图象,直接写出a的取值范围.【分析】(1)由平移的性质可求点B坐标,代入解析式可求m的值,可求直线解析式,即可求点C坐标;(2)由对称轴为x=﹣可求解;(3)分类讨论,结合图形,可求解.【解答】解:(1)∵点A(﹣1,1)向右平移3个单位长度,再向上平移2个单位长度,得到点B,∴点B(2,3),∵直线y=2x+m经过点B,∴3=4+m,∴m=﹣1,∴直线解析式为:y=2x﹣1,∵直线y=2x+m与y轴交于点C.∴点C(0,﹣1);(2)二次函数y=ax2﹣2ax+c的对称轴直线x=﹣=1;(3)∵二次函数y=ax2﹣2ax+c的图象经过点A(﹣1,1),∴1=a+2a+c,∴c=1﹣3a,∴抛物线解析式为:y=ax2﹣2ax+1﹣3a,∴顶点坐标为(1,1﹣4a)当a>0时,如图所示,∴当1﹣4a<1时,二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点,∴a>0;当a<0时,如图所示,∴4a﹣4a+1﹣3a>3,∴a<﹣,综上所述:当a>0或a<﹣时,二次函数y=ax2﹣2ax+c(﹣1<x<2)的图象与射线CB恰有一个公共点.27.在△ABC中,∠C=90°,AC=BC,点P在线段BA的延长线上,作PD⊥AC,交AC 的延长线于点D,点D关于直线AB的对称点为E,连接PE并延长PE到点F,使EF=AC,连接CF.(1)依题意补全图1;(2)求证:AD=CF;(3)若AC=2,点Q在直线AB上,写出一个AQ的值,使得对于任意的点P总有QD =QF,并证明.【分析】(1)依照题意,补全图形即可;(2)通过证明四边形DCFP是矩形,可得PD=CF,由等腰直角三角形的性质可得AD =PD=CF;(3)通过证明△DAQ≌△FCQ,可得QD=QF.【解答】解:(1)补全图形,如图所示:(2)∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵PD⊥AC,∴∠PDA=90°,∴∠DP A=90°﹣∠P AD=45°=∠DAP,∴AD=DP,∵点D关于直线AB的对称点为E,∴∠FP A=∠DP A=45°,∴∠DPF=90°,又∵∠PDA=90°=∠ACF,∴四边形DCFP是矩形,∴PD=CF,∴AD=PD=CF;(3)AQ=,理由如下:如图2,连接CQ,∵∠C=90°,AC=BC=2,∴AB=2,∠B=∠CAB=45°,∵AQ=,∴AQ=BQ,又∵∠C=90°,AC=BC=2,∴CQ=AQ=BQ,∠QCA=∠CAQ=45°,∴∠DAQ=∠QCF=135°,又∵AD=CF,∴△DAQ≌△FCQ(SAS),∴FQ=DQ.28.在平面直角坐标系xOy中,A(t,0),B(t+4,0),线段AB的中点为C,若平面内存在一点P使得∠APC或者∠BPC为直角(点P不与A,B,C重合),则称P为线段AB 的直角点.(1)当t=0时,①在点P1(,0),P2(,),P3(,﹣)中,线段AB的直角点是P2,P3;②直线y=x+b上存在四个线段AB的直角点,直接写出b取值范围;(2)直线y=x+1与x,y轴交于点M,N.若线段MN上只存在两个线段AB的直角点,直接写出t取值范围.【分析】(1)由线段AB的直角点定义可求解;(2)由圆周角定理可得点P在以BC为直径或AC为直径的圆上,求出直线y=x+b 过点C时,b的值和直线y=x+b与以BC为直径或AC为直径的圆相切时,b的值,即可求解.(3)由题意可得以BC为直径或AC为直径的圆与线段MN的交点只有两个,利用特殊位置可求解.【解答】解:(1)当t=0时,则点A(0,0),点B(4,0),∵点C是AB中点,∴点C(2,0),∴AC=BC=2,∵AP12+CP12=+≠AC2=4,∴点P1不是线段AB的直角点;∵AP22+CP22=+++=4=AC2=4,∴∠AP2B=90°,∴点P2是线段AB的直角点,∵CP32+BP32=+++=4=BC2=4,∴∠CP3B=90°,∴点P3是线段AB的直角点,故答案为:P2,P3;(2)∵∠APC或者∠BPC为直角,∴点P在以BC为直径或AC为直径的圆上,如图,当直线y=x+b与以AC为直径的圆相切时,直线y=x+b与以AC为直径的圆和以BC为直径的圆有三个交点,即存在三个线段AB的直角点,设切点为F,以AC为直径的圆的圆心为E,直线y=x+b与x轴交于点H,连接EF,∵直线y=x+b与以AC为直径的圆相切,∴EF⊥FH,∵直线y=x+b与x轴所成锐角为30°,∴EH=2EF=2,∴点H(3,0),∴0=×3+b,∴b=﹣,同理可得,当直线y=x+b与以BC为直径的圆相切时,b=﹣,当直线y=x+b过点C时,直线y=x+b与以AC为直径的圆和以BC为直径的圆有三个交点,即直线y=x+b上存在三个线段AB的直角点,∴0=+b,∴b=﹣,∴当﹣<b<﹣或﹣<b<﹣时,直线y=x+b与以AC为直径的圆和以BC为直径的圆有四个交点,即直线y=x+b上存在四个线段AB的直角点,(3)∵直线y=x+1与x,y轴交于点M,N,∴点N(0,1),点M(﹣,0),如图,当直线y=x+1与以BC为直径的圆相切于点F,设BC为直径的圆的圆心为E,连接EF,此时线段MN与以AC为直径的圆和以BC为直径的圆有两个交点,即线段MN 上存在两个线段AB的直角点,∵A(t,0),B(t+4,0),点C是线段AB的中点,∴AB=4,AC=BC=2,∵直线y=x+1与以BC为直径的圆相切于点F,∴EF⊥MN,∵∠NMB=30°,∴ME=2EF=2,∴点E(﹣+2,0),∴点A(﹣﹣1,0),∴t=﹣﹣1当直线y=x+1与以AC为直径的圆相切时,此时线段MN与以AC为直径的圆和以BC为直径的圆有3个交点,即线段MN上存在3个线段AB的直角点,同理可求:t=1﹣,当点A与点M重合时,此时线段MN与以AC为直径的圆和以BC为直径的圆有两个交点,即线段MN上存在两个线段AB的直角点,∴当﹣<t<1﹣或t=﹣﹣1时,线段MN上只存在两个线段AB的直角点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档